
SACJ 35(1) July 2023
Viewpoint

Ontology-driven development of dialogue
systems
Anna Litvina , Oleksandr Palagina , Vladislav Kaverinskyb , Kyrylo Malakhova

a Microprocessor Technology Lab, Glushkov Institute of Cybernetics of the National Academy of Sciences of
Ukraine, Kyiv, Ukraine
b Frantsevic Institute for Problems in Material Science of the National Academy of Sciences of Ukraine, Kyiv,
Ukraine

ABSTRACT
A new technique and its software implementation are presented to create a deeply semantically structured onto-
logy using plain natural language text as input, without regular structure or any previous tagging and markup.
The new approach is primarily aimed at highly inflectional languages, and is implemented for Ukrainian. The
automatically created ontologies (in OWL) could be easily converted to other graph databases formats, such as
Neo4j, and were successfully evaluated as valid ontologies using Protégé, RDFlib and Neo4j environments. An
integrated approach is proposed for the development of natural language dialogue systems driven by the ontology-
related graph database using the Cypher language for the formal queries. The original phrases are subject to a
special method of semantic analysis, which determines the type of formal query to the database. The essence of
the analysis is that the text of the user’s phrase goes through a series of checks. Based on their results, a set of
basic templates for the formal requests are determined, as well as additional constructions that are attached to
the basic template. Some of the checks may also return the notion of substitution to certain specified positions of
the formal query. Formal queries can return both contexts and lists of ontology concepts. In addition to concepts,
queries can also return information about specific semantic predicates that connect them, which simplifies the
synthesis of natural language responses. The synthesis of answers is based on special templates, the choice of
which is directly related to the corresponding template of the formal query.
Keywords: Ontology engineering, Ontology learning, Knowledge management, Knowledge base, Relation se-
mantics, Neo4j, Cypher, Dialogue systems
Categories: • Information systems ∼ Information retrieval, Document representation, Ontologies
Email:
Anna Litvin – litvin_any@ukr.net,
Oleksandr Palagin – palagin_a@ukr.net,
Vladislav Kaverinsky – insamhlaithe@gmail.com,
Kyrylo Malakhov – malakhovks@nas.gov.ua (CORRESPONDING)

Article history:
Received: 20 April 2023
Available online: 31 July 2023

1 INTRODUCTION

An essential element of every dialogue and reference system is its knowledge base (KB). The
fundamental challenges in the design and development of information systems of this type are
Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. (2023). Ontology-driven development of dialogue sys-
tems [Viewpoint]. South African Computer Journal 35(1), 37–62. https://doi.org/10.18489/sacj.v35i1.1233

Copyright the author(s); published under a Creative Commons NonCommercial 4.0 License .
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists.
ISSN 1015-7999 (print) ISSN 2313-7835 (online).

https://orcid.org/0000-0002-5648-9074
https://orcid.org/0000-0003-3223-1391
https://orcid.org/0000-0002-6940-579X
https://orcid.org/0000-0003-3223-9844
mailto:litvin_any@ukr.net
mailto:palagin_a@ukr.net
mailto:insamhlaithe@gmail.com
mailto:malakhovks@nas.gov.ua
https://www.sacj.org.za
https://doi.org/10.18489/sacj.v35i1.1233
http://creativecommons.org/licenses/by-nc/4.0/
https://www.sacj.org.za
https://www.saicsit.org/


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 38

the structure of the KB, its fulfilment, development kits (devkits), maintenance, and interaction
techniques.

Often, a deep scientific study and analysis is needed to comprehend the advantages and
drawbacks of different approaches and find the optimal solution to some specific tasks set. The
current research focuses on the questions of completely automatic creation of the KB (based on
the natural language text with its structure and appropriate devkits) and method of subsequent
interaction with the KB using a natural language interface.

Manual creation of a KB is a complicated, time-consuming, and complex process, which
inspires finding techniques to automate the process. After automated creation, it might only
take a minor manual correction and fine-tuning to make the KB more accurate. Furthermore,
creating dialogue systems that can be trained by using natural language texts without any
formal structure is highly desirable. Process automation will significantly assist in handling a
large volume of data stored as plain text or collected via the Internet. This system could help
users find answers to their questions as relevant contexts are extracted from texts. Also, users
can get answers as inferences made from semantic data retrieved from the analysed text. The
current state of computing and software techniques makes it possible to solve such a problem.

Ontologies are a well-known and proven method of organising semantically structured
knowledge bases, which often comes with a particular type of graph database. Furthermore,
given the specificity of the considered problem that involves dealing with natural language
texts, which represent semantic structures by their nature, the use of ontologies appears to
be an even more appropriate approach. Because one of the popular languages for ontology
engineering is OWL (Antoniou & Plexousakis, 2016), which is a standard, it will appear as the
foundation for ontology creation in this study. Moreover, conversion of OWL ontologies to
other graph formats, for instance – the Neo4j graph database management system (GDMS) is
possible.

Completely automatic ontology creation could be considered a specific type of machine
learning which consists of semantic structuring of large amounts of textual information in a
way that is acceptable for subsequent machine manipulation. This manipulation could be,
for example, the automatic data collection from the Internet for a specific topic (knowledge
domain). This direction in informatics is usually called ontology learning and has been actively
developing in recent years. Automatic KB creation using natural language text is a specific
type of machine learning.

Automatic ontology creation has been discussed in many studies (An & Park, 2018; Bal-
akrishna & Srikanth, 2008; Elnagar et al., 2020). However, the development technique and
structure of the ontology are highly dependent on the assigned purpose and knowledge domain.
The original (native) natural language, its structure, and lexical and grammatical peculiarities
also play a significant role in the approach to be developed. The implementations of most ex-
isting natural language processing (NLP), natural language understanding, natural language
generation and natural language inference methods are devoted to the English language. This
is because English has become the most widely accepted international language and the most
useful in many branches of modern life. It should be noted that ontology learning approaches

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 39

are not sufficiently developed for Slavic inflectional languages, e.g. Ukrainian. Our previous
work (Litvin et al., 2021) is devoted to this question. However, the approach considered is
only acceptable for previously tagged texts or text sets with a predetermined regular struc-
ture (such as official documents, letters, etc.). The technique presented in this study makes it
possible to process texts without previous tagging and markup or regular structure.

The current study is devoted to the development of a reference system with a natural
language (NL) interface, of which the main feature is the automatic building of the ontology-
related graph through the semantic analysis of natural language text. A further part of the
system provides natural language interaction with the graph database. The key concept is
to convert user phrases into formal queries to the computer ontology. Since the system uses
Neo4J as its core graph database management system, the Cypher language is used for the
queries. The system also includes a module for the natural language generation of responses
based on the results of a formal request. The current study primarily focuses on highly inflec-
tional languages, which include East Slavic languages such as Ukrainian.

The core of the system is the computer ontology (in OWL) which is represented as a graph
database dedicated to specific domain knowledge. This ontology must have a predefined
structure to make it easier and more predictable to integrate with programs. Nevertheless, the
specific content of the ontology is not predetermined and depends on the information from
the text submitted as the input data. Thus, the outputs (responses) given by the system and
its domain knowledge depend on the texts used as data for its learning.

It is important to note that the system proposed in this study intends to work primarily
with the grammatically and orthographically correct text of scientific style and information
technology domain knowledge.

2 STATE OF THE ART IN ONTOLOGY-DRIVEN DIALOGUE SYSTEMS AND ON-
TOLOGY LEARNING APPROACHES

The most important aspects covered in the study are ontology methods for the automatic
generation of ontologies from natural language text, and their structural features; generation of
formal queries, and natural language responses, mainly forming a natural-language interface
of a graph database. Some of the relevant information on this topic can be found in our
previous studies (Litvin et al., 2020, 2021; Palagin et al., 2014; Palagin et al., 2020, 2018).

Natural language dialogue systems, so-called chatbots, have a long history and a variety
of approaches. In the following, we will review some examples of dialogue systems that have
been developed in recent years, especially those that use computer ontologies in one way or
another.

A typical example of a natural language dialogue system for English is described in Quamar,
Lei et al. (2020) and Quamar, Özcan et al. (2020). The analysis of the user’s input phrase
assumes that English sentences have a fairly regular structure, which can be expressed quite
well by a set of templates. Each of the templates has a constant part and some variables. The

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 40

constant part indicates its basic semantic type (intention), and the variable parts indicate
the places from which the corresponding concepts are to be extracted (placeholders). These
placeholders are specified according to certain intentions of the concepts expected to be
at the positions. We will consider an example from the aforementioned studies. Here is a
template:

Show me {@M} by {@D} for {@V}.

The curly brackets here are the placeholders. The markers in the placeholders here indicate
the following:
@M corresponds to the main requested concept;
@D is the selection category for concepts such as @M;
@V is the filter parameter.
To illustrate the idea, we consider a typical phrase, e.g.: Show me admits by major
diagnostic category for 2017. It fully complies with the above template. The
core entity that the user asks for is admits (in this case it corresponds to number of
hospitalisations). The category of selection and sorting is major diagnostic cate-
gory and the filter parameter is 2017. The constant part of the template with certain positions
and types of placeholders defines the corresponding intention. For each intention there
is a corresponding set of database (DB) queries and instructions for displaying the results on
the user interface. Databases for the main information storage are relational. The system also
contains an ontology used to structure the categorisation of types and measurements of data
stored in the main database. The intentions and concepts derived from the user’s source
phrase are compared with the ontology to determine those closest to the requested dimensions
and categories from those available in the databases. One of the features of the system is that
the ontology is automatically created based on a relational data model.

The approach presented here also focuses on the problem of pronoun substitution, which
means the following: if a template variable appears to be a pronoun or just empty, the program
uses the relevant data from the last of the previous queries. If there is no information in the
previous queries, the default values are substituted instead of the pronoun. These defaults are
formed on the basis of the most common queries collected during system usage. Currently, the
system does not include automatic learning, although the authors have declared the possibility
of its development in the future.

Some dialogue systems use an ontology as the main knowledge base. For formal queries,
SPARQL is often used. Since the user interface assumes the use of natural language, one of the
key tasks is the conversion of a natural language query into a formal query. One example of
automated conversion of natural language queries into SPARQL frameworks is PAROT (Ochi-
eng, 2020), which uses an approach that generates the most probable RDF triple based on the
user’s question. The triple is then validated by a special module that includes a dependency

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 41

analyser to process user queries on RDF triplets. The RDF triplets obtained in this way are
then transformed into ontological triplets using a special thesaurus. The generated ontolo-
gical triplets are used to build a SPARQL query, which is used to obtain answers from the
ontology. Testing of the PAROT framework by the author (Ochieng, 2020) showed that it has
an accuracy of about 81–82% for simple questions, about 43–56% for complex ones, and for
a specific thematic dataset (geography) the accuracy is increased to 88%.

Another example of an implementation of natural language conversion with SPARQL tech-
niques is FREyA (Damljanovic et al., 2012), available on GitHub (V. Kumar, 2022). FREyA
provides an interactive natural language interface for ontology queries. It uses parsing com-
bined with ontology-based search to interpret questions and, if necessary, prompt the user.
User choices are used to train the system, which improves the accuracy of its operation. This
system is currently implemented for English only. In the GitHub repository (V. Kumar, 2022)
some examples are given to illustrate how natural language questions could be converted to
SPARQL using FREyA. Note that the FREyA configuration can be tuned to a specific ontology
structure.

Another system is the LODQA (Linked Open Data Question Answering) system (Shaik et al.,
2016) that accepts a natural language input query and returns SPARQL queries along with the
corresponding responses. The system is composed of several modules. The first module pro-
cesses the natural language input query. It is responsible for parsing and creating a graphical
representation of the query, called a pseudographic template. The pseudographic template
contains nodes and links. The nodes usually correspond to the basic name groups and the
links to the dependencies between them. In addition, the pseudographic template indicates
which node of the ontology graph is the focus of the query, i.e., what the user will get in
response to the query. A pseudographic template is a search graph template of a target graph
of RDF subgraphs that match it. However, it is called a pseudographic template because it
is not yet based on the target dataset. As soon as the first module has generated a pseudo-
graphic template from the given natural language query, the next module is activated, which
is responsible for finding URIs and node values in the pseudographic template. URIs and val-
ues must be present in the target dataset. For normalisation, each node of the pseudographic
template is associated with the URI of the dataset. The concept in natural language could be
normalised (reduced to its original grammatical form) in more than one way due to possible
ambiguities. Therefore, more than one template could be obtained from a pseudographic tem-
plate. The third module for the generated pseudographic template performs a search in the
target dataset for the relevant parts, taking into account possible changes that may occur in
the dataset. To account for structural differences between the bound pseudographic template
and the actual structure of the target data set, this module attempts to generate SPARQL quer-
ies for all possible structural differences. SPARQL queries are then sent to the target endpoint,
where responses are obtained and then returned to the user. These query arguments can be of
a primitive type, such as S, N, or NP, or complex, such as S/NP, or NP/N. A slash means
the argument should be displayed on the right, and a backslash means the argument should
be displayed on the left. The system uses the following notation for parts of speech, e.g.: NN –

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 42

noun, DT – definition (adjective), VB – verb. To facilitate the identification of RDF triplets, the
words in the sentence are lemmatised and assigned the appropriate grammatical properties.
The LODQA system currently only works with the English language. Detailed features of its
operation are not given in Shaik et al. (2016), but are limited to a general description and
analysis of working examples.

Although the development of dialogue systems, as well as the machine processing and
understanding of natural language text, is mostly done for the English language, it is not lim-
ited to it. For example, Altinok (2018) presents a dialogue system for the German language,
which uses an ontology to act as a dialogue manager (OntoDM) that maintains the state of
the conversation. The ontology is also used as a knowledge base. These roles are combined.
Domain knowledge is used to track objects of interest, i.e., ontology nodes (classes), which are
products and services represented in the ontological knowledge base. In this way, the conver-
sation history memory capability was introduced. A significant part of the article by Altinok
(2018) is devoted to the peculiarities of linguistic problems of German language processing.
At the time of the publication of byt Altinok (2018), the research work was still in progress
and the criteria for the quality evaluation of the system had not yet been obtained. Another
example is the article by Jung and Kim (2020), which describes the development of a dialogue
system for the Korean language, which is fundamentally different from European languages.

One of the most promising graph database management systems is Neo4j (Goel, 2015;
Helou et al., 2019), which provides relatively high performance as well as scalability and is
suitable for working with large amounts of data. It is also currently one of the most popular
graph databases. The formal query language used in Neo4j is Cypher. It has a wide range of
capabilities, is quite flexible, and is open to adding functionality through plug-ins, such as the
implementation of typical algorithms on graphs. However, unlike SPARQL, there are currently
not many developments to convert natural language queries to formal queries in Cypher, with
the exception of Sun (2018) and Srinivas (2023). The system proposed by Srinivas (2023)
is rather primitive as queries must have a predefined structure. This approach is close to
the one presented by Quamar, Özcan et al. (2020): a set of sentence templates in natural
language, where some fragments are replaced by a special notation, as places from which the
concepts are to be extracted for substitution in a query template. Each such template sentence
corresponds to a specific query pattern on Cypher. The main advantage of the described
approach is its simplicity, while the main disadvantage is that a real dialogue system requires a
large number of such sentence templates containing all possible query options. Moreover, this
approach is justified for languages with a regular sentence structure, such as English, where
fewer phrase patterns are needed. Inflectional languages, e.g. Ukrainian, have a complex
sentence structure with relatively free word order. This fact significantly increases the number
of required templates.

Another important concept to be considered here is called ontology learning (OL), which
aims to automatically or semi-automatically discover ontological knowledge from various
forms of data and can overcome the bottleneck of ontology acquisition in ontology devel-
opment (Zhou, 2007). The term ontology learning had its origins in 2000 when Maedche

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 43

and Staab (2001) introduced it as a newly emerging field of research aiming at nothing less
than the automatic generation of ontologies (Watrobski, 2020). Ontology development still
faces some challenges, such as knowledge acquisition and the lack of sufficiently validated and
generalised development methodologies. Zhou (2007) introduced the concept of rapid onto-
logy development (ROD). It consists of three phases: design, learning, and validation. The
design phase involves the identification and detailed analysis of domains, requirements, and
relevant resources with the help of users and/or domain experts. A variety of techniques can
be used for domain analysis, such as interviews, questionnaires, and informal text analysis.
In the learning phase, appropriate learning techniques are selected, implemented, and then
applied to discover ontologies from domain sources. The learning results are evaluated and
refined in the validation phase, where the discovered ontologies are checked for redundancy,
conflicts, and/or missing information. The active involvement of users and domain experts is
highly desired in this phase. ROD is an iterative process that is repeated until the result is ac-
ceptable to users and/or knowledge engineers. The framework for ontology learning consists
of information extraction, ontology discovery, and ontology organisation. Ontology discov-
ery here means that supervised and unsupervised learning algorithms have been applied to
discover ontological concepts and relations from the extracted information.

The ROD approach is neither new nor the only existing technique of OL. The process of
ontology learning is performed in an automatic or semi-automatic way using several sources,
with an insistent need for human involvement (Navarro-Almanza et al., 2020). Fully auto-
mated approaches are available, but they are still difficult tasks because in most cases human
involvement is required. OL systems can be categorised according to the type of data they
learn from Ma and Molnár (2020). These data types are unstructured, semi-structured, and
structured (Faizi et al., 2020; Konys, 2017; Watrobski et al., 2014). More specifically, ontology
learning methods can be classified according to the technique used, specifying the following
solutions: methods and utilities for ontology learning from semi-structured schemas, know-
ledge bases, text, dictionaries, relational schemas, the Web, social data, and across languages,
based on term extraction and concept formation, based on relation discovery (Ibrahim et al.,
2023; S. Kumar & Kumar, 2022; Sivasubramanian & Jacob, 2020). These approaches can
also be distinguished based on statistics, rule-based approaches, hybrid techniques, linguistic
techniques, as well as logical techniques and resources (Ibrahim et al., 2023; Konys, 2015;
Konys, 2017; Konys & Drazek, 2020; S. Kumar & Kumar, 2022). These solutions use different
techniques depending on the different goals to be achieved. Depending on the results, these
approaches differ depending on the techniques used. Some of them start to create an ontology
from scratch, while others import and use existing ontologies. In addition, ontology learning
systems differ in the degree of automation from semi-automated, collaborative, or fully auto-
mated (Konys, 2015; Konys, 2018; Konys & Drazek, 2020). Watrobski (2020) reports that
there are at least 22 different approaches to OL today.

The OL methods that are closest to the scope of our study and are of interest to many
researchers are those that use natural language text as an input source. Among the tech-
niques used for this purpose are various combinations of NLP approaches, machine learning

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 44

(including deep learning), knowledge extraction using through patterns, semantic similarity
metrics, clustering methods, statistical approaches, word patterns, etc. In the current research,
a method is considered, which is primarily aimed at highly inflectional type languages, in the
core of which there is a rule-based statistical analysis, which provides information about the
semantic relations between entities mentioned in the analysed text. The information obtained
in this way will be used to create an OWL ontology.

Thus, the main purpose of this research was the development and study of methods for
automatic generation of ontologies from a natural language text, focusing primarily on highly
inflectional types of languages, e.g., Ukrainian, and its subsequent use as a knowledge base in
dialogue and reference systems using Neo4j and the Cypher query language.

Each of the main parts forming the system is considered in the next section: automatic
generation of the ontology, natural language interface of the graph database and synthesis of
responses in natural language using the results of the formal query.

3 PROPOSED APPROACH TOONTOLOGYGENERATION FROMPLAIN NATURAL
LANGUAGE TEXT

A complete description of the technique of automatic ontology creation based on a natural
language text is given in (Litvin et al., 2020, 2021). Let us consider the ontology structure
itself in terms of OWL.

In the proposed basic approach, there is a rule-based syntax-semantic analysis method. It
is known that in highly inflectional languages, the main role of words bounding in a sentence
belongs to the combination of certain flections (changeable endings of words). A developed
language system of highly varying flection combinations for different parts of speech allows
the expression of considerable semantic information. Thus, mere analysis of word forms for
compatibility checking has the potential to bring not all, but a significant part of semantic
information.

In the considered approach we have proposed about 90 semantic types, each of them actu-
ally could have several (up to more than a hundred) sub-types depending on such additional
characteristics such as gender, tense, number, or a certain preposition for each of the words
from the considered pair. However, these additional sub-types are not used in ontology cre-
ation, but they may be useful in the future for even deeper and more precise information
structuring. Moreover, they come directly from the so-called correlators, which are the
parts of the analyser that give the programs the options of how one or another semantic type
could be expressed. There are several systems of semantic types. The set considered here
could be derived from the astigmatic basis set by the method proposed in (Litvin et al., 2020,
2021).

The creation of an ontology from a text includes two key operations, which are performed
by separate program modules. The first, probably the most important and the most resource-
consuming part consists of the syntax-semantic analysis of the input text. The corresponding

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 45

program module contains a manually created set of so-called correlators and determi-
nates.

The determinates represent combinations of possible flections of words and prepositions
between them (if any) corresponding to each option of semantic sub-types. They also indicate
whether the combination is inverse and which of the words in the pair is to be considered the
main one. The labels of the semantic sub-types are given as contention symbols, e.g. K1001,
K4801, K6201, etc. An example of a line from the determinates file for the Ukrainian
language is shown in Listing 1.

1 ім під ям L I K6201K8644K8646

Listing 1: An example of a line from the determinates file for the Ukrainian language
Here we can see flections for the first and the second of the possibly related words ім and

ям. The preposition під is assumed to be between them. The symbol L marks that the main
word is the left one, as the given flections, and the symbol I says that the link is inverse. The
possible semantic sub-types for the combination are designated as K6201, K8644, K8646.

The correlators represent the correspondence of each of the semantic sub-types to the
possible options of parts of speech combinations, including their order in the pair. In addition,
the verbose names of the semantic types (macro types) are given. For each of these macro
types there may be several (up to more than a hundred) suitable sub-types. An example of a
line from the file of correlators for the Ukrainian language is shown in Listing 2.

1 K3506 отделимостьдействия_ S4S1;S4S6;S4S13;S4S5;S4S3;S4S10;S4S11;S4S12;S4S18;S4S22;S4S25

Listing 2: An example from the file of correlators for the Ukrainian language
Here we have K3506, which is a semantic sub-type label. Then there is отделимость_дейс-

твия (Engl.: separability of an action), which is a verbose name of the corresponding semantic
macro type. Then there is a sequence of possible parts of speech pairs given as contentious
symbols. For example, S1 is a noun, and S4 is a verb. The pairs are separated by semicolons.

Also, the program has a dictionary including word stems, lemmas, and flections. The
dictionary gives the correspondence between stems, lemmas, and sets of flections. The dic-
tionaries are stored in a special compact format and could be created automatically using
open-language data.

Themain purpose of the program is to use these data and the input text to find and typify the
words in it, to determine stems and flections, to recognise the links between the words, and to
find out their semantic types. The other result of such an analysis is obtaining the related word
groups in the sentences. Formally, a group is a fully connected graph. Practically such groups
could correspond to a whole simple sentence, a part of a complex sentence, or a participial
sub-phrase. The outputs of this module are two XML files allterms.xml and parce.xml. They are
used for the subsequent creation of the OWL ontology.

The allterms.xml file is just a list of terms – nouns and groups of names found in the analysed
text with some of their properties. It consists of two main parts: <terms> and <phrases>.
The first one contains terms. An example of how a term is displayed is shown in Listing 3.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 46

1 <term>
2 <ttype>Noun_noun</ttype>
3 <tname>тіло людини</tname>
4 <wcount>2</wcount>
5 <osn>тіл</osn>
6 <osn>люд</osn>
7 <sentpos>1/1</sentpos>
8 <sentpos>1/2</sentpos>
9 <reldown>2</reldown>

10 <reldown>4</reldown>
11 </term>

Listing 3: An example of how a term is displayed in allterms.xml file
The <ttype> tag specifies the sequence of parts of speech that form the term. The

<tname> tag is the text of the term as given. The <wcount> tag indicates the number of
words in the term. Tags <osn> are given for each of the words and represent stems. Tags
<sentpos> indicate the position of the words in the text (the sentence number, from 0 / the
word position in the sentence, from 1). Tags <reldown> and <relup> are optional. They
show the relations of the considered term to other terms in the file. Tag <reldown> points
to the term of the narrowing context - any of its words could be found in this term, but the
considered term contains more. The <relup> tag points to the term of expanding context –
contains all words of this term and some others. Tags <reldown> and <relup> help to
build a hierarchy of terms in the created ontology.

The <sentences> tag part contains only the texts of all sentences from the considered
text in the <sent> tag.

The file parce.xml represents the syntax-semantic scheme of each sentence of the text. The
sentence structures are given in container tags <sentence>. This container contains the fol-
lowing tags: several <item> tags representing the words and their properties; <sentnumber>
– the number of the sentence in the text (from 1); <sent> – the text of the sentence. An ex-
ample of the <item> tag is shown in Listing 4.

1 <item>
2 <word>Книга</word>
3 <osnova>кни</osnova>
4 <lemma>книга</lemma>
5 <kflex>а</kflex>
6 <rel_type>K0</rel_type>
7 <flex>га</flex>
8 <number>1</number>
9 <pos>1</pos>

10 <group_n>1</group_n>
11 <speech>S1</speech>
12 <relate>0</relate>
13 </item>

Listing 4: An example of the <item> tag in parce.xml file
The <word> tag contains the text of the word as it appears in the current text. The

<osnova> tag represents the root of the word. The <lemma> tag gives the lemma, the dic-
tionary form of the word. Tags <kflex> and <flex> are flections. <kflex> – is just the
ending, but <flex> is the part of the word that could be changed. The <number> tag is the

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 47

number of the word in the phrase. The <group_n> tag indicates that the word belongs to a
group associated with the phrase. The <speech> tag contains the mark of the correspond-
ing part of speech. The <relate> tag indicates the number of a word from which there is
a semantic relation to the considered word. If the word has no incoming relations, as in the
example above, its value is set to zero. And the <rel_type> tag is the type (sub-type) of the
semantic relation. The K0 value means the absence of the relation or its unknown type.

The allterms.xml and parce.xml files are used to create an OWL ontology. Before describing
the technique of its creation, let us consider the appropriate structure of the ontology that we
are going to generate.

The ontology consists of classes and properties. The main classes are Action, Adjective,
Adverb, Name, Number, Preposition, Term, Negation, and UndefinedEntities. So,
we can see those ontology entities are sorted by their parts of speech. Subclasses of the class
Term are the name groups and nouns with a hierarchical structure. Descendants of the Name
class are given names. The most important properties are as follows: SentenceGroups,
Groups, and WordsLink. The descendant properties of WordsLink are the semantic
types. In certain ontologies, not all 90 of them may be presented, but only those that appear
in the considered text. The descendants of these properties are certain links between entities
(represented by classes). The domain of such a property is the main word in the linked pair, and
the range is a dependent one. The property groups’ descendants represent the linked groups of
sentences. They can have types specified in their range field. It can be subordinate, participial
or just nothing for other cases. The property SentenceGroups descendants represent the
sentences, and descendants are subsequently linked to word groups.

With the two files mentioned and the file with determinates containing the verbose
names of the semantic types, it is not difficult to create a short-described ontology. All OWL
entities are first created as OOP representation objects. The root classes and properties are
created first and are mandatory. Then a hierarchical structure of terms (nouns and name
groups) is created using the allterms.xml file. Then, using parce.xml, the classes of other types
of words and properties corresponding to the relations between words are created. At the
same time, properties of type WordsLink are created, representing the semantic types. Since
only one sub-type is specified in the parce.xml file, determinates are used to determine the
semantic macro type. Since the words belong to the associated groups and these to the
sentences, this information is used to create corresponding Groups and SentenceGroups
sub-properties. The Groups and SentenceGroups descendant properties are supplemented
with a label that contains the text of the corresponding group or sentence. These contexts
seem to be useful for more informative ontology responses. The typing of the related word
groups is done by the presence of certain words in the group: subordinating union, participle,
and gerund.

The Neo4J GDMS could be used to work with the ontology of the described type. For this
purpose, an OWL file should be loaded into it using the Neosemantics plugin. In this case,
classes and properties become graph nodes of the corresponding type, which are Class and
Relation. Relationships between nodes can be of the following types SCO - a subclass of;

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 48

SPO - a sub-property of; DOMAIN; RANGE. The Cypher language is used for queries.

4 ANALYSIS OF THE USER INPUT PHRASE TO GENERATE CYPHER QUERIES
TO THE NEO4J ONTOLOGY REPOSITORY

In highly inflectional languages, word order is less important than the fact that a word exists
in a certain form. In this case, it may be sufficient to perform a series of tests on the sentence
in question to verify several criteria. Based on the test results it may be possible to determine
some semantic information and the entities (words, name groups) used to represent it. In the
simplest test version of the system that exists now, there are the following main checks:

1. Question word – 6 lists + absence of such word. The result is the number of sufficient
lists from 1 to 6 or 0 if there is no question word in the sentence. It can be not a single
word but a combination of words, which is used as a marker of a certain type of question.

2. One word from given lists (most of them are specific verbs) – 6 lists + absence of words
from all lists. The result is the number of the sufficient list from 1 to 6, from 0 – if there
are no such words in the sentence. The words that clarify the general semantics of the
sentence, such as location, aim, way of doing, etc., are checked here.

3. A noun in the nominative case, excluding words from the check (2), if there are any. The
result can be 1 - there is such a word (+ the word itself) or 0 – there is no such word.
Several entities can be selected from the phrase.

4. A verb, except those from the lists in check (2), if any. The result can be 1 – there is such
a word (+ the word itself) or 0 – there is no such word. Several entities can be selected.

Even this short test has a large number of variants (196) for the possible results, making it
possible to have several templates or different types of templates.

However, even this is not enough. Therefore, an additional check should be done to find
some additional relations in the analysed sentence. The procedure is as follows: adjectives
related to the word from sentence (3), which must be close to it and match it in number and
gender; nouns in indirect cases (they form the basis of the additional relations) and adjectives
related to them; and last but not least, checking the presence or absence of negation predicates.
According to the results of these additional checks, the modifier templates can be selected to
be added to the base template.

The templates are stored as XML files with a special structure. An example of one of the
simplest templates is shown in Listing 5.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 49

1 <template>
2 <verbose_name>Common information</verbose_name>
3 <id>1</id>
4 <type>base</type>
5 <variables>
6 <variable>
7 <name>INPUT_VALUE_1</name>
8 <destination>input</destination>
9 </variable>

10 <variable>
11 <name>CONTEXT</name>
12 <destination>output</destination>
13 </variable>
14 </variables>
15 <match>
16 (inp:Class)-[]-(n:Relationship),
17 (n:Relationship)-[]-(x:Class),
18 (n)-[:SPO]->(rel_group),
19 (rel_group)-[:SPO]->(rel_sent),
20 (rel_sent)-[:SPO]-(sent_super)
21 </match>
22 <where>
23 inp.label = ”INPUT_VALUE” and
24 sent_super.name = ”SentenceGroups”
25 </where>
26 <return>
27 DISTINCT rel_sent.label as CONTEXT;
28 </return>
29 </template>

Listing 5: An example of XML template for Cypher query formation to obtain contexts which
include the given term

While the given template is one of the simplest, it is clearer to explain its general structure.
The chapters of the XML template <match>, <where>, and <return> correspond to certain
sections of a Cypher query (Jung & Kim, 2020). The template contains variables. They are
described in the <variables> block. Each variable is defined by its name and its binding
in the corresponding XML containers. The binding can have the values input or output.
The input variables are to be replaced with the values of the input parameters during query
generation. The output ones define the parameters to be obtained as a result of the query
execution. The <id> container is required for the template identity and is used to search
for it. The <verbose_name> tag is not used by the program but helps a human to easily
identify it during system development and maintenance. The <type> tag indicates the type
of template - base or additional. An example of a base template is given in Listing 5.

Let us look at the structure of additional templates. An example of one of them is shown
in Listing 6.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 50

1 <template>
2 <verbose_name>Adjective linked to subject</verbose_name>
3 <id>1</id>
4 <type>additional</type>
5 <variables>
6 <variable>
7 <name>INPUT_VALUE_ADJ</name>
8 <destination>input</destination>
9 </variable>

10 <variable>
11 <name>ADJ_PLUS</name>
12 <destination>intermediate</destination>
13 </variable>
14 <variable>
15 <name>INP_ADJ</name>
16 <destination>intermediate</destination>
17 </variable>
18 </variables>
19 <block_union>and</block_union>
20 <next_item_union>or</next_item_union>
21 <match>
22 (inp:Class)-[]-(ADJ_PLUS:Relationship),
23 (ADJ_PLUS:Relationship)-[]-(INP_ADJ:Class),
24 (ADJ_PLUS)-[:SPO]->(rel_group)
25 </match>
26 <where>
27 INP_ADJ.label = ”INPUT_VALUE_ADJ”
28 </where>
29 <return></return>
30 </template>

Listing 6: An example of an additional XML template aimed at the addition of some
conditions related to the subject adjectives’ presence

The template in Listing 6 also has <match>, <where>, and <return> blocks. Their con-
tent is not independent but should be added to the appropriate parts of a query formed by the
base template. In this case, some of the sections may be empty. The main feature of an addi-
tional template is the presence of blocks <block_union> and <next_item_union>. The
<block_union> tag indicates how the <where> block must be united with the query formed
by the base template. The <next_item_union> tag specifies the union type for the repeated
elements of the <where> block in the case where the corresponding variable is presented as a
list (array). For example, the INPUT_VALUE_ADJ variable could correspond to several adject-
ives associated with the object. The values of <block_union> and <next_item_union>
could be and or or. Also, the variables of the additional templates can have the third type of
<destination> - intermediate. Such variables do not participate in the transfer of values to
the forming query, nor the return of results. They are only used to mark the template parts
that should not be duplicated during the part repetition. They are implemented with an order
number, for example, ADJ_PLUS_1, ADJ_PLUS_2, ADJ_PLUS_3, …, etc.

Let us take a closer look at the structure of formal queries and how they are created. The
presented structure of the ontology makes it possible to search for contexts or individual terms.
It has allowed not only the presence of some entities in the considered context but also their
relations according to a certain semantic category. In the presented scheme there is a basic

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 51

query template, aimed at obtaining information of a certain type in a given form, and an addi-
tional modifier template, which optionally adds the description of additional conditions. The
above template is aimed at obtaining a context containing a specific term (word). However,
the term must not only be presented in the context but also form a link with others, which
could guarantee that the term is organically implemented in the context.

From here on, most of the query template examples here are given in a simplified format
- without XML tags. Cypher queries are divided into three main parts: MATCH, WHERE, and
RETURN. The MATCH block specifies a pattern for linking the nodes in the oriented graph. The
WHERE part specifies the conditions that characterise the entities (nodes and relationships)
from the MATCH case. The RETURN block shows what is to be returned as a result and with
what names (aliases). In the example in Listing 7, there is a class identified by the variable
inp. In the WHERE block, a condition is added that says that the name field of the inp node
must be equal to a specific value (here INPUT_VALUE is the text of the input value). From
the MATCH block, it is clear that inp is a node because of the parentheses, and it must be
of type Class. It must be linked to another node n of type Relationship, which corresponds
to an OWL ontology property. The link type is undefined in this case (the square brackets
are empty), and the direction of the link is also undefined. So, the node could be linked as
either DOMAIN or RANGE. In this case, there is no need to specify the direction of the link,
because it is known that such links always come from a property to a class. We also know that
this property must be linked to some class x. It is also given that the property linking these
classes must have a relation to the sentence rel_sent. The condition sent_super.name
= ”SentenceGroups” guarantees that the rel_sent is a sentence. As a result, the query
returns the value of rel_sent.label with the alias context, which is the sentence context.

1 MATCH (inp:Class)-[]-(n:Relationship),
2 (n:Relationship)-[]-(x:Class),
3 (n)-[:SPO]->(prop_type_1),
4 (n)-[:SPO]->(rel_group),
5 (rel_group)-[:SPO]->(rel_sent),
6 (rel_sent)-[:SPO]-(sent_super)
7 WHERE
8 inp.name = ”INPUT_VALUE” and
9 (prop_type_1.label = ”object property” or

10 prop_type_1.label = ”action property” or
11 prop_type_1.label = ”action separately” or
12 prop_type_1.label = ”action level”)
13 and
14 sent_super.name = ”SentenceGroups”
15 RETURN DISTINCT x.label as result, rel_sent.label as context;

Listing 7: Cypher query to request the properties of an entity
Listing 7 also shows how to query the properties of an INPUT_VALUE entity contained in

the ontology. To specify what the INPUT_VALUE is or could be an additional statement is
added to the MATCH block: (n)-[:SPO]->(prop_type_1). This specifies that the property
nmust be a child of prop_type_1. This is where the link direction is specified. In the WHERE
block, sufficient values of the label field of prop_type_1 are given. To make the query

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 52

template more universal, since it is not known whether INPUT_VALUE is a noun or a verb,
some options are given for the possible value of prop_type_1.label, combined with logical
or. If the ontology has a semantic category hierarchy, the construction could be simplified as
shown in Listing 8.

1 MATCH (inp:Class)-[]-(n:Relationship),
2 (n:Relationship)-[]-(x:Class),
3 (n)-[:SPO]->(prop_type_1),
4 (n)-[:SPO]->(rel_group),
5 (rel_group)-[:SPO]->(rel_sent),
6 (rel_sent)-[:SPO]-(sent_super),
7 (prop_type_1)-[:SPO]->(prop_type_category)
8 WHERE
9 inp.name = ”INPUT_VALUE” and

10 prop_type_category.label = ”entities properties”
11 and
12 sent_super.name = ”SentenceGroups”
13 RETURN DISTINCT x.label as result, rel_sent.label as context;

Listing 8: Cypher query to retrieve the properties of an entity in case the ontology has a
semantic category hierarchy

The result is the query field label of the x node. This will be the properties of an inp
object. The contexts are also requested to recognise the conditions in which the property of
the entity is mentioned. Similarly, actions of an object could be requested. For this purpose, it
is only necessary to set another value for prop_type_1.label in the WHERE block, namely:
prop_type_1.label = object-action.

If there are several possible options of relation in the query (prop_type_1.label), the
result can contain its certain value, which then helps in answer synthesis. The next example
(Listing 9) illustrates a query of object localisation without its type concretisation (Where is
INPUT_VALUE?).

1 MATCH (inp:Class)-[]-(n:Relationship),
2 (n:Relationship)-[]-(x:Class),
3 (n)-[:SPO]->(prop_type_1),
4 (n)-[:SPO]->(rel_group),
5 (rel_group)-[:SPO]->(rel_sent),
6 (rel_sent)-[:SPO]-(sent_super)
7 (prop_type_1)-[:SPO]->(prop_type_category)
8 WHERE
9 inp.label = ”INPUT_VALUE” and

10 prop_type_category.label = ”localization” and
11 sent_super.name = ”SentenceGroups”
12 RETURN DISTINCT x.label as result, rel_sent.label as context,
13 prop_type_1.label as predicate;
14

Listing 9: Request object localisation using Cypher query
The main peculiarity here is the statement prop_type_1.label as predicate in the

RETURN block. This makes it return the specific semantic type of the obtained result.
In some cases, instead of predicates, lists of some entities (verbs, nouns, adjectives) can

be included in a query. The peculiarity here is that the conditions are given for the node of

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 53

the ontological graph linked to x. Thus, the requested object must not only be linked to some
term x by the specific relationship, but this term must also be from a specific list. If the terms
(or actions) are additionally classified in the ontology, the condition for the term will only be
a descendant of a certain category.

Special mention should be made of modifier templates – fragments that can be added to
the main query templates. Let us consider an example where the input parameter is not a
single word, but a group of nouns. Therefore, there are related nouns and adjectives. To link
to the input adjective concept, the relevant statements must be added as shown in Listing 10.

To the MATCH block:
1 (inp:Class)-[]-(adj_plus:Relationship),
2 (adj_plus:Relationship)-[]-(inp_adj_1:Class),
3 (adj_plus)-[:SPO]->(rel_group)
and in the WHERE block:

1 and
2 inp_adj_1.label = ”INPUT_VALUE_ADJ”
Listing 10: Parts of the Cypher query to be added for a link to the subject adjectives presence

condition introduction
For the additional adjectives, add the same blocks but with further variables inp_adj_2,

inp_adj_3, etc. It is also possible to add a condition of a noun in the indirect case by the
statements shown in Listing 11.

To the MATCH block:
1 (inp_noun_1:Class)-[]-(noun_plus:Relationship),
2 (noun_plus)-[:SPO]->(rel_group)
and in the WHERE block:

1 and
2 inp_noun_1.label = ”INPUT_VALUE_NOUN”
Listing 11: Parts of the Cypher query to be added for the condition of additional conditions

expressed with nouns in indirect cases
In Listing 11, there is a condition for the presence of a noun in the same group where the

main concept is included. However, conditions for the presence of adjectives related to this
noun could also be added as shown in Listing 12.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 54

To the MATCH block:
1 (inp_noun_1:Class)-[]-(adj_plus_add:Relationship),
2 (adj_plus_add:Relationship)-[]-(inp_adj_add:Class),
3 (adj_plus_add)-[:SPO]->(rel_group)
and in the WHERE block:

1 and
2 inp_adj_add.label = ”INPUT_VALUE_ADJ_ADD”
Listing 12: Parts of the Cypher query to be added for the condition of adjectives related to

nouns in indirect cases
In some cases, you may need to add a negation predicate to a query. To do this, you add

a construction to the query as shown in Listing 13.
To the MATCH block:

1 (neg:Class)-[]-(neg_rel:Relationship),
2 (neg_rel)-[:SPO]->(rel_group)
and in the WHERE block:

1 and
2 (neg.label = ”no” or
3 neg.label = ”not” or
4 neg.label = ”forbidden” or
5 neg.label = ”impossible” or
6 neg.label = ”cant” or
7 neg.label = ”unable”)

Listing 13: Adding negation predicate condition parts to the Cypher query

5 SYNTHESIS OF NATURAL LANGUAGE RESPONSES BASEDON THE RESULTS
OF FORMAL QUERY EXECUTION

The user interface of a dialogue system that simply displays the results of a formal query,
even if it is beautifully designed, may not look very friendly, and sometimes may not even be
completely understandable to a human. Therefore, the next important problem is the synthesis
of natural language responses. Some principles of the approach of response generation based
on information from the results of formal queries and the analysis of the source phrase using
template instructions are described in our previous research (Litvin et al., 2020, 2021; Palagin
et al., 2011; Palagin et al., 2020; V. Y. Velychko et al., 2014; V. Velychko et al., 2022).

In general, during the system development, the decision on how the response should appear
in the user interface has to be balanced between providing ready-made contexts and text

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 55

synthesis. For example, to provide some tables, graphical objects, or other media to illustrate
the response, the best option is to use ready-made contexts with links to the relevant files. In
the current study, we omit methods for visualising and creating graphical and tabular materials
(charts, graphs, diagrams) based on the results of queries in the user interface, although this
approach is quite desirable in certain types of systems and, as demonstrated by Quamar, Lei
et al. (2020), can be well implemented.

Contextual responses may be the best option when you need to provide detailed inform-
ation. The synthesised responses provide better clarity for more specific questions where a
formal answer is just a list of entities from the ontology. In this section we provide some
examples of synthesised responses with instruction templates for some typical cases. These
templates also provide user contexts (sentences) that explain and confirm the statement. In
a software implementation, they are software entities (classes with methods) in the Python
language that are attached to the system in a specific module file. Attempts have been made
to add response templates in the form of XML descriptions, but this has resulted in increased
complexity and reduced performance of the software.

Listing 14 shows the response template of a question about entity properties.
Repeat for each result:

if INPUT_VALUE noun:
INPUT_VALUE + може бути + result (fit the gender)
+ context

is INPUT_VALUE verb:
INPUT_VALUE + можна + result
+ context

Listing 14: The response template for the entity characteristic
The PyMorphy2 library methods (Litvin et al., 2020, 2021; Palagin et al., 2022) are used

for determining the morphological characteristics of the word (part of speech, gender, case,
etc.) and for word form matching. In the simple example in Listing 14, the part of speech of
INPUT_VALUE must be checked. It can be a noun or a verb. If it is a noun, the result value
must be gender-matched with INPUT_VALUE.

A more complicated example is shown in Listing 15. Here the subject of the query is object
localisation. The particular localisation predicate is not specified in the input parameters of
the query but appears in its results. As mentioned above, a certain semantic predicate could
be used in a response synthesis.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 56

Repeat for each result:
INPUT_VALUE + знаходиться +

if predicate = ”localization in set”:
+ серед + result (plural, genitive case)
+ context

if predicate = ”localization near”:
+ біля + result (genitive case)
+ context

if predicate = ”objective localization”:
+ на + result (locative case)
+ context

if predicate = ” objective entering”:
+ у + result (locative case)
+ context

if predicate = ”localization between objects”:
+ між + result (plural, instrumental case)
+ context

if predicate = ”localization behind object”:
+ за + result (instrumental case)
+ context

if predicate = ”localization in front of object”:
+ перед + result (instrumental case)
+ context

if predicate = ”localization under object”:
+ під + result (instrumental case)
+ context

if predicate = ”localization above object”:
+ над + result (instrumental case)
+ context

if predicate = ”localization in object”:
+ всередині + result (genitive case)
+ context

Listing 15: The entity localisation response generation template with tuning for different
localisation types
From the example in Listing 15 we can see that a certain type of semantic predicate (in

this case, localisation) determines the appropriate preposition and case for the value of the
result variable for the Ukrainian language.

6 CONCLUSIONS AND FURTHER RESEARCH

A technique for the automatic generation of an OWL ontology from natural language text
has been proposed. It is assumed that the language of the considered text is of the highly
inflectional type. A feature of the method is that it does not require any previous tagging of
the text, or a regular structure. The essence of the technique consists of a rule-based syntax-

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 57

semantic analysis method and the fact that a large amount of semantic information in highly
inflectional languages could be obtained by analysing the combinations of different parts of
speech flections and prepositions. The ontology creation includes two stages: syntax-semantic
analysis with intermediate creation of XML files, and ontology generation based on the corres-
ponding OWL file. The proposed method was implemented as software and parameterised for
the Ukrainian language. It was tested on real texts, which showed its efficiency. The created
ontologies appear to be valid and can be processed by Protégé, RDFlib, and Neo4j (using the
Neosemantics plugin). The ontologies appear to be deeply semantically structured and at the
same time rather simple and regularly organised. Thus, the developed software system is a
promising tool that can significantly and effectively automate the creation of graph databases
using only plain text.

An approach and the corresponding software toolkit are developed for the creation of nat-
ural language dialogue systems based on the automatically built ontology for inflectional lan-
guages, in particular Ukrainian. An analysis technique is developed within the framework of
the approach of an initial user phrase aimed at the formation of formal queries in the language
Cypher. The essence of the method is a series of checks for the occurrence of certain words
and/or word forms in the initial phrase. Depending on the set of check results, the main
query template (or a group of such templates) is selected. Components from modifier tem-
plates are added to the main template (to its corresponding sections) as a result of additional
checks, which make appropriate clarifications and extensions of the query. Query variables
are supplemented with concepts obtained during the corresponding checks. Several queries
(packages) can be created based on one initial phrase. An approach to the synthesis of natural
language responses using query results and the values of source variables is also proposed. The
unique feature of the approach is the use of specific values of semantic predicates obtained
as a result of the query to the ontology, which allows the program to formulate the response
more accurately and correctly by using appropriate prepositions and word forms. These re-
sponse templates also provide instructions for matching word forms of concept results with
the original concepts.

Based on the proposed approach, an experimental dialogue system was developed, which
proved to be workable. It can become a prototype for the development of new more powerful
dialogue styles able to be learned using natural language texts provided in the form of doc-
uments, or as search results obtained from the Internet. A further perspective of the system
development is to allow it to create more detailed classified ontologies and expand the number
of checks and variants of their results. Accordingly, a large number of basic and additional
formal query templates and corresponding response synthesis templates can be created.

In a future study, our team plan to implement the ontology-related system as a part of
the knowledge-oriented digital library of the smart-system for remote support of rehabilita-
tion activities and services (Chaikovsky et al., 2023; Malakhov, 2022, 2023; Palagin et al.,
2022). Further research will aim to develop original instruments and tools with the purpose
of optimising user queries, and optimising usability for ontology-related systems.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 58

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Anna Litvin: Conceptualisation, Methodology, Writing – original draft preparation.
Vladislav Kaverinsky: Methodology, Software, Validation, Resources, Writing – review &

editing.
Oleksandr Palagin: Project administration, Supervision, Conceptualisation, Methodology.
Kyrylo Malakhov: Software, Validation, Resources, Term, Writing – review & editing.

ACKNOWLEDGEMENTS

Corresponding author Kyrylo Malakhov, on behalf of himself and co-authors Anna Litvin, and
Vladislav Kaverinsky, thanks Oleksandr Palagin, Academician of the National Academy of
Sciences of Ukraine, Doctor of Technical Sciences, Professor, Honored Inventor of Ukraine,
Deputy Director for Research of the Glushkov institute of Cybernetics of the National Academy
of Sciences of Ukraine, Head of the Microprocessor Technology Lab, who served as the sci-
entific supervisor for this research.

The research team of Glushkov institute of Cybernetics would like to extend our special
thanks and appreciation to Katherine Malan, Editor-in-Chief of the South African Computer
Journal, for her unwavering support and dedication to promoting Ukrainian science during
wartime within scholars publishing.

FUNDING

This study would not have been possible without the financial support of the National Research
Foundation of Ukraine. Our work was funded by Grant contract:

• Development of the cloud-based platform for patient-centered telerehabilitation of onco-
logy patients with mathematical-related modeling, application ID: 2021.01/0136.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 59

References

Altinok, D. (2018). An ontology-based dialogue management system for banking and finance
dialogue systems. arXiv, v1(arXiv:1804.04838). https://doi.org/10.48550/arXiv.180
4.04838

An, J., & Park, Y. B. (2018). Methodology for automatic ontology generation using database
schema information. Mobile Information Systems, 2018, 1–13. https://doi.org/10.1155
/2018/1359174

Antoniou, G., & Plexousakis, D. (2016). Semantic web. In Encyclopedia of database systems
(pp. 1–5). New York: Springer. https://doi.org/10.1007/978-1-4899-7993-3_1320-
2

Balakrishna, M., & Srikanth, M. (2008). Automatic ontology creation from text for National
Intelligence Priorities Framework (NIPF). Ontology for the Intelligence Community, 8–12.
https://ceur-ws.org/Vol-440/Proceedings.pdf

Chaikovsky, I., Dykhanovskyi, V., Malakhov, K. S., & Bocharov, M. (2023). Military medicine:
Methods of control, improvement in individual combat readiness and telerehabilitation of
military personnel. Iowa State University Digital Press. https://doi.org/10.31274/isud
p.2023.128

Damljanovic, D., Agatonovic, M., & Cunningham, H. (2012). FREyA: An Interactive Way of
Querying Linked Data Using Natural Language. In R. García-Castro, D. Fensel & G. Ant-
oniou (Eds.), The Semantic Web: ESWC 2011 workshops (pp. 125–138). Springer. https:
//doi.org/10.1007/978-3-642-25953-1_11

Elnagar, S., Yoon, V., & Thomas, M. (2020). An automatic ontology generation framework
with an organizational perspective. Knowledge Flow, Transfer, Sharing, and Exchange –
Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2
020.597

Faizi, S., Salabun, W., Ullah, S., Rashid, T., & Wieckowski, J. (2020). A new method to support
decision-making in an uncertain environment based on normalized interval-valued tri-
angular fuzzy numbers and COMET technique. Symmetry, 12(4), 516. https://doi.org
/10.3390/sym12040516

Goel, A. (2015). Neo4j cookbook. Packt Publishing.
Helou, S. E., Kobayashi, S., Yamamoto, G., Kume, N., Kondoh, E., Hiragi, S., Okamoto, K.,

Tamura, H., & Kuroda, T. (2019). Graph databases for openEHR clinical repositories.
International Journal of Computational Science and Engineering, 20(3), 281–298. https:
//doi.org/10.1504/IJCSE.2019.103955

Ibrahim, S., Fathalla, S., Lehmann, J., & Jabeen, H. (2023). Towards the multilingual semantic
web: Multilingual ontology matching and assessment. IEEE Access, 11, 8581–8599. htt
ps://doi.org/10.1109/ACCESS.2023.3238871

Jung, H., & Kim, W. (2020). Automated conversion from natural language query to SPARQL
query. Journal of Intelligent Information Systems, 55(3), 501–520. https://doi.org/10.1
007/s10844-019-00589-2

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.48550/arXiv.1804.04838
https://doi.org/10.48550/arXiv.1804.04838
https://doi.org/10.1155/2018/1359174
https://doi.org/10.1155/2018/1359174
https://doi.org/10.1007/978-1-4899-7993-3_1320-2
https://doi.org/10.1007/978-1-4899-7993-3_1320-2
https://ceur-ws.org/Vol-440/Proceedings.pdf
https://doi.org/10.31274/isudp.2023.128
https://doi.org/10.31274/isudp.2023.128
https://doi.org/10.1007/978-3-642-25953-1_11
https://doi.org/10.1007/978-3-642-25953-1_11
https://doi.org/10.24251/HICSS.2020.597
https://doi.org/10.24251/HICSS.2020.597
https://doi.org/10.3390/sym12040516
https://doi.org/10.3390/sym12040516
https://doi.org/10.1504/IJCSE.2019.103955
https://doi.org/10.1504/IJCSE.2019.103955
https://doi.org/10.1109/ACCESS.2023.3238871
https://doi.org/10.1109/ACCESS.2023.3238871
https://doi.org/10.1007/s10844-019-00589-2
https://doi.org/10.1007/s10844-019-00589-2
https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 60

Konys, A. (2015). A tool supporting mining based approach selection to automatic ontology
construction. 9th Multi Conference on Computer Science and Information Systems, 3–10.
https://www.iadisportal.org/isa-2015-proceedings

Konys, A. (2017). Ontology-based approaches to big data analytics. In S. Kobayashi, A. Piegat,
J. Pejaś, I. El Fray & J. Kacprzyk (Eds.), Hard and soft computing for artificial intelligence,
multimedia and security (pp. 355–365). Springer International Publishing. https://doi.o
rg/10.1007/978-3-319-48429-7_32

Konys, A. (2018). Knowledge systematization for ontology learning methods. Procedia Com-
puter Science, 126, 2194–2207. https://doi.org/10.1016/j.procs.2018.07.229

Konys, A., & Drazek, Z. (2020). Ontology learning approaches to provide domain-specific
knowledge base. Procedia Computer Science, 176, 3324–3334. https://doi.org/10.1
016/j.procs.2020.09.065

Kumar, S., & Kumar, P. S. (2022). OLGA: An Ontology and LSTM-based approach for generating
Arithmetic Word Problems (AWPs) of transfer type. arXiv, v1(arXiv:2211.12164). http
s://doi.org/10.48550/arXiv.2211.12164

Kumar, V. (2022). FREyA – a natural language interface for querying ontologies [Github ].
https://github.com/nmvijay/freya

Litvin, A. A., Velychko, V. Y., & Kaverynskyi, V. V. (2020). Method of information obtaining
from ontology on the basis of a natural language phrase analysis. Problems in Program-
ming, 2-3, 323–330. https://doi.org/10.15407/pp2020.02-03.322

Litvin, A. A., Velychko, V. Y., & Kaverynskyi, V. V. (2021). Tree-based semantic analysis
method for natural language phrase to formal query conversion. Radio Electronics, Com-
puter Science, Control, 57(2), 105–113. https://doi.org/10.15588/1607-3274-2021-
2-11

Ma, C., & Molnár, B. (2020). Use of ontology learning in information system integration: A lit-
erature survey. In Intelligent information and database systems (pp. 342–353). Singapore:
Springer. https://doi.org/10.1007/978-981-15-3380-8_30

Maedche, A., & Staab, S. (2001). Ontology learning for the Semantic Web. IEEE Intelligent
Systems, 16(2), 72–79. https://doi.org/10.1109/5254.920602

Malakhov, K. S. (2022). Update from Ukraine: Rehabilitation and Research [Letter to the Ed-
itor]. International Journal of Telerehabilitation, 14(2), 1–2. https://doi.org/10.5195/ij
t.2022.6535

Malakhov, K. S. (2023). Update from Ukraine: Development of the Cloud-based Platform
for Patient-centered Telerehabilitation of Oncology Patients with Mathematical-related
Modeling [Letter to the Editor]. International Journal of Telerehabilitation, 15(1), 1–3.
https://doi.org/10.5195/ijt.2023.6562

Navarro-Almanza, R., Juárez-Ramírez, R., Licea, G., & Castro, J. R. (2020). Automated onto-
logy extraction from unstructured texts using deep learning. In Intuitionistic and Type-2
fuzzy logic enhancements in neural and optimization algorithms: Theory and applications
(pp. 727–755). Springer International Publishing. https://doi.org/10.1007/978-3-03
0-35445-9_50

https://doi.org/10.18489/sacj.v35i1.1233

https://www.iadisportal.org/isa-2015-proceedings
https://doi.org/10.1007/978-3-319-48429-7_32
https://doi.org/10.1007/978-3-319-48429-7_32
https://doi.org/10.1016/j.procs.2018.07.229
https://doi.org/10.1016/j.procs.2020.09.065
https://doi.org/10.1016/j.procs.2020.09.065
https://doi.org/10.48550/arXiv.2211.12164
https://doi.org/10.48550/arXiv.2211.12164
https://github.com/nmvijay/freya
https://doi.org/10.15407/pp2020.02-03.322
https://doi.org/10.15588/1607-3274-2021-2-11
https://doi.org/10.15588/1607-3274-2021-2-11
https://doi.org/10.1007/978-981-15-3380-8_30
https://doi.org/10.1109/5254.920602
https://doi.org/10.5195/ijt.2022.6535
https://doi.org/10.5195/ijt.2022.6535
https://doi.org/10.5195/ijt.2023.6562
https://doi.org/10.1007/978-3-030-35445-9_50
https://doi.org/10.1007/978-3-030-35445-9_50
https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 61

Ochieng, P. (2020). PAROT: Translating natural language to SPARQL. Expert Systems with Ap-
plications: X, 5, 100024. https://doi.org/10.1016/j.eswax.2020.100024

Palagin, O. v., Malakhov, K. S., Velychko, V. Y., & Semykopna, T. V. (2022). Hybrid e-rehabil-
itation services: SMART-system for remote support of rehabilitation activities and ser-
vices. International Journal of Telerehabilitation, Special Issue: Research Status Report –
Ukraine. https://doi.org/10.5195/ijt.2022.6480

Palagin, O. v., Petrenko, M., & Malakhov, K. S. (2011). Technique for designing a domain
ontology. Computer means, networks and systems, 9(10). http://dspace.nbuv.gov.ua/x
mlui/handle/123456789/46447

Palagin, O. v., Petrenko, M., Velychko, V., & Malakhov, K. S. (2014). Development of formal
models, algorithms, procedures, engineering and functioning of the software system “in-
strumental complex for ontological engineering purpose”. CEUR Workshop Proceedings,
1843, 221–232. http://ceur-ws.org/Vol-1843/221-232.pdf

Palagin, O. v., Velychko, V. Y., Malakhov, K. S., & Shchurov, O. S. (2020). Distributional se-
mantic modeling: A revised technique to train term/word vector space models applying
the ontology-related approach. CEUR Workshop Proceedings, 2866, 342–353. http://ce
ur-ws.org/Vol-2866/ceur_342-352palagin34.pdf

Palagin, O. v., Velychko, V., Malakhov, K. S., & Shchurov, O. (2018). Research and develop-
ment workstation environment: The new class of current research information systems.
CEUR Workshop Proceedings, 2139, 255–269. http://ceur-ws.org/Vol-2139/255-269
.pdf

Quamar, A., Lei, C., Miller, D., Ozcan, F., Kreulen, J., Moore, R. J., & Efthymiou, V. (2020). An
ontology-based conversation system for knowledge bases. Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 361–376. https://doi.org/10
.1145/3318464.3386139

Quamar, A., Özcan, F., Miller, D., Moore, R. J., Niehus, R., & Kreulen, J. (2020). Conversational
BI: An ontology-driven conversation system for business intelligence applications. Pro-
ceedings of the VLDB Endowment, 13(12), 3369–3381. https://doi.org/10.14778/341
5478.3415557

Shaik, S., Kanakam, P., Hussain, S. M., & Narayana, D. S. (2016). Transforming natural lan-
guage query to SPARQL for semantic information retrieval. International Journal of En-
gineering Trends and Technology, 41(7), 347–350. https://doi.org/10.14445/2231538
1/IJETT-V41P263

Sivasubramanian, S., & Jacob, S. G. (2020). An automated ontology learning for benchmarking
classifier models through gain-based relative-non-redundant feature selection: A case-
study with erythemato-squamous disease. International Journal of Business Intelligence
and Data Mining, 16(3), 261–278. https://doi.org/10.1504/IJBIDM.2020.106132

Srinivas. (2023). Convert English sentences to cypher queries [GITHUB ]. https://github.c
om/gsssrao/english2cypher

Sun, C. (2018). A natural language interface for querying graph databases (Doctoral thesis). Mas-
sachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/119708

https://doi.org/10.18489/sacj.v35i1.1233

https://doi.org/10.1016/j.eswax.2020.100024
https://doi.org/10.5195/ijt.2022.6480
http://dspace.nbuv.gov.ua/xmlui/handle/123456789/46447
http://dspace.nbuv.gov.ua/xmlui/handle/123456789/46447
http://ceur-ws.org/Vol-1843/221-232.pdf
http://ceur-ws.org/Vol-2866/ceur_342-352palagin34.pdf
http://ceur-ws.org/Vol-2866/ceur_342-352palagin34.pdf
http://ceur-ws.org/Vol-2139/255-269.pdf
http://ceur-ws.org/Vol-2139/255-269.pdf
https://doi.org/10.1145/3318464.3386139
https://doi.org/10.1145/3318464.3386139
https://doi.org/10.14778/3415478.3415557
https://doi.org/10.14778/3415478.3415557
https://doi.org/10.14445/22315381/IJETT-V41P263
https://doi.org/10.14445/22315381/IJETT-V41P263
https://doi.org/10.1504/IJBIDM.2020.106132
https://github.com/gsssrao/english2cypher
https://github.com/gsssrao/english2cypher
https://dspace.mit.edu/handle/1721.1/119708
https://doi.org/10.18489/sacj.v35i1.1233


Litvin, A., Palagin, O., Kaverinsky, V., Malakhov, K. : Ontology-driven development of dialogue systems 62

Velychko, V. Y., Malahov, K., Semenkov, V., & Stryzhak, O. (2014). Integrated tools for engin-
eering ontologies. International Journal Information Models and Analyses, 3(4), 336–361.
http://www.foibg.com/ijima/vol03/ijima03-04-p03.pdf

Velychko, V., Voinova, S., Granyak, V., Ivanova, L., Kudriashova, A., Kunup, T., Malakhov,
K. S., Pikh, I., Punchenko, N., Senkivskyy, V., Sergeeva, O., Sokolova, O., Fedosov,
S., Khoshaba, O., Tsyra, O., Chaplinskyy, Y., Gurskiy, O., Zavertailo, K., & Kotlyk, D.
(2022). New information technologies, simulation and automation (S. Kotlyk, Ed.). Iowa
State University Digital Press. https://doi.org/10.31274/isudp.2022.121

Watrobski, J. (2020). Ontology learning methods from text - an extensive knowledge-based
approach. Procedia Computer Science, 176, 3356–3368. https://doi.org/10.1016/j.pro
cs.2020.09.061

Watrobski, J., Jankowski, J., & Piotrowski, Z. (2014). The selection of multicriteria method
based on unstructured decision problem description. In D. Hwang, J. J. Jung & N.-T.
Nguyen (Eds.), Computational collective intelligence. technologies and applications (pp. 454–
465). Springer International Publishing. https://doi.org/10.1007/978-3-319-11289
-3_46

Zhou, L. (2007). Ontology learning: State of the art and open issues. Information Technology
and Management, 8(3), 241–252. https://doi.org/10.1007/s10799-007-0019-5

https://doi.org/10.18489/sacj.v35i1.1233

http://www.foibg.com/ijima/vol03/ijima03-04-p03.pdf
https://doi.org/10.31274/isudp.2022.121
https://doi.org/10.1016/j.procs.2020.09.061
https://doi.org/10.1016/j.procs.2020.09.061
https://doi.org/10.1007/978-3-319-11289-3_46
https://doi.org/10.1007/978-3-319-11289-3_46
https://doi.org/10.1007/s10799-007-0019-5
https://doi.org/10.18489/sacj.v35i1.1233

	Introduction
	State of the art in ontology-driven dialogue systems and ontology learning approaches
	Proposed approach to ontology generation from plain natural language text
	Analysis of the user input phrase to generate Cypher queries to the Neo4J ontology repository
	Synthesis of natural language responses based on the results of formal query execution
	Conclusions and further research

