
SACJ 29(1) July 2017
Research Article

Adaptive SVM for Data Stream Classification
Isah A. Lawala , Salihu A. Abdulkarimb

a Department of Computer Engineering and Networks, AlJouf University, Saudi Arabia
b Department of Computer Science, Federal University Dutse, Nigeria

ABSTRACT
In this paper, we address the problem of learning an adaptive classifier for the classification of continuous streams of data.
We present a solution based on incremental extensions of the Support Vector Machine (SVM) learning paradigm that
updates an existing SVM whenever new training data are acquired. To ensure that the SVM effectiveness is guaranteed
while exploiting the newly gathered data, we introduce an on-line model selection approach in the incremental learning
process. We evaluated the proposed method on real world applications including on-line spam email filtering and human
action classification from videos. Experimental results show the effectiveness and the potential of the proposed approach.

Keywords: incremental learning, support vector machine, spam filtering, human action classification

Categories: • Machine Learning ∼ Learning settings

Email:
Isah A. Lawal ialawal@ju.edu.sa (CORRESPONDING),
Salihu A. Abdulkarim sakwami@fud.edu.ng

Article history:
Received: 3 September 2016
Accepted: 4 May 2017
Available online: 9 July 2017

1 INTRODUCTION

Over the last few years, many real-world applications that generate continuous streams of data
have emerged (Nguyen, Woon, & Ng, 2015). For efficient interpretation of these streams of data, a
timely and meaningful classification process is required. A classification process involves using a
set of training data to learn a computational model (classifier) and then employing the developed
model to classify a previously unseen stream of data (Dongre & Malik, 2014). Classical learning
methods perform classification tasks off-line using a classifier trained on streams of data gathered
in the past (Nguyen et al., 2015). However, several applications require on-line classification. For
example, detecting abnormal human actions from camera-based real-time scene monitoring (Lu,
Boukharouba, Boonært, Fleury, & Lecuche, 2014), and timely separation of legitimate emails from
spam in an on-line spam email filtering (Vipin & Nizar, 2014).

However, performing on-line data classification is problematic for two major reasons (Fong, Luo,
& Yap, 2013). First, data are generated in batches over time, it is difficult at one time to acquire
sufficient training data that are representative of all the underlying classification problems in the
application. Therefore, when the classifier is trained on the limited data only once within a given
time span, the learned classifier will perform poorly when employed to classify a stream of data that

Lawal, I.A., and Abdulkarim, S.A. (2017). Adaptive SVM for Data Stream Classification. South African Computer
Journal 29(1), 27–42. https://doi.org/10.18489/sacj.v29i1.414

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN 1015-7999
(print) ISSN 2313-7835 (online).

mailto:ialawal@ju.edu.sa
mailto:sakwami@fud.edu.ng
https://doi.org/10.18489/sacj.v29i1.414
http://creativecommons.org/licenses/by-nc/4.0/

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 28

are not well covered during the learning phase (Krempl et al., 2014). Second, the characteristics
(e.g. underlying data distribution) of the data stream might change over time such that the classifier
built on old data becomes inconsistent with new data, a condition commonly known as concept drift
(Gama, Žliobaitė, Bifet, Pechenizkiy, & Bouchachia, 2014).

A possible strategy to handle these problems is to build the classifier on-line, learning incrementally
from any new data generated during use. In this way, a temporally adaptive classifier that can
accurately classify the evolving streams of data can be achieved. Recently, researchers have proposed
techniques to facilitate learning a classifier in situations where all the training data are not available
in advance. Cauwenberghs and Poggio (2001) proposed the first incremental algorithm for updating
an existing SVM whenever new samples are acquired. The algorithm provides an efficient method
for incorporating the information contained in new data into an existing classifier model in an
on-line manner. It avoids re-estimating all the parameters of the model from scratch each time
new data are available, rather it adapts the classifier to the changes imposed by the addition of the
new information. Also, the algorithm incorporates an unlearning scheme which allows selective
discarding of patterns considered less informative from the model without reducing the quality of the
classifier. This is particularly important in handling concept drift issue because it allows the removal
of obsolete patterns from an existing classifier during model revision. The incremental training
allows incorporating additional training data into an existing SVM solution, which however, does
not conclude the SVM learning process. The learning process has a training phase for selecting set of
parameters and a model selection phase for tuning additional variables (called ‘hyper-parameters’)
that finds classifier characterised by optimal performance in classifying previously unseen data
(Shawe-Taylor & Sun, 2011). Unfortunately investigations in incremental SVM learning algorithms
have largely focused on the training phase as opposed to the larger model selection.

This paper aim to build an adaptive SVM for data stream classification. We chose SVM algorithm
for the following reasons: firstly, it provides a unique solution since its optimality problem is convex
(no local minima) (Burges & Crisp, 1999), unlike other learning algorithms such as Artificial Neural
Networks which have multiple solutions associated with local minima (Rocha, Cortez, & Neves,
2007) and therefore may not be accurate for the classification of the data stream. Moreover, with
an appropriate kernel, SVM can work effectively even if the data are not linearly separable in the
input space (Kapp, Sabourin, & Maupin, 2012). Lastly, SVM provides a compact representation
of historical data in the form of support vectors, which allow the algorithm to be easily extended
to fit into an incremental learning framework. We adopted the incremental training technique in
order to train the SVM with continuous streams of labeled data. We then introduced incremental
model selection for the SVM in order to guarantee the effectiveness of the classifier over time. We
study the performance of our proposed method in terms of accuracy and training time on real-world
applications including spam filtering and human action classification in videos.

2 SVM FOR DATA CLASSIFICATION

SVM (Cortes & Vapnik, 1995) is an effective machine learning approach for solving classification
problems. An SVM is train to find within a given labeled training input data, sets of points known

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 29

as the support vectors. These support vectors define some separating hyper planes (also known
as the decision boundaries) that partition the labeled training data into a pre-defined number of
classes (Cortes & Vapnik, 1995). Model selection in SVM, on the other hand, involves searching
for the optimal SVM hyper-parameters that allows us to build the SVM characterised by optimal
performance (i.e. low misclassification error) on previously unseen data (Kapp et al., 2012). For
linearly separable training data, for example, the only hyper-parameter is C , the regularization
parameter. However, when dealing with non-linearly separable training data, at least one additional
variable is introduced into the set of hyper-parameters: this could be the width of the Gaussian γ or
the order of the polynomial p of the specific kernel function used (Kapp et al., 2012). The subsequent
discussion describes the proposed SVM learning process for the classification of data stream.

2.1 Incremental training of SVM
Given a stream of labeled training data Dt =

�

(x t
1, y t

1), . . . , (x t
n, y t

n)
	

, where x t
i ∈ ℜ

d is the i th feature
vector representing a data sample at time t, y t

i = ±1 is the sample class label. At t = 1, we aim to
exploit D1 to learn the initial SVM f 1 that can generalize well with previously unseen data and then
incrementally update the classifier when new labeled training data are acquired at t > 1. The f 1 is
defined as:

f 1(x 1) = si gn
�

w 1T
x 1 + b1

�

(1)

where b1 ∈ ℜ is the bias and w 1 ∈ ℜd are the weights at t = 1. f 1 is a linear SVM with b1 and
w1 values that give the optimal separation of the x 1 in D1. The values of b1 and w1 are obtained
by solving the following Convex Constrained Quadratic Programming (CCQP) problem (Cortes &
Vapnik, 1995):

min
w1,b1,ξ

1
2
‖w‖2 + C

n
∑

i=1

ξi (2)

y1
i

�

(w 1T
x 1

i) + bt
�

≥ 1− ξi ∀i ∈ {1, . . . , n}

ξi ≥ 0 ∀i ∈ {1, . . . , n} ,

where ξi are slack variables for penalising misclassification errors and C is a regularization parameter
(Cortes & Vapnik, 1995). The problem of Eq. 2 can be solved more easily in its Wolfe dual formulation
by using the Lagrange multipliers. Two sets of multipliers are used, α1 ∈ ℜn and µ1 ∈ ℜn, one for
each of the two constraints in Eq. 2, respectively. We transform Eq. 2 to

L(w 1, b1,ξ) =
1
2

w 1

2
+ C

n
∑

i=1

ξi

+
n
∑

i=1

α1
i (y

1
i

�

(w 1T
x 1

i) + bt
�

− 1+ ξi) +
n
∑

i=1

µt
iξi. (3)

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 30

By taking the partial derivatives of L with respect to w1, b1 and ξi, we obtain the Karush-Kuhn-Tucker
(KKT) optimality conditions for the Wolfe dual formulation as (Cortes & Vapnik, 1995)

∂ L
∂ w1

i

= 0→ w1
i =

n
∑

i=1

α1
i y1

i x 1
i , ∀i = 1, . . . , n (4)

∂ L
∂ b1

= 0→
n
∑

i=1

α1
i y1

i = 0 (5)

∂ L
∂ ξi

= 0→ C −α1
i −µ

t
i = 0, ∀i = 1, . . . , n (6)

α1
i (y

1
i

�

(w T x 1
i) + b

�

− 1+ ξ1
i) = 0, ∀i = 1, . . . , n (7)

µt
iξi = 0, ∀i = 1, . . . , n (8)

(C −α1
i)ξi = 0, ∀i = 1, . . . , n (9)

α1
i µ

1
i ξi = 0, ∀i = 1, . . . , n, (10)

which allows us to substitute the w1, b1 and ξi in Eq. 2 in order to obtain the final Wolfe dual
formulation as

min
α

1
2

n
∑

i=1

n
∑

j=1

α1
i α

1
j Q

1
i j −

n
∑

i=1

α1
i (11)

0≤ α1
i ≤ C ∀i ∈ {1, . . . , n}

n
∑

i=1

y1
i α

1
i = 0,

where Q i j = y1
i y1

j K(x 1
i , x 1

j) and K(., .) is a Mercer’s kernel function, which allows non-linear mappings
of the training data (Cortes & Vapnik, 1995). We obtain the solution of Eq. 11 i.e. α1

i ∀i by using the
efficient CCQP solvers already developed in the literature (Hsieh, Si, & Dhillon, 2014). Finally, we
estimate the SVM by using the α1

i as

f 1(x 1) = si gn

�

n
∑

i=1

y1
i α

1
i K(x t , x 1

i) + b1

�

. (12)

From Eq. 12 we can partition D1 into three sets: the set S1
v of margin support vectors with y1

i f 1(x 1
i) =

1 and α1
i ∈= [0, C]; the set B1

v of bounded support vectors with y1
i f 1(x 1

i)< 1 and α1
i = C; the set I1

v
of correctly classified training samples, with y1

i f 1(x 1
i)> 1 and α1

i = 0.
At time t + 1 when a new training data (x t+1

k , y t+1
k) is received, we want to update the SVM

(Eq. 12) without having to re-build it from scratch. We employed an incremental training approach
(Cauwenberghs & Poggio, 2001) which allows us to efficiently update the values of αt

i and bt in
Eq. 12. Firstly, z = y t+1

k f t(x t+1
k) is computed in order to check whether x t+1

k is correctly classified,
i.e. if x t+1

k belongs to the set Iv (i.e. z > 1). We initialize incremental training only when (x t+1
k , y t+1

k)

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 31

has the potential to become a support vector, i.e. z ≤ 1. In this case we set the αt+1
k to 0 and perturb

the SVM by gradually increasing the value of αt+1
k to its largest possible value (αt+1

k > 0) until the
optimal SVM solution is obtained without violating the KKT optimality conditions Cauwenberghs and
Poggio, 2001. During the perturbation of the SVM the αt

i ∀i ∈ S t
v, and the bias bt are also adjusted in

order to maintain the KKT conditions. Alg. 1 summarizes the steps for the incremental SVM training.

Algorithm 1 Incremental training of SVM (Cauwenberghs & Poggio, 2001)

Input: (x t
k, y t

k): labeled training sample at time t, f t−1: SVM at t − 1
Output: f t : updated SVM
Definitions: αt

i : coefficient of the i th sample at t, S t
v: margin support vector set, B t

v: Bounded
support vector set, I t

v: correctly classified training data set, Q: kernel matrix
1: Begin:
2: Compute z = y t

k f t−1(x t
k),

3: If z > 1, go to step 9, because (x t
k, y t

k) cannot improve the classifier
4: Initialization: αt

k ← 0
5: Compute Q ik for ∀ i∈ S t

v
6: If z ≤ 1,
7: Increment αt

k to its largest value while ensuring the KKT optimality conditions are satisfied
8: Check if one of the following conditions occurs:

I. If y t
k f t(x t

k) = 1, then S t
v ← (x t

k, y t
k)

II. Else if αt
k = C: then B t

v ← (x t
k, y t

k)
III. Else if (x t

i , y t
i), i ∈ S t

v, become part of B t
v or Iv, adjust αt

i , i ∈ S t
v, and bt accordingly to keep

the KKT conditions satisfied
9: Return f t

10: End

2.2 Incremental model selection for SVM
During the incremental SVM update, we aim to revise both the regularization parameter C and the
function f t by exploiting newly gathered labeled training data. In the incremental SVM training
framework, two approaches for model selection have been identified, namely: No Model Selection
(NO-MS) (Zheng, Shen, Fan, & Zhao, 2013) and Complete Model Selection (C-MS) (Wang, 2008). In
the NO-MS method typically the Dt collected at t = 1 is used to perform the model selection and to
learn the initial SVM. The model selection is done using for example k-fold Cross Validation (k-CV),
Leave-One-Out (LOO) or Bootstraps (Duarte & Wainer, 2017), and the optimal hyper-parameters
are kept constant throughout the subsequent incremental learning processes. Thus when new sets of
training data are gathered at time t > 1, only the set of support vectors of the classifier is revised
accordingly, using incremental training method (Zheng et al., 2013). As the hyper-parameters of the
SVM are not updated in this process, the NO-MS SVM performance may degrade over time. A more
desirable approach is the C-MS which updates both the hyper-parameters and the support vectors of

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 32

the SVM whenever a new set of training data is available. This method is the most accurate, but it is
computationally expensive as it requires performing a complete training and model selection process
from scratch every time new sets of training data are collected.

We propose a new approach, referred to as Incremental Learning Model Selection (IL-MS), where
MS is not completely neglected in the incremental learning, as in NO-MS, but a whole re-learning is
avoided, unlike to C-MS. We start by identifying the best C and classifier f t at the t = 1 step with a
k-CV procedure. The k-CV procedure is enumerated as follows:

1. Re-sample the n training samples in Dt in a random order

2. Divide the re-sampled Dt into k folds (k chunks of approximately n
k samples each)

3. Define a regularization parameter set {C1, . . . , Cm}

4. For i = 1, . . . , m

5. For j = 1,. . . ,k

6. Train a classifier f t
j using Ci and the samples that do not belong to fold j (i.e. k-CV training set)

7. Evaluate the trained f t
j with all the samples in fold j (i.e. k-CV validation set)

8. Compute the number of training samples, e j, in fold j that were misclassified by f t
j

9. Estimate the total misclassification error Ei for each Ci as

Ei =

∑k
j=1 e j

n
(13)

10. Select the C t
∗ = Ci that give the lowest Ei

11. Learn the final classifier f t using C t
∗ and D̄t .

We keep the k-CV training set and validation set, and also all the classifiers f t
(1,...,k) trained while

applying k-CV for future use. Thus, when new streams of training data
�

(x t+1
1 , y t+1

1), ..., (x t+1
i , y t+1

i)
	

are acquired at time t + 1, we modify C t
∗ and the classifier f t : it is reasonable to assume that, since

the time step for which the new streams of data are collected is not large (i.e. it is not comparable to
t), the regularization parameter will not vary too much from the previous best value. Thus, we define
a neighborhood set centered around C t

∗ as
�

C t
∗
ε ,εC t

∗

�

, where ε > 1. We update both the k-CV training
set and validation set and, accordingly, the f t+1

1,...,k by using a regularization parameter optimization

technique (Diehl & Cauwenberghs, 2003) for every value of C ∈
�

C t
∗
ε ,εC t

∗

�

. We thus identify the best
regularization parameter configuration C t+1

∗ . Finally, the f t+1 is updated according to C t+1
∗ and the

new streams of training data collected using Alg. 1. The supplementary computational burden with
respect to NO-MS is limited: in fact, we have to update k+ 1 classifiers instead of 1 and we have to
perform a k-CV at each updating step, but limited to a restricted neighborhood set.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 33

3 EXPERIMENTS AND EVALUATION

We assess the effectiveness of the proposed IL-MS SVM by applying it to spam Email Classification
(SEC) and Human Action Classification (HAC) in video. We chose the SEC because it represents
a data stream problem with a gradual concept drift issue where the characteristic of spam email
changes over time and the spam filter (classifier) needs to be continuously revised in order to ensure
its effectiveness. We chose the HAC application as a potential on-line data classification problem
whereby training data (i.e. stream of human action video clips) are acquired over time. Therefore
the human actions in the videos need to be classified on the fly and the classifier also needs to
be incrementally revised with any new action video recorded during use in order to maintain its
effectiveness. We compare the results of the proposed IL-MS SVM with that of NO-MS SVM and
C-MS SVM based on their error rate in classifying previously unseen email and human action videos.
We also compare the time taken to incorporate the information contained in a newly gathered email
stream and also the time taken to incorporate the information contained in a newly obtained human
action videos. In the following sections we discuss the datasets, the experimental setup and analysis
of the results.

3.1 Dataset
3.1.1 Spam Email Dataset
The spam email dataset (Katakis, Tsoumakas, & Vlahavas, 2010) consists of two classes: legitimate
emails and spam. There are 9324 emails in the dataset which are arranged in a chronological order as
a collection of streams of data over time. The spam ratio is approximately 20%. In order to be useful
for learning a classifier, the emails are represented using the boolean bag-of-words model, where the
(frequency of) occurrence of words in the email is used as feature attributes. The cardinality of a
feature vector representing each email is 40,000.

3.1.2 KTH Action Video Dataset
The KTH action video dataset (Schüldt, Laptev, & Caputo, 2004) contains 6 types (classes) of actions
which include boxing, hand clapping, hand waving, jogging, running and walking performed by 25
persons in 4 different scenarios (i.e. outdoor, indoor, variation in scale and changes in clothing).
Each video clip is 25fps and contains only one person performing a single action. There is a total of
600 video clips for all combinations of 25 individuals, 6 actions, and 4 scenarios. This dataset, unlike
the spam Email dataset, represents a multi-class data stream classification problem.We organised
the video clips in sets of 24 videos per set, such that each set contains clips of the same actions that
are, however, performed differently. We use the toolbox developed by Dollar, Rabaud, Cottrell, and
Belongie (2005) to detect interest points and extract spatio-temporal feature vectors from each video
clip to represent the human action. Figure 1 shows some examples of the KTH dataset.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 34

Figure 1: Some frames from the KTH action dataset, from top left to right: boxing, hand waving, running,
clapping, jogging, and walking

3.2 Experimental setup
For the SEC experiment, we use an initial set of feature vectors representing 1324 emails to learn the
first IL-MS SVM, and then we used the Interleaved Test-Then-Train evaluation method to perform
incremental learning by adding feature vectors of 320 emails per iteration. Because the dimension of
the feature vector for each email is far greater than the number of emails in the dataset, we develop a
linear SVM to separate the legitimate email from spam. We search for the C in the range [10−5, 103]
by using 50 points equally spaced in logarithmic scale, while we choose k = 4 for the k-CV procedure.
We also set ε= 10 in IL-MS.

In the case of the HAC, we use the feature vectors from a set of 100 video clips to learn the
initial IL-MS SVM, and then we used the Interleaved Test-Then-Train evaluation method to perform
incremental learning by adding feature vectors extracted from 24 video clips per iteration. Because
the feature vectors are not linearly separable in the input space, we employ a non-linear SVM with a
Gaussian kernel for the classification. The initial optimal SVM hyper-parameter set C ,γ is found using
an exhaustive grid search in the range [10−4, 103] by using 50 points equally spaced in logarithmic
scale, while we fix k = 4 for the k-CV procedure. We also use different values of ε from [101, . . . , 103]
in IL-MS in order to study the effect of varying ε on the quality of our results (both in terms of
misclassification rate and training time). Given that action classification is a multi-class problem, we
study some schemes used to extend the SVM to allow multi-class classification. In the literature, two
popular approaches have been reported (Doğan, Glasmachers, & Igel, 2016). The first approach,
known as One-Vs-One (OVO), involves training one SVM per pair of classes, which can be formulated

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 35

Table 1: Specifications of the PC used for conducting our experiments

Component Description
Processor Intel Core i5 @ 2.50GHz
Memory 6GB RAM

Operating system Microsoft Windows 7

Table 2: Training times for the different SVMs on the spam email dataset. The NO-MS SVM has the lowest
training time followed by IL-MS SVM, while C-MS SVM has worst training time.

Method Training Time (seconds)
NO–MS 0.90± 0.35
C–MS 45.97± 1.51
IL–MS 4.36± 0.45

by distinguishing, in turn, one class from each of the other classes. Let m be the number of classes;
the total number of trained SVMs equals m(m− 1)/2. Alternatively, it is possible to learn m SVMs,
where each classifier learns to separate features of a class from the features belonging to the other
classes: this approach is known as One-Vs-All (OVA). We adopt the OVA method since it requires less
computation and its accuracy is comparable with OVO (Doğan et al., 2016). Our proposed approach
was implemented in Matlab and all the experiments were conducted on a PC with the specifications
shown in Table 1.

3.3 Discussion of results
3.3.1 Spam Email Classification
Figure 2 shows the error rate on the evaluation set. The proposed IL-MS (Figure 2 (blue)) and
the C-MS (Figure 2 (green)) SVMs produce better classification results with an average percentage
classification error of 4.75 ± 1.49 and 4.67 ± 1.48, respectively. The non-adaptive NO-MS SVM
(Figure 2 (red)), on the other hand, performed poorly with an average percentage classification error
of 7.89 ± 1.04 (see Figure 3). Thanks to the introduced model selection, the IL-MS SVM is able to
maintain it effectiveness (low error rate) over time. Moreover, as shown in Table 2, the training time
for the IL-MS SVM is 4.36 ± 0.45 seconds, while that of C-MS SVM is 45.97 ± 1.51 seconds. The
training time for IL-MS SVM (thanks to the incorporated incremental technique) is less than that of
C-MS SVM but higher than NO-MS SVM which does not do model selection. These results clearly
show that the proposed IL-MS SVM represents a good trade-off between accuracy and training time.
While the accuracy is comparable to the one of C-MS SVM, the training time is more than one order
of magnitude smaller than the time needed by C-MS SVM and acceptable for on-line SEC.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 36

1 6 11 16 21 262

4

6

8

10

12

Iteration time (t)

Er
ro

r r
at

e
(%

)

NO−MS C−MS IL−MS

Figure 2: Comparison of misclassification error rates on the spam email dataset. The plots show that the C-MS
(green) and IL-MS (blue) SVMs with low error rate outperform the NO-MS SVM classifier (red).

NO−MS C−MS IL−MS
2

4

6

8

10

 7.888
 ± 1.034

 4.666
 ± 1.480

 4.752
 ± 1.485

M
ea

n
C

la
ss

ifi
ca

tio
n

E
rr

or
 (

%
)

Spam Email Classification Error

Figure 3: Comparison of the mean classification error on the spam email dataset.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 37

1 6 11 16 21 25
0

5

10

15

20

25

30

35

Iteration time (t)

E
rr

or
 r

at
e

(%
)

NO−MS
C−MS
IL−MS with ε = 1000
IL−MS with ε = 100
IL−MS with ε = 10

Figure 4: Comparison of error rates obtained by the SVMs trained using the IL-MS, C-MS and NO-MS learning
methods on the KTH action videos over a period of time t. The C-MS SVM (green) and IL-MS SVM (blue,
cyan and purple) outperform (i.e. lower error rates) the NO-MS SVM (red), because, unlike the NO-MS SVM,
the C-MS SVM and IL-MS SVM maintain their effectiveness by performing model selection every time new
sets of training data are exploited.

3.3.2 Human Action Classification
Figure 4 shows the result of the three SVMs on the KTH action dataset. The error rate plots for all
the three SVMs indicate a decreasing error trend; this is because as more information from the video
streams are learned incrementally the SVMs are able to discriminate among the different action
classes present in the video. Moreover, it can be seen from Figure 5, that overall, the C-MS SVM and
IL-MS SVM produce lower error with an average classification error of 11.24 ± 6.63 and 11.14 ±
6.06, respectively, while the NO-MS SVM achieved 18.28 ± 4.96. This improvement is due to the
fact that the IL-MS C-MS methods are able to re-tune the SVM hyper-parameter configuration that
guarantee accurate classification, as more training data are being exploited. Moreover, as shown in
Table 3, the training time for the IL-MS SVM is 2.55 ± 0.09, while that of C-MS SVM is 28.03 ± 0.21.
The training time for IL-MS SVM is less than that of C-MS SVM but higher than NO-MS SVM which
does not do model selection.

Figure 6 shows the confusion matrix depicting the classification results of the IL-MS SVM on the
KTH action test set for ε= 10. Rows of the matrix represent the actual action class and columns the
predicted action class. The diagonal entries (in bold) show the ratio of the number of test samples
correctly classified for a given class of action to the total number of test samples belonging to that
class. The average classification accuracy of the IL-MS SVM improved from 79.1% to 91.6% after 10
incremental learning steps.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 38

NO−MS C−MS IL−MS
4

8

12

16

20

24

28

 18.277
 ± 4.968

 11.241
 ± 6.634

 11.141
 ± 6.601

M
ea

n
C

la
ss

ifi
ca

tio
n

E
rr

or
 (

%
)

Human Action Classification Error

Figure 5: Comparison of the mean classification error on the KTH action dataset.

Table 3: Training times for the SVMs on the KTH dataset. The NO-MS SVM has the best training time followed
by IL-MS SVM, while C-MS SVM has the worst time.

Method Training Time (seconds)
NO–MS 0.23± 0.02
C–MS 28.03± 0.21

IL-MS
ε= 10 2.55± 0.09
ε= 100 7.49± 0.27
ε= 1000 14.71± 0.31

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 39

1.0 .00 .00 .00 .00 .00

.00 .75 .00 .25 .00 .00

.00 .00 .50 .00 .50 .00

.00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 1.0 .00

.00 .25 .00 .25 .00 .50

handwaving

running

handclapping

walking

boxing

jogging
handwaving

running

handclapping

walking

boxing
jogging

1.0 .00 .00 .00 .00 .00

.00 .75 .00 .25 .00 .00

.00 .00 .75 .00 .25 .00

.00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 1.0

handwaving

running

handclapping

walking

boxing

jogging
handwaving

running

handclapping

walking

boxing
jogging

Figure 6: Confusion matrix of the classification results on the KTH test data using the IL-MS method with
ε= 10. The matrix on the top shows the classifier output at t = 2 while the matrix on the bottom gives the
classifier output at t = 12. Rows of the matrix represent the actual action class and columns the predicted
action class. The diagonal entries (in bold) show the ratio of the number of test samples correctly recognised
for a given class of action to the total number of test samples belonging to that class.

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 40

The matrix also indicates some misclassification mainly in the closely related actions such as
running and jogging, etc. As there is no clear separation between these two action classes; identifying
when running becomes slow enough to be classified as jogging is a subjective human process. Overall,
the classification performance of the HAC improves significantly as more training video clips of
human action become available and the information contained in them are incorporated into the
SVM.

4 CONCLUSION

In this paper, we present a procedure for exploiting continuous streams of labeled data in order
to develop an adaptive SVM for the classification of data streams. Specifically, we proposed an
incremental learning-model selection (IL-MS) method for SVM, where we introduce the idea of
incremental k-fold cross validation to allow the incremental tuning of the hyper-parameters of the
SVM in order to guarantee the effectiveness of the SVM while exploiting newly acquired streams
of training data. We evaluated the IL-MS approach quantitatively (in terms of misclassification
error and training time) by applying it to the problem of on-line spam email filtering and human
action classification in video streams. We compared the results of the proposed IL-MS method with
two other baseline learning approaches for SVMs i.e. NO-MS and C-MS. The experimental results
show that the proposed IL-MS SVM achieved a comparable performance with C-MS SVM in terms of
classification accuracy, and also with NO-MS SVM in terms of training time. Thus we conclude that
the IL-MS SVM represents an effective trade-off between the computationally infeasible C-MS SVM
and the non-adaptive NO-MS SVM for on-line classification of data streams.

ACKNOWLEDGEMENTS

This work was completed in part with the computing resources provided by the AlJouf University,
Saudi Arabia and Federal University Dutse, Nigeria.

References

Burges, C. J. C. & Crisp, D. J. (1999, November). Uniqueness of the SVM solution. In Proc. of the
Conference on Advances in Neural Information Processing Systems (pp. 223–229).

Cauwenberghs, G. & Poggio, T. (2001). Incremental and decremental support vector machine learning.
In Proc. of the International Conference on Advances in Neural Information Processing Systems
(pp. 409–415).

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https:
//doi.org/10.1007/BF00994018

Diehl, C. P. & Cauwenberghs, G. (2003). SVM incremental learning, adaptation and optimization.
In Proc. of the International Joint Conference on Neural Networks (pp. 2685–2690). https:
//doi.org/10.1109/ijcnn.2003.1223991

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/ijcnn.2003.1223991
https://doi.org/10.1109/ijcnn.2003.1223991
https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 41

Doğan, Ü., Glasmachers, T., & Igel, C. (2016). A unified view on multi-class support vector classifica-
tion. Journal of Machine Learning Research, 17(45), 1–32.

Dollar, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005). Behavior recognition via sparse spatio-
temporal features. In Proc. of the Joint International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance (pp. 65–72). https://doi.org/10.1109/
vspets.2005.1570899

Dongre, P. B. & Malik, L. G. (2014, February). A review on real time data stream classification and
adapting to various concept drift scenarios. In Proc. of the International Advance Computing
Conference (pp. 533–537). https://doi.org/10.1109/iadcc.2014.6779381

Duarte, E. & Wainer, J. (2017, March). Empirical comparison of cross-validation and internal metrics
for tuning SVM hyperparameters. Pattern Recognition Letters, 88(1), 6–11. https://doi.org/
10.1016/j.patrec.2017.01.007

Fong, S., Luo, Z., & Yap, B. W. (2013, August). Incremental learning algorithms for fast classification in
data stream. In Proc. of the International Symposium on Computational and Business Intelligence
(pp. 186–190). https://doi.org/10.1109/iscbi.2013.45

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM Computing Surveys, 46(4), 1–37. https://doi.org/10.1145/2523813

Hsieh, C.-J., Si, S., & Dhillon, I. S. (2014). A divide-and-conquer solver for kernel support vector
machines. In Proc. of the International Conference on International Conference on Machine
Learning (pp. 566–574). Beijing, China.

Kapp, M. N., Sabourin, R., & Maupin, P. (2012). A dynamic model selection strategy for support
vector machine classifiers. Applied Soft Computing, 12(8), 2550–2565. https://doi.org/10.
1016/j.asoc.2012.04.001

Katakis, I., Tsoumakas, G., & Vlahavas, I. (2010). Tracking recurring contexts using ensemble
classifiers: an application to email filtering. Knowledge and Information Systems, 22(3), 371–
391. https://doi.org/10.1007/s10115-009-0206-2

Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., . . . Stefanowski, J.
(2014, September). Open challenges for data stream mining research. ACM SIGKDD Explorations
Newsletter - Special issue on big data, 16(1), 1–10.

Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., & Lecuche, S. (2014). Application of an incremental
SVM algorithm for on-line human recognition from video surveillance using texture and color
features. Neurocomputing, 126, 132–140. https://doi.org/10.1016/j.neucom.2012.08.071

Nguyen, H.-L., Woon, Y.-K., & Ng, W.-K. (2015). A survey on data stream clustering and classification.
Knowledge and Information Systems, 45(3), 535–569. https://doi.org/10.1007/s10115-
014-0808-1

Rocha, M., Cortez, P., & Neves, J. (2007). Evolution of neural networks for classification and regression.
Neurocomputing, 70(16–18), 2809–2816. https://doi.org/10.1016/j.neucom.2006.05.023

Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: a local svm approach. In
Proc. of the International Conference on Pattern Recognition (pp. 32–36). https://doi.org/10.
1109/icpr.2004.1334462

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.1109/vspets.2005.1570899
https://doi.org/10.1109/vspets.2005.1570899
https://doi.org/10.1109/iadcc.2014.6779381
https://doi.org/10.1016/j.patrec.2017.01.007
https://doi.org/10.1016/j.patrec.2017.01.007
https://doi.org/10.1109/iscbi.2013.45
https://doi.org/10.1145/2523813
https://doi.org/10.1016/j.asoc.2012.04.001
https://doi.org/10.1016/j.asoc.2012.04.001
https://doi.org/10.1007/s10115-009-0206-2
https://doi.org/10.1016/j.neucom.2012.08.071
https://doi.org/10.1007/s10115-014-0808-1
https://doi.org/10.1007/s10115-014-0808-1
https://doi.org/10.1016/j.neucom.2006.05.023
https://doi.org/10.1109/icpr.2004.1334462
https://doi.org/10.1109/icpr.2004.1334462
https://doi.org/10.18489/sacj.v29i1.414

Lawal, Abdulkarim: Adaptive SVM for Data Stream Classification 42

Shawe-Taylor, J. & Sun, S. (2011). A review of optimization methodologies in support vector machines.
Neurocomputing, 74(17), 3609–3618. https://doi.org/10.1016/j.neucom.2011.06.026

Vipin, N. S. & Nizar, M. A. (2014, December). A proposal for efficient on-line spam filtering. In Proc.
of the International Conference on Computational Systems and Communications (pp. 323–327).
https://doi.org/10.1109/compsc.2014.7032671

Wang, G. (2008, September). A survey on training algorithms for support vector machine classifiers.
In Proc. of the International Conference on Networked Computing and Advanced Information
Management (pp. 123–128). https://doi.org/10.1109/ncm.2008.103

Zheng, J., Shen, F., Fan, H., & Zhao, J. (2013). An online incremental learning support vector
machine for large-scale data. Neural Computing and Applications, 22(5), 1023–1035. https:
//doi.org/10.1007/s00521-011-0793-1

https://doi.org/10.18489/sacj.v29i1.414

https://doi.org/10.1016/j.neucom.2011.06.026
https://doi.org/10.1109/compsc.2014.7032671
https://doi.org/10.1109/ncm.2008.103
https://doi.org/10.1007/s00521-011-0793-1
https://doi.org/10.1007/s00521-011-0793-1
https://doi.org/10.18489/sacj.v29i1.414

	Introduction
	SVM for Data Classification
	Incremental training of SVM
	Incremental model selection for SVM

	Experiments and Evaluation
	Dataset
	Spam Email Dataset
	KTH Action Video Dataset

	Experimental setup
	Discussion of results
	Spam Email Classification
	Human Action Classification

	Conclusion

