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ABSTRACT

The understanding of generalisation in machine learning is in a state of fux, in part due to the ability of deep
learning models to interpolate noisy training data and still perform appropriately on out-of-sample data, thereby
contradicting long-held intuitions about the bias-variance tradeof in learning. We expand upon relevant existing
work by discussing local attributes of neural network training within the context of a relatively simple framework.
We describe how various types of noise can be compensated for within the proposed framework in order to
allow the deep learning model to generalise in spite of interpolating spurious function descriptors. Empirically,
we support our postulates with experiments involving overparameterised multilayer perceptrons and controlled
training data noise. The main insights are that deep learning models are optimised for training data modularly,
with diferent regions in the function space dedicated to Ftting distinct types of sample information. Additionally,
we show that models tend to ft uncorrupted samples frst. Based on this fnding, we propose a conjecture to
explain an observed instance of the epoch-wise double-descent phenomenon. Our Fndings suggest that the notion
of model capacity needs to be modifed to consider the distributed way training data is ftted across sub-units.
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1 INTRODUCTION

Advantages of deep learning models include their scalability to high-dimensional data, ef-
fective optimisation, and performance on data that was not optimised for (Goodfellow et al.,
2016). The latter is arguably the most important beneft. Machine learning, as a whole, has
seen much progress in recent years, and deep neural networks (DNNs) have become a corner-
stone in numerous important domains such as computer vision, natural language processing
and bioinformatics. Somewhat ironically, this application potential has resulted in the devel-
opment of theoretically principled guidelines lagging behind implementation-specifc progress.
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A particular example of one such open theoretical question is how to reconcile the observed
ability of over-paramerised DNNSs to generalise, with classical notions of generalisation in ma-
chine learning.

A widely accepted principle with which to reason about generalisation in machine learn-
ing, is that generalisation ability is linked to the complexity of the hypothesis space, and that
a model’s representational capacity should be restricted so as to prevent it from approximat-
ing unrealistically complex functions (Vapnik, 1999). Such highly complex functions are not
expected to be applicable to the task being performed, and are usually a result of overftting
the spurious correlations found in the fnite sample of training examples. Many complexity
metrics have been proposed and adapted in an attempt to consolidate this intuition, however,
these metrics have failed to fully account for the generalisation observed in deep learning
models in general circumstances (Kawaguchi et al., 2017; Shalev-Shwartz & Ben-David, 2014;
Sun et al., 2015).

An infuential paper by Zhang et al. (2017) demonstrated that: (1) DNNs can e¥ciently ft
various types of noise and still generalise well, and (2) contemporary explicit regularisation
is not required to enable good generalisation. These fndings are in apparent contradiction
with complexity-based principles of generalisation: deep learning models are shown to have
representational capacity large enough to approximate extremely complex functions (poten-
tially memorising the entire, possibly noisy, data set) and still have very low out-of-sample
test error.

In this paper we further investigate the efect of noise in training data with regards to gener-
alisation. Where Zhang et al. (2017) contributed towards the understanding of generalisation
by pointing out misconceptions with regards to model capacity and regularisation, our contri-
bution is to provide insight into a particular phenomenon that can (at least partially) account
for the observed ability of a DNN to generalise in a very similar experimental framework. Spe-
cifcally, we show that noise in the training data can be isolated from true task information
by ftting sub-units of a network to feature information from samples that are locally similar.
This simple characteristic prevents the sub-units Ftted to noise from having an efect on pre-
dictions made on noiseless test data. The current work is an extension and refnement of that
in Theunissen et al. (2019), extending Section 4 with additional results (as described in that
section), and introducing an additional complementary investigation related to training with
noise in Section 5, specifcally addressing a phenomenon referred to as epoch-wise double
descent.

We defne noise as any input-output relationship that is not predictable, or not conducive
to the model ftting the true training data or approximating the true data distribution. The
following types of noise are investigated (detailed defnitions are provided in Appendix B):

1. Label corruption: The training label of an afected sample is replaced with an altern-
ative selected uniformly from all other possibilities.

2. Gaussian input corruption: All the input features of an afected sample are replaced
with Gaussian noise with a mean and standard deviation equal to that of the uncorrupted
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sample.

3. Structured input corruption: For every afected sample, its input features are replaced
by an alternative sample that is completely distinguishable from the true input but con-
sistent per class. (For example, replacing selected images from one class with images
of a completely diferent object from a diferent data set, but keeping the original class
label.)

These types of noise were chosen to encompass those investigated in Zhang et al. (2017), place
more emphasis on varying the noise, and still maintain the analytically convenient per-sample
implementation of the analysis framework. It is possible to introduce other types of noise, such
as stochastic corruptions in the feature representations at each layer within the architecture,
or directly impeding the optimisation of the model. However, such noise is primarily useful
in the study of regularisation techniques (dropout, weight decay, node pruning etc.) and not
aligned with the goals of this paper, namely, to shed light on how a DNN with few or no
regularising factors manages noisy data.

The empirical investigation is limited to extremely overparameterised multilayer perceptron
(MLP) architectures with ReLU activations, and three related classifcation data sets. These
architectures are simple enough to allow for e¥cient analysis but function using the same
principles as more complex architectures. The three classifcation tasks are MNIST (LeCun et
al., 1998), FMNIST (Xiao et al., 2017), and KMNIST (Clanuwat et al., 2018). These data sets
are on the low end of the spectrum with regard to task di¥culty, with FMNIST and KMNIST
slightly more difcult than MNIST; both MNIST and FMNIST are widely used to investigate
the theoretical properties of DNNs (Jastrzebski et al., 2019; Kawaguchi et al., 2017; Novak
et al., 2018).

The following section (Section 2) discusses some notable related work that all have the
goal of characterising generalisation in deep learning. In Section 3 we provide a theoretical
perspective on DNN training that is useful to interpret the results that follow. The ability of an
MLP to respond to noisy data is analysed and discussed in Section 4. Section 5 extends these
results to address a specifc phenomenon observed during training, namely epoch-wise double
descent. Findings are summarised in the Fnal section with a focus on implications relating to
generalisation.

2 RELATED WORK

In the wake of the somewhat paradoxical results demonstrated in Zhang et al. (2017), much
work has followed investigating the role of memorisation and generalisation in DNN learning
(Arpit et al., 2017; Krueger et al., 2017; Neyshabur et al., 2017). Some of these investigations
focus on the stability with which a model accurately predicts output values in the presence of
varying input values. One popular approach is to analyse the geometry of the loss landscape at
the optimum (Chaudhari et al., 2017; Hochreiter & Schmidhuber, 1997; Keskar et al., 2017).
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This amounts to investigating the overall loss value within a region of parameter space close
to the (near-)optimal parameterisation obtained by the training process. The intuition is that
a sharper minimum or high curvature at the solution point indicates that the model will be
sensitive to small perturbations in the input space. Logically, this will lead to poor general-
isation. A practical problem with this approach is that it sufers heavily from the curse of
dimensionality. This means that it is dif¥cult to obtain an unbiased and consistent perspective
on the error surface in high dimensional parameter spaces, which is the case in virtually all
practical DNNs. The error surface is typically mapped with dimensionality reductions, ran-
dom searches, or heuristic searches (Li et al., 2018). A conceptual problem is that the loss
value is easily manipulated by weight scaling. For example, Dinh et al. (2017) showed that a
minimum can be made arbitrarily sharp or fat with no efect on generalisation, by exploiting
simple symmetries in the weight scales of networks with rectifed units.

Another efort at imposing stability in model predictions is to enforce sparsity in the para-
meterisation. The hope is that with a sparsely connected set of trainable parameters, a reduced
number of input parameters will afect the prediction accuracy. Like complexity metrics, this
idea is borrowed from statistical learning theory (Maurer & Pontil, 2012) and with regards to
deep learning, it has seen more success in terms of improving the computational cost (Gale et
al., 2019; Loroch et al., 2018) and interpretability of DNNs than in improving generalisation.

From a representational point of view, some have argued that overparameterised DNNs
approximate functions that are inherently insensitive to input perturbations at the optima to
which they converge (Montufar et al., 2014; Neal et al., 2018; Novak et al., 2018; Raghu et
al., 2017; Rahaman et al., 2019). These investigations place a large emphasis on the design
choices (depth, width, activation functions, etc.) and are typically exploratory by nature.

A promising approach proposed in Elsayed et al. (2018) and Jiang et al. (2019) investigates
DNN generalisation by means of “margin distributions”, a measure of how far samples tend to
be from the decision boundary. These types of metrics have been successfully used to indic-
ate generalisation ability in linear models such as support vector machines (SVMs); however,
determining the decision boundary in a DNN is not as simple. Therefore, Jiang et al. (2019)
used the frst-order Taylor approximation of the distance to the decision boundary between
the ground truth class and the second highest ranking class. They were able to use a linear
model, trained on the margin distributions of numerous DNNs, to predict the generalisation
error of several out-of-sample DNNs. This suggests that DNN generalisation is strongly linked
to the type of representation the network uses to represent sample information throughout its
layers.

Recent work has focused attention on the contribution of sub-units towards the network’s
overall generalisation ability, whether these were signifcantly smaller networks (Frankle &
Carbin, 2019), or individual nodes (Davel et al., 2020). In Davel et al. (2020), specifcally,
several types of per-layer classifers were constructed from the individual nodes of trained
MLPs. These classifers were shown to perform at levels comparable to the global network
from which they were created. In efect, each node was shown to create a locally aware unit,
that collaborated in order to solve the overall classifcation task. This is a perspective we build
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on in the remainder of this paper.

3 HIDDEN LAYERS AS GENERAL FEATURE SPACE CONVERTERS

It is useful for the analysis of Sections 4 and 5 to consider each hidden layer in an MLP as
producing a learned representation, converting the feature space from one representation to
another. At the same time, individual nodes act as local decision makers and respond to very
specifc subsets of the input space, as discussed below.

3.1 Per-layer feature representations

In a typical MLP, several hidden layers are stacked in series. The output layer is the only one
which is directly used to perform the global classifcation task. The role that the hidden layers
perform is one of enabling the approximation of the necessary non-linear function through the
use of the non-linearities produced by their activation functions. In this sense, all hidden layers
can be thought of as general feature space converters, where the behaviour of one dimension
in one feature space is determined by a weighted contribution of selected dimensions in the
preceding feature space, as illustrated in Figure 1.

Figure 1: An illustration of feature spaces [from left to right: input; 4 x hidden layers; output layer]
in a trained MLP. The model was trained to perform a 5-class classifcation task of 100 randomly
generated 50 dimensional input vectors. Note that principal component analysis is used to reduce the
dimensionality of the actual feature spaces to 3 for this visual depiction.

3.2 Per-node decision making

Whereas every hidden layer produces a feature space, every node determines a single dimen-
sion in this feature space. Some insights can be gained by theoretically describing the beha-
viour of a node in terms of activation patterns in the preceding layer. Let a;, be an activation
vector at a layer [ as a response to an input sample x. If W, is the weight matrix connecting [
and the previous layer [ — 1 then:

a=f, W -a_) 1)
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where f, is some element-wise non-linear activation function. For every node i in [ the activ-
ation value is then:

ai = fo (W} a1 (2)

where w! is the row in matrix W, connecting layer [ — 1 and node 7. This can be rewritten as

ai = fu (|Iwilll|ai-+ || cos ) 3)

with 6 specifying the angle between the weight vector and the activation vector.

The pre-activation node value is determined by the cosine similarity of the two vectors,
scaled by the product of the norm of the activation vector (in the previous layer) and the norm
of the relevant weight vector (in the current layer). As a result, if the activation function is a
rectifed linear unit (ReLU) (Glorot et al., 2011) and a bias is not used, the angle between the
activation vector and the weight vector has to be € (—90°,90°) for the sample information to
be propagated by the node. In other words, the node is activated for samples that produce an
activation pattern in the preceding layer with a cosine similarity larger than 0 in terms of the
weight vector. This criterion holds regardless of the activation or weight strengths. (When a
bias is used, the threshold angles are diferent, but the concept remains the same.)

3.3 Sample sets

When training a ReLU-activated network, the corresponding weight vector is only updated to
optimise the global error in terms of those specific samples for which a node is active, referred to
as the “sample set” of that node (Davel, 2019). This is because weights are updated according
to the gradients which can only propagate back through the network to the weight vector
if the corresponding node is active. In this sense, the node weight vector acts as a dividing
hyperplane in the feature space of the preceding layer. This hyperplane corresponds to the
points where the weight vector is equal to zero (or the bias value if one is present). Samples
which are located on one side of the hyperplane are prevented from having an efect on the
weight vector values, and samples on the other side are used to update the weights, thereby
dictating the behaviour of one dimension in the following feature space. The actual weight
updates are afected by the representations of sample information in all the layers following
the current one.

3.4 Summary
To summarise this perspective on ReLU-activated MLP training:

1. Hidden layers represent sample information in a feature space unique to every layer.

2. The representations of sample information are created on a per-dimension basis by the
in-fan weight vector at each node, selecting and weighing the dimensions made available
in the preceding layer.

https://doi.org/10.18489/sacj.v32i2.833
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3. A node is only active for samples with a directional similarity in the previous feature
space.

4. These sets of samples (and only these) are used to update each in-fan weight vector
during training and, by extension, the representation used by the following feature space.

5. The constitution of these sample sets are therefor a key component during training, and
we expect that the characteristics of these sets can shed led on the training process, and
generalisation ability of DNNs.

4 FITTING TRAINING NOISE

We now present our empirical exploration of DNN learning, using the context described above.
The current work is an extension and refnement of that in (Theunissen et al., 2019), yield-
ing more robust results through additional optimisation, more random initialisations, and one
additional data set at a higher resolution (data corruption is varied over more increments).
Consequently, we obtain a more detailed depiction of the changes in per-layer sample inform-
ation representations. Unless stated otherwise, all results are averaged over at least 3 random
initialisations and all error margins refer to the standard error.

4.1 Model performance

In order to investigate the sample sets and activation/weight vector interactions, several MLPs,
containing 10 hidden layers of 512 nodes each, are trained on varying levels of noise. A stand-
ard experimental setup is used, as described in Appendix A. Figure 2 shows the resulting
performance of the diferent models, when tested on uncorrupted test data. All models were
able to easily Tt the noisy training data, corroborating the fndings of (Zhang et al., 2017).

Notice that, when analysing label corruption, there is a strong inverse correlation between
the amount of label noise and the model’s ability to generalise to unseen data. This suggests
that either:

1. the models are memorising sample-specifc input-output relationships and a certain por-
tion of the unseen data is similar enough to a corresponding portion of uncorrupted
training samples to facilitate appropriate generalisation; or

2. the global approximated function is somehow compartmentalised to contain fundamental
rules about the task in some regions and ad hoc rules with which to correctly classify
the corrupted samples in other regions.

Observe from the results of the two input corruptions (“Gaussian” and “structured”) that noise
in the input data has an almost negligible efect on generalisation up to the point where there is
an insufcient amount of true data in the set with which to learn. This threshold is expected
to change with more di®cult classifcation tasks (more class variance and overlap), data sets
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containing fewer samples in total, and models with less parameter Fexibility. This robustness
to noise in the input space was not mentioned in (Zhang et al., 2017). We expect that is
because the relevant experiments were aimed at showing that the models are large enough to
memorise absolute input noise easily and still generalise from noiseless training data without
considering the ability to generalise in the presence of noise.

The fact that input noise does not result in a linear reduction in generalisation ability still
supports both the previous propositions. If the Frst postulate is true, then the samples with
corrupted input data are memorised, but no samples in the evaluation set are similar enough to
them to incur additional generalisation error. If the second postulate is true, then the regions
in the approximated function that were determined by the corrupted input samples are simply
never used for classifying the uncorrupted evaluation set.

It is also worth noting that the Gaussian and structured input corruptions have very sim-
ilar infuence on generalisation. The models are therefore able to generalise in the presence of
input noise regardless of whether the corrupted samples have informative class-related struc-
tures in the input space.

1.0 4 = MNIST label
MNIST Gaussian
= MNIST structured
= = FMNIST label
FMNIST Gaussian
0.8 7 — = FMwIST structured
= = KMNIST label
o KMNIST Gaussian
o + KMNIST structured
c 0.6
.©
=
©
N
©
= 0.4
(]
C
Q
o
0.2 1
= EC T e — R
.............
0.0 -

00 01 02 03 04 05 06 07 08 09 10
data corruption

Figure 2: The generalisation error for models trained on MNIST (solid lines), FMNIST (dashed lines),
and KMNIST (dotted lines) at varying levels of three types of noise. These noise types are label corrup-
tion (red lines), Gaussian input corruption (orange lines), and structured input corruption (green lines).
The horizontal axis represents the probability of any given training sample having been corrupted for
the relevant model. All models are overparameterised and have perfect performance on the training
data.
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4.2 Cosine similarities

The cosine similarity (cos @ in Eq. 3) can be used as an estimate of how much the representation
of a sample in a preceding layer is directionally similar to that of the set of samples for which
a node tends to be active. By measuring the average cosine similarity of samples in a node’s
sample set with regards to the determinative weight vector (w; in Eq. 3) and averaging over
nodes in a layer, it is possible to identify layers where samples tend to be grouped together
convincingly. That is, the samples are closely related (in the preceding feature space) and the
resulting activation values tend to be large. Using Eqg. 3, the mean cosine similarity per layer
[ (over all weight and active sample pairs at every node) can be calculated as

1 1 aj
teosine(!) = 7 i (4)
cosine(!) = 7] 2 (\Air 2 wlunauu)

a€A;

where N, is a set of all the nodes in layer [ and A; is a set of all positive activation values at node
i. Dead nodes (nodes that are not activated for any sample) are omitted when performing any
averaging operations presented in this section. A dead node does not contribute to the global
function and merely reduces the dimensionality of the feature space in the corresponding layer
by one.

Figure 3 shows this metric for models trained on various amounts of noise. It can be
observed that, in general, earlier layers tend to have lower sample set cosine similarities than
later layers. This efect is amplifed with any form of data corruption. It appears that label
corruption results in the depth at which high mean cosine similarities are obtained being
deeper in the noise-corrupted networks compared to the baseline models, while Gaussian input
corruption results in the opposite. The efects of structured input corruption are much more
subtle than the other two types of noise. These fndings suggest that the coherence of input
features of training data noise plays an important part in the depth at which a convincing
representation of sample information is formed.

4.3 Sample set corruption composition

The noise in the data sets is introduced probabilistically on a per sample basis (see Algorithm 1
to 3). This provides a convenient way to investigate the composition of sample sets with
regards to noise. Figure 4 shows how sample sets can consist of diferent ratios of true and
corrupted sample information.

We defne the polarisation of a node for a class as the amount the sample set of a node
favours either the corrupted or uncorrupted samples of a class ¢, respectively. This is defned
as follows:

1|4

olarisation(c,i) =2 |- —
: e =25 - 11

()
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Figure 3: Mean cosine similarity per layer at varying levels of three types of noise. The horizontal axis
represents the probability of any given training sample having been corrupted for the relevant model.
Results are measured on the training samples of the MNIST data set. Equivalent results for FMNIST

and KMNIST are included in Appendix C.
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Figure 4: Per-class sample set corruption ratios for the frst hidden layer of a 3 x 100 MLP Ftting MNIST
training examples, including structured input corruptions at a probability of 0.5. The nodes have been
arranged in descending order of sample set size. The true and corrupted portions of the sample sets are
presented in green and red, respectively.

where Af is a set of all positive activation values at node i in response to samples from class
¢, and Af§ is a corresponding set limited to corrupted samples. By averaging over nodes and
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classes, a per-layer mean polarisation values can be obtained with the following equation:

1
centinn (1) = ——— olarisation(c, i 6
“polarlsatlon( ) (K[| CGI;ZGNZ P (¢, 1) (6)
where K is a set of all classes.

The polarisation metric indicates how much the sample sets formed within a layer are polar-
ised between true class information and corrupted class information, for any given class. The
relevant polarisation values are provided in Figure 5. The main observation is that sample sets
tend to be highly in favour of true or corrupted sample information. This is especially preval-
ent for Gaussian input corruption where there is very little feature correlations to be found in
the corrupted samples. The label corruption produces lower polarisation earlier in the model,
but this is to be expected seeing as the input data has strong coherence based on correlations
in class-related input structures. Again, we see that the structured input corruption does not
greatly afect the change in sample information representation across depth. These fndings
support the second postulate in Section 4.1. It appears that sub-regions in the function space
are dedicated to processing diferent kinds of training data.

hidden lay
PN W A o N e o

00 01 02 03 04 05 06 0.7 0.8 09 1.0 0.0 0.1 02 03 04 05 06 07 0.8 09 1.0

0.0 0.1 02 0.3 04 05 06 07 0.8 09 1.0
data corruption data corruption data corruption

(a) MNIST label (b) MNIST Gaussian (c) MNIST structured

Figure 5. Mean per-layer corruption polarisation at varying levels of three types of noise. The horizontal
axis represents the probability of any given training sample having been corrupted for the relevant
model. Results are measured on the training samples of the MNIST data set. Equivalent results for
FMNIST and KMNIST are included in Appendix C.

4.4 Discussion

In this section we have shown that several overparameterised DNNs with no explicit regular-
isation are able to generalise well with evident spurious input-output relationships present in
the training data. We have used empirically evaluated metrics to show that, in the presence
of noise, well-separated per-node sample sets are generated later in the network compared
to baseline cases with no noise. Additionally, these well-separated sets of samples are highly
polarised between samples containing true task information and samples without.
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If we adopt the viewpoint that nodes in hidden layers act as collaborating feature diferen-
tiators (separating samples based on feature criteria that are unique to each node) to generate
informative feature spaces, then each layer also acts as a mixture model ftting samples based
on their representation in the preceding layer. A key insight is that each model component
is not Ftted to all samples in the data set. Model components (referring to a node and its
corresponding in-fan weight vector) are optimised on a specifc subset of the population as
determined by the activation patterns in the preceding layer. And, as we have observed, these
subpopulations can and tend to be composed of true task information or false task information.

In this sense, some model components of the network are dedicated to correctly classifying
uncorrupted samples, and others are dedicated to corrupted samples. To generalise this obser-
vation to training scenarios without explicit data corruption, it can be observed that in most
data sets samples from a specifc class have varied representations. Without defning some
representations as noise, they are still processed in the same way the structured input corrup-
tion data is processed in this paper, hence the strong similarity between the baseline models
and those containing structured input noise. This is also why it is possible to perform some
types of multitask learning. One example would be combining MNIST, FMNIST, and KMNIST.
In this scenario the training set will contain 180 000 examples with consistent training labels,
but three distinct representations in the input space. For example, class 6 will be correctly
assigned to the written number 6, a shirt, and a certain Japanese character.

To summarise, DNNs do overft on noise, albeit in a benign fashion. The vast representa-
tional capacity and non-linearities enable sub-components of the network to be dedicated to
processing sub-populations of the training data. When out-of-sample data is to be processed,
the regions most similar to the unseen data is used to make predictions, thereby preventing
the model components ftted to noise from afecting generalisation. In efect, contradictory
training samples are separated from one another and modelled independently, each associated
with more closely related samples, only if such samples exist. This ensures that (within reason-
able bounds) neither noise nor the memorisation of a very large number of samples necessarily
infuence a given prediction. This sheds light on why excessive capacity does not necessarily
lead to overftting and a corresponding deterioration of generalisation. At least in the invest-
igated framework, additional parameters means an increased number of sub-components with
which to separate potentially detrimental feature descriptors from those that are related to the
true underlying data distribution. These fndings suggest that the capacity of a DNN should
not be thought of as the complexity of the functions it will approximate but rather in its ability
to partition data into signal and noise. This is akin to the processing of noise in a relational
database, where attributes can have a varying number of possible values but an increased
number of columns or rows will not result in less accurate responses to queries.

5 DOUBLE DESCENT AND LABEL CORRUPTION

Figure 6 presents a phenomenon observed during the training of models containing label cor-
ruption. Notice that there is an initial period of very good generalisation before performance
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starts deteriorating, after which the system converges on the fnal validation error and stabil-
ises. The early generalisation performance is reminiscent of a classic U-shaped bias-variance
trade-oF curve, beyond which there is a slight improvement in performance near the point
of interpolating the training data completely. This is especially visible for models with more
uncorrupted than corrupted samples — see Appendix C for a clearer visual depiction. No such
behaviour was observable for models including Gaussian- or structured input corruption.

1.0

o 50 100 150 200 250 300 0 50 100 150 200 250 300 ] 50 100 150 200 250 300
epoch epoch epoch

(a) MNIST label (b) FMNIST label (c) KMNIST label

Figure 6: The train (top) and validation (bottom) error for the frst 300 epochs of models trained with
varying levels of label corruption. The colours represent the amount of label corruption in the training
data.

This behaviour seems related to one aspect of the “double-descent” phenomenon that was
Trst explicitly demonstrated in Belkin et al. (2018) for simple MLPs, decision trees, and ran-
dom features, on a model-wise (varying model capacity) basis. Specifcally, in Belkin et al.
(2018) it was found that, under certain training conditions, if a machine learning algorithm’s
capacity is increased beyond the point that is necessary to completely interpolate the training
data, generalisation performance improves. Later, Nakkiran et al. (2020) demonstrated the
phenomenon for more complex models, such as ResNet18 and some Transformer models, and
highlighted a more general form of double descent: one that occurs both as a function of model
capacity and training epochs. The mechanisms producing this phenomenon are still unclear
and this is an active and important feld of research, especially because of its stark contrast
to classical notions of generalisation in machine learning (which expect excess capacity to
uniformly impede generalisation).
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Within the context of this paper all ability of a model to generalise to the validation or
test set can be attributed to feature descriptors learned from uncorrupted samples. It is then
a natural question to ask whether the set of samples ftted at the point of peak performance
are wholly uncorrupted, thereby allowing good generalisation. Figure 7 provides a scatter plot
depicting the ftted training samples at the point of early stopping. Each model was trained for
50 epochs and early stopping was used to obtain the model at the point of peak performance.
Notice that the models do not ft corrupted samples and uncorrupted samples equally under
the efects of early stopping. These results indicate that our models ft uncorrupted samples
frst. Additionally, take note that virtually all the uncorrupted samples are ftted at the point
of early stopping and, even at 100% label corruption, only a small fraction of the corrupted
training data has been ftted at this early stage of training.
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S
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(a) label corruption (b) Gaussian input corruption (c) structured input corruption

Figure 7: Uncorrupted and corrupted samples Ftted at the point of early stopping. The dashed line
shows where perfectly ftted models would be, and the colours represent the amount of label corruption
in the data set. Note that each point represents a specifc model and no averaging across random
initialisations is done.

With these results in mind, we present the following conjecture to explain the presented
epoch-wise double-descent phenomenon.

DNNs ft easier samples Frst. These samples share input feature structures that the
gradient descent based optimisation process can take advantage of. When these
samples have been ftted, and assuming su®cient model capacity, the remaining
samples are ftted up to near the point of interpolation (0.0 training error). Beyond
this point a representation has been obtained that fts most training samples and
generalisation can improve slightly by means of classical empirical risk minimisa-
tion (depending on the ratio of easier and harder samples).

The notion of a DNN learning simple patterns before memorising noise is not new. It was already
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suggested in Arpit et al. (2017) and Rahaman et al. (2019). The novelty in our proposition is
in using it as a lens to account for the epoch-wise double descent.

The conjecture can also explain why there is no double-descent for models containing
structured input corruption. The corrupted samples are still easy to ft, based on the defnition
provided above. As for Gaussian input corruption, these corrupted samples are defnitely hard
to Tt, however based on the behaviour explained in Section 4.4, they are too dissimilar to the
uncorrupted samples to have an efect on the weight vectors ftted to uncorrupted samples.

6 CONCLUSION

We investigated the phenomenon that overparameterised DNNSs are able to generalise in spite
of perfectly Ftting noisy training data. We studied fully-connected feedforward networks in the
presence of diferent types of noise, and found that the ability of these networks to generalise
is a direct result of the modular way in which training samples are ftted during optimisation.
Our main conclusions are summarised below.

* Per sample input noise that is su®ciently diferent to the true data distribution has
negligible efects on generalisation, provided enough representational capacity. This is
in contrast with per sample label noise that increases test error in direct proportion to
the noise level, with the network retaining classifcation accuracy in proportion to the
uncorrupted samples that remain in the training data.

* Networks are able to ignore noise in the frst case (input noise), since sub-units of ReLU-
activated MLPs are ftted to sub-populations of the training set based on local similarity.
Specifcally, individual nodes tend to activate for noise or true data, rather than a com-
bination of both. This means that features learnt from corrupted samples have no efect
on noiseless test results.

» The same efect is at play in the second case (label noise), with correct samples processed
separately from the label-corrupted versions, but with all sub-components triggered dur-
ing the evaluation process.

* From this perspective, additional parameters therefore imply an increased number of
sub-components with which to separate potentially detrimental feature descriptors from
those that are related to the true underlying data distribution.

* In addition, we demonstrate that DNNs ft uncorrupted training data frst, which Fts our
conjecture that easier samples are in general ftted frst. Early in the training process, the
model mainly Fts uncorrupted samples, resulting in a low test error. Error increases as
corrupted samples start infuencing model behaviour. This provides a direct explanation
for the phenomenon referred to as epoch-wise double descent, in the presence of low to
moderate levels of label corruption.
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Future work will continue to work towards a formal framework with which to characterise
the collaborating sub-components and, based on this, further investigate more theoretically
grounded predictors of generalisation. It would also be prudent to further investigate our con-
jecture with regards to double-descent, in order to gain further insight into the more general
phenomenon.
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A EXPERIMENTAL SETUP

The classifcation data sets that are used for empirical investigations are MNIST (LeCun et
al., 1998), FMNIST(Xiao et al., 2017), and KMNIST(Clanuwat et al., 2018). These data sets
are drop-in replacements for each other, meaning that they contain the same number of input
dimensions (28 x 28, 784 Fattened), classes (10), and examples (70 000). In all training scenarios
a random split of 55 000 training examples, 5 000 validation examples, and 10 000 evaluation
examples are used. The generalisation error is measured on the evaluation set. 293 out of the
297 models attained a training error of 0.0. The four exceptions all had a training error smaller
than 0.00005.

All models are trained for 1 500 epochs or up to the point of interpolation, whichever oc-
curs frst. Model weights are initialised with the He initialisation scheme (He et al., 2015).
Randomly selected mini-batches of 64 examples are used to calculate losses. A fxed MLP ar-
chitecture containing 10 hidden layers of 512 nodes each is used, with a single bias node at the
Trst layer. ReLU activation functions are used at all hidden layers. A standard SGD optimiser
is used with a cross entropy loss function. The learning rate is set to 0.01 at initialisation and
multiplied by a factor of 0.99 every 10 epochs. No output activation function is employed
and no additional regularising techniques (batch normalisation, weight decay, drop out, data
augmentation, and early stopping) are implemented.

B ALGORITHMS FOR ADDING NOISE

The Frst type of noise is identical to the “partially corrupted labels” in (Zhang et al., 2017)
except for the selection of alternative labels. Instead of selecting a random label uniformly,
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we select a random alternative (not including the true label) uniformly. This results in a data
set that is corrupted by exactly the probability value P that determines corruption levels (see
Algorithm 1). The second type of noise is similar to the “Gaussian” in Zhang et al. (2017),
with the diference being that instead of replacing input data with Gaussian noise selected
from a variable with identical mean and variance to the data set, we determine the mean and
variance of the Gaussian in terms of the specifc sample being corrupted, as in Algorithm 2.
In other words, the corrupted sample contains features that are sampled from a Gaussian
distribution that has a mean and standard deviation equal to those of the features of the
uncorrupted sample. The third type of noise replaces input data with alternatives that are
completely diferent to any in the true data set but still structured in a way that is predictable.
This is accomplished by rotating the sample 90° counter-clockwise about the centre (prior to
Fattening the image data), followed by an inversion of the feature values. Inversion refers to
subtracting the feature value from the maximum feature value in the sample — see Algorithm 3.

Algorithm 1: Label corruption

Input: A training set of labelled samples (X, Y(rain)) 3 set of possible labels C,
and a probability value P
Output: A training set of corrupted samples (X(train) | y(train))
1 for y in Y do
2 if B(1, P) then
|~ UlC\{w)]

else
| 9y

w

SRS

Algorithm 2: Gaussian input corruption

Input: A training set of labelled samples (X(r*) | y(rain)) 3 set of possible labels C,
and a probability value P
Output: A training set of corrupted samples (X(t@in) y(train))
1 for x in X("*") do
2 if B(1, P) then
3 | X~ Ny, 0y

4 else
L X+ X

9]
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Algorithm 3: Structured input corruption
Input: A training set of labelled samples (X" Y(rein)) 3 set of possible labels C,
and a probability value P
Output: A training set of corrupted samples (X(frain) | y(train))
1 for x in X" do
2 if B(1, P) then

3 | X < invert(rotate(x))
4 else
5 | X+x

6 rotate is a 90° rotation counter clockwise about the origin
7 invert is an inversion of all values in the vector

C ADDITIONAL RESULTS

The mean cosine similarities and mean polarisation values for analyses conducted on the FM-
NIST and KMNIST data sets are provided in Figure 8 and 9, respectively. Notice that the same
observations can be made when compared to the MNIST results in Section 4.2 and 4.3. It is,
however, worth noting that for a classifcation task with more overlap in the input space such
as FMNIST, the well-separated sample sets are generated at even later layers.

Figure 10 shows the per-epoch validation errors and losses for models with label corruption
ranging from 0.0 to 0.5. These curves clearly show a slight improvement in generalisation
during the second descent in the validation error. Take note that, interestingly, there is no
second descent in the per-epoch loss curves. This suggests that, during the second descent,
appropriate decision rules are learned for a portion of the validation set, however, this is at
the cost of an extreme increase in loss values for another portion.
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Figure 8: FMNIST: Mean cosine similarity (top row) and corruption polarisation (bottom row) per layer
at varying levels of three types of noise. The horizontal axis represents the probability of any given
training sample having been corrupted for the relevant model.
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