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ABSTRACT
This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY)
performed on South Africa’s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau
supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed
in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for
the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of
large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun
supercomputer.
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1 INTRODUCTION

Over the past decades, understanding the performance of scientific codes (e.g. DL_POLY1) on
distributed and shared memory computing platform has been a topic of research interest in the
High Performance Computing (HPC) space (Hey, 1990; Heinrich et al., 1994; Jiang, Shan, & Pal
Singh, 1997; Lange et al., 2011). Traditionally, it is expected that codes should scale linearly when
one increases computational resources such as compute nodes or servers (Chamberlain, Chace, &
Patil, 1998; Gropp & Snir, 2009). However, several studies showed different results compared
to the anticipated linear scaling of codes (Agarwal et al., 1995; Kepner & Ahalt, 2004; Aldrich,
Fernández-Villaverde, Ronald Gallant, & Rubio-Ramírez, 2011).

The actual performance of the computing system may also have an impact in the overall scaling
of the scientific model. The performance of HPC systems was recognised in the early 1960s, when
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Gordon Moore (one of the founders of Intel) predicted that the performance of supercomputers would
double every two years (J. Dongarra, Luszczek, & Petitet, 2003; J Dongarra, 2004; Kindratenko &
Trancoso, 2011). In 1970s, the vector computer system was then introduced into the field of the
supercomputer. In the late 1980s, different institutions started to show interest in parallel computing
systems using distributed memory systems.

Beginning in the 1990s, multiprocessor systems joined the market and claimed to be better than
vector systems (Hey, 1990; Oyanagi, 2002; Strohmaier, Dongarra, Meuer, & Simon, 2005). To
provide more accurate information about the performance of HPC systems, the TOP500 list2 was
launched in 1993 to address the issues of fastest supercomputers in the world. Most recently, the
list of supercomputers is published twice every year to determine the 500 most powerful computers
in the world (J Dongarra, 2004; Oyanagi, 2002; Strohmaier et al., 2005; Kindratenko & Trancoso,
2011; Bertsimas, King, & Mazumder, 2016).

The first distributed memory system in South Africa (the e1350 IBM Linux cluster) was com-
missioned and put into service in mid 2007 to enable scientific users in South Africa to perform
fast calculations within a short period of time. In 2009, it was replaced by another supercomputing
system, namely the Sun cluster3, which was then superseded by the Lengau Petaflop system currently
also hosted at the Centre for High Performance Computing (CHPC).

The e1350 IBM Linux system consisted of 160 compute nodes connected to shared Storage Area
Networks (SAN) of 94 Terabytes. Each compute node contained four Opteron 2.6 GHz processors
and 16GB of memory. The peak performance of the IBM cluster was approximately 2.5 Teraflops/s
and shared across the entire supercomputer using Infiniband (10 GB/s) and Ethernet (1 GB/s)
networks. Networks may perform differently depending on the speed and technology within the
network switches.

On the other hand, the Sun cluster consisted of different architectures, namely, Nehalem, Harper-
town, Westmere and Dell. In this study, we focus on Nehalem and Harpertown, because these
subsystems are the original architectures of the Sun supercomputer. For Nehalem nodes, each com-
pute node was equipped with eight Intel Xeon processors (2.93 GHz) attached to 24GB of memory.
The Harpertown nodes contained eight Intel Xeon processors (3.0 GHz) which were connected to
16GB of memory.

The performance (speed) of the Sun system was 61.5 Teraflops/s, which was shared through the
Infiniband Network (40 GB/s) connected to the Storage Area Network of 400 Terabytes. However,
CHPC’s current Lengau cluster4 performed up to 1.029 Petaflops/s and was equipped with Dell (Intel
Xeon (R) E5-2690 V3 processors) and FAT nodes (Intel Xeon (R) E7-4850) processors. Each Dell
node had 24 processors connected to 128 GB of memory and FAT nodes consists of 1 Terabyte of
memory. Both e1350 and Sun clusters were distributed memory systems programmed with Message
Passing Interface (MPI) used to spread tasks across the system. Lengau cluster is also a distributed
memory system which utilises MPI for distribution of computational tasks.

2For more information about the list, please refer to: http://top500.org. More info about the list can be found on:
http://www.isc-hpc.com.

3https://www.chpc.ac.za/index.php/resources/tsessebe-cluster
4https://www.chpc.ac.za/index.php/resources/lengau-cluster
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For the purpose of this study, we investigate the scaling of DL_POLY parallelised using MPI on
e1350 IBM, Sun and Lengau clusters. DL_POLY uses MPI to create parallel processes and exchange
data between the compute nodes of the e1350, Sun and Lengau cluster.

DL_POLY is a molecular dynamics (MD) package mainly used in fields such as chemistry and
materials science and was developed at Daresbury Laboratory, United Kingdom (UK) under the
auspices of the Council for the Central Laboratory of the Research Councils (W. Smith & Forester,
1996; W. Smith & Todorov, 2006). This MD application is used to simulate boxes of different types
of atomic systems according to Newton’s Laws of Motion.

The objective is to gain understanding into the performance of DL_POLY 2.18 and 3.09 codes
on the e1350 IBM cluster when using the Infiniband and Ethernet networks respectively. Moreover,
we also intend to understand how different versions of DL_POLY (namely 2.18, 3.09, 4.07 and
Classic_1.9) perform on the e1350, Sun and Lengau clusters.

In the e1350, DL_POLY was compiled using PathScale Compiler5 and parallelised using Open
MPI6. On Sun cluster, DL_POLY was compiled using Intel Compiler7 version 13.1 with Open MPI
version 1.8.8, of which, it was further compiled using Intel Compiler version 16.0.1 with Open MPI
version 1.10.2 on Lengau cluster.

2 DESIGN OF COMPUTATIONAL EXPERIMENT

All DL_POLY versions are coded in FORTRAN 90 with a modular programming approach and
employ MPI parallelisation. Development of DL_POLY_2 has ended with the final version being
DL_POLY_Classic 1.9. DL_POLY_2 (including versions 2.18 and Classic_1.9) employs Replicated
Data parallelism without parallel I/O, and is most suited for systems comprising up to 30 000 atoms
running on up to 100 processors (cores) (W. Smith & Todorov, 2006). DL_POLY_3 (including 3.09)
utilises a static/equi-spacial Domain Decomposition parallelisation strategy in which the simulation
cell (comprising the atoms, ions or molecules) is divided into quasi independent domains - this
is achieved using a link cell approach employing “halo data” one link cell deep (Todorov, Smith,
Trachenko, & Dove, 2006).

DL_POLY_3 is best suited for simulations of 100 000 to 1 000 000 atoms on up to 1000 processors
(cores). Although DL_POLY 3.09 does use some parallel I/O via MPI file writing, subsequent versions
(such as 3.10) have significantly better parallel I/O. DL_POLY_4 (such as version 4.07) is the direct
successor of DL_POLY_3 which also includes concepts and functionality from DL_POLY_2. DL_POLY
4.07 hence employs the Domain Decomposition strategy, while I/O is fully parallel with netCDF
being an option.

An important factor in determining the scalability of a code such as DL_POLY is the size of
the system that is studied, viz., number of atoms simulated on a computational arena. To study
the behavior of this atomic model, the method of executing scientific code using strong and weak

5https://github.com/pathscale
6https://www.open-mpi.org
7https://software.intel.com/en-us/intel-parallel-studio-xe
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scalability was invoked to study the effects of the network on the performance of DL_POLY on e1350
IBM Linux cluster (Mabakane, 2011).

Strong scalability involves doubling the number of nodes but maintaining the constant con-
figuration size for the chosen scientific code, while weak scalability occurs when the number of
nodes is doubled and the problem size is also concurrently increased (Bosilca, Delmas, Dongarra, &
Langou, 2009; Varma, Wang, Mueller, Engelmann, & Scott, i2006). Using DL_POLY_2.18, the strong
scalability of the model was studied in two different ways, namely, by using a small and large system
(Tang, 2007).

The small configuration (8640 atoms) and a large problem sizes (69120 atoms) were selected to
perform scalability tests because many CHPC DL_POLY users were utilising these configuration sizes
to run simulations for different scientific purposes. In the small system, DL_POLY_2 was employed for
a simulation comprising 8640 atoms (that is Sodium (Na) = 960, Potassium (K) = 960, Silicon (Si)
= 1920, Oxygen (O) = 4800) (Bosilca et al., 2009). The chemical system of atoms were simulated in
a cubic box of size 48.358 angstroms for each of its X, Y and Z axes. The temperature in all DL_POLY
simulations was set to 1000K.

In the large system of DL_POLY_2, the cubic box was then increased in size from 48.358 cubic
angstroms (small system) to 96.717 cubic angstroms (large system) in order to accommodate the
higher number of atoms to be simulated. The number of atoms in this large system is 69120 atoms.
This large atomic system consists of 7680 Na, 7680 K, 15360 Si and 38400 O atoms for a total of
69120 atoms (Todorov & Smith, 2004).

The scaling method of increasing the number of processors concurrently with problem size
(weak scalability) has also been utilised to test the performance of DL_POLY_2.18. Seven different
configurations were designed for this purpose as highlighted below in Table 1.

Table 1: Atomic compositions for testing weak scalability of DL_POLY versions 2.18 and 3.09

Atom Weak_1 Weak_2 Weak_3 Weak_4 Weak_5 Weak_6 Weak_7
Na 212 424 848 1696 3392 6784 13568
K 212 424 848 1696 3392 6784 13568
Si 424 848 1696 3392 6784 13568 27136
O 1060 2120 4240 8480 16960 33920 67840
Total 1908 3816 7632 15264 30528 61056 122112

Starting from the first composition of disilicate glass (Weak_1), the number of atoms in the cell
was doubled while the box size was appropriately increased in order to maintain the same density
of atoms. This process of doubling the number of atoms was repeated until one reached the final
disilicate composition (Weak_7). All seven atomic molecular dynamics simulations were performed
using both Infiniband and Ethernet networks of the e1350 IBM Linux cluster. The same disilicate glass
composition for DL_POLY_2.18 (small system) was employed for use in DL_POLY_3.09 simulation
(small model) while the same system of higher composition used in DL_POLY_2.18 (large system)
was also utilised in DL_POLY_3.09 (large system).
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Furthermore, the weak scalability of DL_POLY_3.09 has been tested on the e1350 IBM Linux
cluster using the same setup of seven disilicate compositions, namely, Weak_1, Weak_2, Weak_3,
Weak_4, Weak_5, Weak_6 and Weak_7, as shown in Table 1. These seven different compositions
(configurations) have the corresponding number of atoms and cell sizes as used for DL_POLY_2.18
tests (weak scalability). On e1350, each atomic system was run 3 times in order to get a comfortable
total execution time of the simulations. For Sun and Lengau, some of the runs were also repeated.

3 RESULTS AND DISCUSSIONS

As discussed, this MD code has been utilised to understand the effects of network when utilising the
same disilicate compositions (small and large systems) and compositions of different sizes (weak
scalability). The scaling of this MD code has been calculated utilising the following formula:

S(P) =
T (1)
T (P)

(1)

The speed-up on P processors, S(P), is the ratio of the execution time on 1 processor, T(1), to
the execution time on P processors, T(P) (Chamberlain et al., 1998). In an ideal situation, we
expect the execution time of the application to scale linearly with the number of processors. As
for DL_POLY_2.18 (small system), Figure 1 shows the impact of network on the speed of the MD
simulations running on the e1350 cluster.

The scaling results of this with respect to both Infiniband and Ethernet networks indicate that the
simulation speed-up is almost linear from 8 to 32 processors and thereafter deviates significantly below
the ideal value from 32 to 256 processors. For the Infiniband network, the application’s performance
improves slightly from around 16 to 32 processors, before starting to decrease when using up until
256 processors. These DL_POLY_2.18 simulations of the small disilicate glass system show that
performance is much better when using a small number of processors (at least 32 processors) than
when using many processors (256 processors). This may be attributed to factors such as high load of
communication between the nodes and design of the supercomputer used to simulate the model.

Figure 2 shows the complicated scaling results of DL_POLY_2.18 (large simulation) for both
Infiniband and Ethernet networks of the e1350 cluster. In particular, from 4 to 256 processors we see
values which exceed the expected speed-up value for both Infiniband and Ethernet network sharing
communication choices within the e1350 IBM Linux cluster. These performance results show that
the problem size exceeded the capabilities of the selected node used to perform the MD simulations
(DL_POLY_2.18 large system), whereas employing additional nodes would ensure sufficient capacity.

DL_POLY_2.18 is designed to perform best up to 30 000 atoms, of which, the simulated problem
size comprises of 69120 atoms. It is noticeable that performance of simulations of this large
composition (69 120 atoms) got significantly worse from 4 to 256 processors, and then suddenly the
performance decreased to almost 0 scaling when using 512 processors.

The results (Figure 2) indicate that DL_POLY_2.18 is not well suited for simulating relatively large
problem sizes such as 69 120 atoms on the e1350 IBM Linux cluster. Hence, different configuration
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Figure 1: Strong scalability of DL_POLY_2.18 (small system)

sizes were designed and tested on different numbers of nodes in order to determine the optimal
number of atoms that could provide good performance of the DL_POLY_2.18 model.

Figure 3 illustrates some performance results of different problem sizes simulated over Infiniband
and Ethernet networks on the e1350 IBM Linux cluster. DL_POLY_2.18 simulations were performed
for different disilicate compositions from Weak_1 up to Weak_6. Simulations for Weak_7 failed to
run on the e1350 IBM Linux cluster, apparently owing to the system containing too many atoms
(122112) to be handled by this version of molecular dynamics package on this cluster. It shows
lower values than ideal scaling from 8 to 256 processors for both networks. The performance scaling
is extremely similar for both networks, except that Ethernet network scales almost ideally when
running on 16 and 32 processors. The reason for this poor scaling could be that the communication
between the parallel processes was poorly coordinated within the system (W. Smith, Forester, &
Todorov, 2008). Different codes are likely to perform differently especially when the codes do not
have same features, for example in this case, DL_POLY_3.09 was tested after DL_POLY_2.18 in order
to compare such differences.

Figure 4 shows that the results of the DL_POLY_3.19 small system (8640 atoms) for both networks
indicates that the speed of the MD calculations deviate significantly from perfect scaling from around
16 to 64 processors. This result shows a huge difference in performance between DL_POLY_2.18 small
system and DL_POLY_3.09 small simulation. From 4 to 64 processors, DL_POLY_3.09 (small system)
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Figure 2: Strong scalability of DL_POLY_2.18 (large system)

managed to obtain a speed-up of less than 15 times on both Infiniband and Ethernet networks.
The DL_POLY_2.18 small system obtained a far better speed-up of about 100 on 256 processors
using both Infiniband and Ethernet network. Here the number of atoms in the system and number
of processors used, are likely not too far from the range where DL_POLY_2.18 code is known to
perform best (namely, 30 000 atoms and 100 processors). The small system of DL_POLY_3.09 was
therefore modified by increasing the size of the starting configuration from 8640 to 69120 atoms
(large system) in order to better determine the performance differences.

Figure 5 illustrates the performance results of the DL_POLY_3.09 simulation of the large system
running on two different networks (Infiniband and Ethernet) on the e1350 IBM cluster. For both
Infiniband and Ethernet networks, the results indicate that the simulation speed-up results are lower
than the ideal value for 4 to 512 processors, but continue to increase with an increase in the number
of nodes. This result tends to indicate that the chosen large configuration size could yield better
scaling behavior when increasing the processing capabilities. However, this may also depend on
the architecture used. As discussed in Section 2, different configuration sizes were designed using
different numbers of atoms, and these were executed by using different processing capabilities,
starting from 4 to 256 processors within the e1350 IBM Linux cluster.

Figure 6 illustrates the scaling results of different disilicate glass compositions simulated on
Infiniband and Ethernet networks. The results indicate that the speed-up of the simulations yields
dramatically lower values from 4 to 512 processors. In particular, scaling results (Figure 6) in-
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Figure 3: Weak scalability of DL_POLY_2.18

dicate that the performance is comparable to ideal scaling from 4 to 16 processors and suddenly
decreases from around 32 to 512 processors. It could be that the method of parallelisation used
by DL_POLY_3.09 on the e1350 did not implement very well. A further possibility is that parallel
I/O in DL_POLY_3.09 was not efficiently implemented, whereas significant improvements were
made in subsequent versions. To this end, different versions of DL_POLY (2.18 and 3.09) were used
to simulate the large disilicate glass composition (69120 atoms) in order to analyse performance
when using different numbers of processors within the e1350, Sun and Lengau clusters. For this
task, all simulations were parallelised using MPI, which distributed computational tasks through the
Infiniband network of the clusters. The purpose of this exercise was to understand the effects of the
architecture and different choices of DL_POLY versions.

The results (Figure 7) demonstrate the performance of different DL_POLY versions (namely, 2.18,
3.09, 4.07 and Classic_1.9) simulations of the large disilicate glass system (69 210 atoms) on the
e1350, Sun and Lengau supercomputers. It indicates that DL_POLY_Classic_1.9 shows essentially
ideal performance from 24 to 48 processors and performance slightly decreases from 96 to 144
processors on CHPC’s Lengau Petaflop system whose nodes each comprise of 24 processors. However,
DL_POLY_Classic_1.9 performed well closer to the ideal value when using 96 and 144 processors
of the Lengau cluster. DL_POLY_Classic_1.9 performed well on Lengau probably due to the large
number of powerful processors on each node and extensive memory (128 GB) on these compute
nodes.
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Figure 4: Strong scalability of DL_POLY_3.09 (small system)

However, DL_POLY_4.07 performs reasonably well from 24 to 48 processors, while its performance
decreases significantly from 64 up to 144 processors on the Lengau cluster. The gradual reduction in
speed of this application from 64 to 144 processors could be caused by large amount of message
passing communications between nodes and too little work for each node to do. DL_POLY_2.18
performed close to ideally for 8 to 128 processors on Nehalem nodes of the Sun cluster. The
application did, however, not perform well from 8 to 128 processors of the Harpertown architecture
on the Sun cluster. This may be attributed to the fact that the Nehalem compute nodes had a larger
memory (24GB) than the Harpertown nodes (16GB of memory).

Figure 7 also demonstrates that DL_POLY_3.09 scales poorly compared to ideal scaling for 8
to 128 processors on either the Nehalem or Harpertown nodes of the Sun cluster. On the e1350,
DL_POLY_2.18 performs close to the ideal line for 4 to 32 processors and performs quite poorly
thereafter. DL_POLY_3.09 performed poorly in terms of scaling on the e1350 in a similar way to what
we described above for the Sun cluster. However, the performance of DL_POLY_3.09 slightly increases
when one adds more processors on e1350, Nehalem and Harpertown cluster. DL_POLY_3.09 could
have performed poorly because it needed more computational resources (processors and memory)
on both e1350 and Sun cluster (Nehalem and Harpertown).

In general, performance analyses results (Figure 7) indicate that DL_POLY’s latest versions
(Classic_1.9 and 4.07) performed reasonably well on Lengau cluster as compared to version 2.18
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Figure 5: Strong scalability of DL_POLY_3.09 (large simulation)

and 3.09 on both e1350 and Sun cluster. The advanced processors and extensive shared memory
within the compute nodes of the Lengau cluster have attributed to the good performance of some
versions of DL_POLY. The purpose of this study is to analyse the scaling and relative speed of different
DL_POLY versions, of which, the computational speed is significantly higher for Lengau cluster and
newer versions of DL_POLY.

4 SUMMARY AND CONCLUSIONS

The findings suggest that scientific users need to understand their problem size in order to select the
relevant computational power, and to be aware that using an excessive number of nodes may not
necessary increase the performance of the code and could be wasteful of valuable computational
resources.

On the problems considered here on the e1350, we see that Ethernet is perfectly good and
Infiniband was not needed. However, for bigger systems and better supercomputers such as Sun and
Lengau, Infiniband, the modern trend is advantageous – however, we do not have data to compare
Ethernet on such clusters as they do not use Ethernet. The DL_POLY_Classic_1.9 code is able to
scale well when using a large configuration over Infiniband network even with large increases in the
number of nodes within the Lengau supercomputer.
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Figure 6: Weak scalability of DL_POLY_3.09

Supercomputing users should ideally utilise DL_POLY_2.18 (as compared to version 3.09) for
simulation of small atomic systems on either Infiniband or Ethernet network, depending on the
architectural design of the supercomputer. DL_POLY_Classic_1.9 and 4.07 should normally be used
to simulate either small or large systems of atoms over the Infiniband network when using many
processors within the compute nodes of the supercomputer.

The type of the processors of compute nodes and their memory also play an important role in the
overall performance of the parallel application running on a supercomputer. DL_POLY_3.09 could
perform well when one utilises a large number of advanced processors possessing large amounts of
memory. DL_POLY_Classic_1.9 performed very well on the Lengau cluster which has very powerful
compute nodes and large memory compared to the compute nodes of the Sun and e1350 clusters.

It is important for parallel program users to utilise the most advanced available architectures
when performing large calculations on supercomputers. To this end, it was found that the latest
versions (Classic_1.9 and 4.07) of DL_POLY work better than older versions (2.18 and 3.09) when
running large configurations on the supercomputers. It is anticipated that findings of this study will
help users of different parallel applications to utilise appropriate computational resources, versions
and configurations of the model when performing scientific calculations on the supercomputers.

In future, performance analysis tools (visualisation tools) will be introduced to analyse factors
such as network communication, message-passing activities, read/write processes and logic of the
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Figure 7: Scaling of DL_POLY on e1350, Sun and Lengau clusters

parallel code executed during the runs.
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