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Abstract: Surface dust can be a source carrier of viruses, 
bacteria and air pollution which entail common health 
issues such as asthma attacks, chest tightness, wheezing 
and difficulty in breathing. Visually perceived, cleanliness 
is one measure of indoor air quality and is the subjective 
assessment of cleaning quality. The aim of this work is to 
use pattern recognition mediated through a mobile 
application to analyse and classify dust in households, in 
order to obtain useful information about the dust sources 
for the selection of appropriate countermeasures in view to 
improve air quality and better manage the cleaning of 
indoor surfaces. The dust type categorization in this work 
are pollen, rock and ash. This paper also explores the 
concept of transfer learning techniques and adopts it for 
small particle classification using CNN models by 
developing a surface dust application for android 
smartphones. The behaviour of InceptionV2, InceptionV3, 
ResNetV2, MobileNetV2 and MobileNetV3 as dust feature 
extractors were analysed based on their accuracy, precision, 
recall and F1-Score performance metrics. Results show that 
MobileNetV3 model is best suited as a dust feature extractor 
and rapid dust prediction with an accuracy of up to 92% 
and low-size storage of only 30 megabytes. 

Additional keywords:  Android; Classification; 
Transfer Learning; Smartphone; Surface dust. 

1 Introduction 
People in developed countries spend over 90% of their time 
indoors, making indoor air quality one of the most serious 
environmental issues [1, 2]. They may be exposed to a wide 
range of pollutants generated from various indoor and 
outdoor sources during this time [3], as the level of indoor 
particles is dependent on the particles generated within 
indoor spaces and in the surrounding environment [4]. 
Buildings' open windows, doors and ventilation systems are 
the primary sources of external infiltration into the internal 
environment [5]. As a result, it's critical to describe and 
identify indoor and outdoor dust sources. Dust is a detritus 
comprising a mixture of indoor and outdoor pollutants and its 
particles can range from small invisible sizes to relatively 
large visible sizes (1 μm to 100 μm) which under the impact 
of gravity, settle down on surfaces [6, 7]. Several studies have 
been undertaken to characterize dust in indoor environments. 
In [8], the results of the characterization of settled dust 
particles are presented in various indoor micro-environments 
of Brazilian universities. In [9], a comparison of thirty air-
conditioned and naturally ventilated classrooms in Brazilian 

colleges are made to assess indoor air quality. The 
relationship between dust and office surfaces are discussed in 
[10]. In detail, indoor and outdoor exposure to dust is one 
cause of non-communicable diseases such as myocardial 
infection, ischemia, chronic obstructive pulmonary disease, 
stroke and cancer [11, 12, 13, 14]. According to the findings, 
a number of dust occurrences were substantially linked to 
changes in asthma severity [15, 16, 17, 18]. 

Existing dust detection systems are mainly acquired from 
dust sensors using optical measurement techniques. Its 
working principle is based on the attenuation of light intensity 
during penetration of a beam on the dusty surface by 
absorption and dispersion. Dust sensors use this principle to 
determine the dust concentration by the intensity of the 
received beam. Dust meters also use this technique to 
determine PM2.5 and PM10 particles (particulate matter 2.5 
and 10 microns) in the air [6, 11]. 

To the best knowledge of the authors, there is no earlier 
mobile applications of the individual Machine Learning (ML) 
models utilized here to the classification of indoor dust, 
despite their great performance in prediction and spatial 
modelling of natural hazards. Most of the ML methods have 
been used for dust storm detection. The detection of dust 
storms using probabilistic multispectral image analysis has 
been investigated [19]. A Maximum Likelihood classifier and 
a Probabilistic Neural Network (PNN) to automate the dust 
storm identification process using this feature set were 
created.  The authors of [20, 21] have recently proposed two 
ensemble and integrated models to map the source of the dust 
storm. The authors investigate the Jazmurian Basin's 
vulnerability to dust emissions using six machine-learning 
algorithms (XGBoost, Cubist, BMARS, ANFIS, Cforest and 
Elasticnet). Cforest was found to have the best results. 
According to [21], dust source modelling and prediction can 
be performed using hybridized neural fuzzy ensembles. 
Using quantitative computed tomography-based airway 
structural and functional data, an artificial neural network 
(ANN) model was used for identifying cement dust-exposed 
(CDE) patients [22]. 

Although there is no current work being done in the field 
of dust classification using a smartphone, the use of CNN on 
smart phones to detect and categorize diverse image datasets 
is still ongoing. The authors of [23] put forward a skin cancer 
classification model using ResNet architecture with a final 
prediction accuracy of 77%. The authors of [24], presented a 
work for brain tumour classifications using CNN architecture 
based on MRI images acquired online. The authors of [25], 
adopted the MobileNetV2 architecture and transfer learning 
approach for the development of a flower classifier which 
managed to achieve 96% correct predictions for all 5 flower 
classes. The author of [26] proposed the InceptionV3 model 
for the classification of human face shapes. This technique 
was based on the training the last layers from a pre-trained 
InceptionV3 model with a model performance of 84%. The 
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major issue for training large CNN models from scratch is the 
unavailability of big training datasets. Nevertheless, even 
with a small dataset, a reliable classifier may be created with 
a very good prediction result. This may be accomplished by  
using models that have been pre-trained on a large dataset 
from a similar domain.  

There is still no existing application for the detection of 
relatively small particles, using an android camera which is 
the most practical, readily available and affordable device of 
this modern era. As a result, this work explores the concept 
of transfer learning techniques and adopts it in the field of 
cleaning for small dust particles detection to build a dust 
application all through a mere smartphone camera. This 
application can be used by everyone including the ageing 
population to accurately detect unclean surfaces and the dust 
content lying on these surfaces. As such, immediate actions 
can be taken to monitor cleanliness at one’s fingertips. 
Additionally, there is a significant health and safety benefit 
to the proposed method in industries where a lot of dust is 
present. For example, in a coal mine and cement factory, the 
technology be used to monitor the dust quality at regular 
intervals; the dust (amount and type) on a certain surface and 
then make an alarm if it exceeds safe levels. 

This paper investigates the behaviour of InceptionV2, 
InceptionV3, ResNetV2, MobileNetV2 and MobileNetV3 as 
dust feature extractors based on their accuracy, precision, 
recall and F1-Score performance metrics. The images of 
surface dust were acquired by clicking photos of ash dust, 
rock dust and pollen dust under different lighting conditions 
and surfaces, trained and subsequently converted to be 
deployed in related devices. 

The rest of this article is organized as follows. In Section 
2, an overview of the image-based surface dust classification 
and the surface dust android application is illustrated. A brief 
review of the fundamental CNN architecture, transfer 
learning and its methods is presented in Section 3. The 
experimental research is described in Section 4 and the results 
of the experiments are presented in Section 5. Section 6 
brings the article to a close-by summarizing the conclusions 
of the analysis. 

2 Image-Based Surface Dust 
Classification 

2.1 Surface Dust Classifier 
Figure 1 illustrates the basic process of the surface dust 
classifier. Firstly, the user captures the surface dust image. 
Then, the image is resized and placed into an image view. The 
dust model extracts the features associated with each dust 
type i.e., pollen dust, ash dust and rock dust. It recognizes the 
features that were learned during its training phase and 
performs the classification. The dust result along with the 
prediction accuracy is displayed on the top of the image view 
with an indication of the amount of dust lying on the surface. 

2.2 Surface Dust Android Application 
Figure 2 illustrates the final real-time surface dust application 
with a set of achieved objectives such as good surface dust 
prediction accuracy with an indication of the amount of dust 
lying on a specific surface, a small application size of 30 MB, 

user-friendly interface with iconized buttons. The application 
also comes with voice output communication aids integration 
for its general use including the aging population. 

 
Figure 1 Concept of surface dust classifier application 

 
Figure 2 Complete real-time surface dust android 

application 

Once the image file and corresponding labels are 
converted, they are downloaded for further adjustments in the 
android studio platform. Figure 3 depicts the essential 
functions of the application that needs to be conducted on 
android studio towards achieving the final result. 

3 Convolutional Neural Network 
CNNs as shown in [19], is the most common type of deep 
neural network best suited for computer vision tasks. Its 
architecture was designed in such a way that it minimizes the 
number of parameters fed at the input layer even if the image 
size increases, reducing computational cost, power and 
memory requirements. CNNs get as input an image in the 
form of matrices e.g. (224,224,3) where the first two 
parameters are length and width in terms of pixels and the 
third parameter describes the image property (RGB colour 
image) [27]. In the convolution layer [28], a convolutional 
filter is applied which slides over the original image to 
produce a new featured map known as the convolved feature 
[29]. The max pooling layer [30] reduces the dimensions of 
the feature map to minimize the number of parameters while 
preserving as many images as possible. Fully Connected 
layers are part of the last few layers of the neural networks. 
The layers are said to be fully connected when every neuron 
of the first layer is connected to one of the second layers [31]. 
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Figure 3 Flow chart of dust application 

3.1 Transfer Learning and Feature Extraction 
Transfer learning [32] is a technique that utilizes a neural 
architecture which has already been trained on some other 
problems and transfers all or part of the acquired knowledge 
to a new model to solve a different type of problem. Transfer 
learning greatly reduces the number of parameters used for 
training a model from scratch by adopting some pre-used 
extracted features from previous training [33]. Feature 
extraction is a portion of the training product of a model. It 
consists of the high-level layer where the mapping of the 
input is done for final classification. This approach further 
reduces the number of parameters from a pre-trained model 
to solve a new custom problem [34]. In this approach, only 
the fully connected layer which is added to the new model is 
to be trained after loading the pre-training weights. This 
process is known as model Fine-Tuning. 

4 Experimental Study 
In this work, we have trained surface dust classifiers using: 

I. A CNN dust model trained from scratch and one 
trained with a transfer learning approach. 

II. The pre-trained models InceptionV2, 
InceptionV3, ResNetV2, MobileNetV2, 
MobileNetV3 as dust features extractors.  

A comparative study was done based on accuracy, 
training time, model size, convergence rate and performance 
metrics to determine the best model adapted to the custom 
surface dust dataset. Finally, the optimal dust model was 
chosen and subsequently converted into a Flatbuffer file 
extension (.tflite) through the TensorFlow Lite Converter 
API. The optimized Flatbuffer allows conversion with 
minimal accuracy loss and operates efficiently on mobile 
phones with less computational and memory requirements 
[35]. In both strategies, techniques such as data 
augmentation, dropout layer, early stopping and use of a 

validation dataset were incorporated to prevent model 
overfitting. Table 1 shows the basic parameters values 
adopted for the implementation of the dust model. 
Table 1 Basic parameter values applied to dust model 

Parameters used CNN from 
scratch 

Pre-trained 
model 

Dropout layer 0.4 0.4 
Optimizer Adam Adam 
Loss function Categorical_ 

crossentropy 
Categorical_ 
crossentropy 

Metric Accuracy Accuracy 
Number of epochs 10 10 

4.1 MobileNetV3 
MobileNet is a form of CNN devised for mobile vision 
applications. MobileNet is a lightweight, low-powered, 
accurate and low-latency model. The architecture of 
MobileNetV3 is based on separable depth wise and pointwise 
convolutions [36]. The depth wise layer is used to filter the 
input channels while the pointwise layer is used to combine 
the filtered inputs to create new features. In normal 
convolutions, the filtering and combining input map features 
were done in a single layer which resulted in unnecessary and 
complex mathematical operations with the end classification 
being less accurate. As such, the MobileNetV3 architecture 
reduces the complexity of multiplications up to nine times 
when compared with a standard convolution performed in 
traditional CNN networks [12] adapted for image-related 
tasks [37]. 

Feature extraction is the backbone for object 
classification or detection [38]. The accumulations of 
features of an image, collectively known as feature vectors 
are used to categorize the objects. Feature extractor models 
map image pixels into their feature space [39]. The 
convolution layers can now just pass on these features from 
the pre-trained weights. The entire model does not need to be 
trained again; the only modifications lie on the last three 
layers of the model. The input fed in the model is an RGB 
image with 224 x 224 pixels comprising 3 channels. From 
figure 5, the Average Pooling, FC and SoftMax layers are 
deleted from the original architecture and the Global Average 
Pooling (GAP), Dropout and Fully Connected (FC) layers are 
added to fit/tune the new model to our custom dust dataset. 

 
Figure 5 Fine tuning MobileNetV3 architecture 
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4.1.1 Global average pooling layer 
The GAP layer further diminishes the total model parameters 
resulting in faster computations and reduces overfitting of the 
data.  

4.1.2 Dropout layer 
The Dropout layer is a technique used to prevent the model 
from overfitting. It is known as a regularization method [33] 
where random neurons are ignored during the training phase. 

4.1.3 Fully-connected layer 
The FC layers finally connect all the other layers. It is the 
flatten matrix that goes through the FC layer leading to the 
final prediction at the output layer. 

4.2 Experimental Setup  
Figure 6 illustrates the image acquisition process. The image 
acquisition process was conducted during the daytime using 
tiles of uniform dimensions 30cm x 30cm. The tiles acted as 
a surface where the pollen, ash and rock dust were spread to 
mimic dust deposits. All the data were accumulated using real 
dust originating from ash and rock. Instead of real pollen dust, 
which is difficult to acquire, dust originating from a plant 
source having a similar grainy texture and colour as pollen 
dust was used. 

 

 
Figure 6 Experimental set for surface dust custom dataset 

The custom dataset is partitioned into the training set and 
the validation set where 60% of data is used for training, 20% 
as cross-validation data and 20% as testing data. This 
partitioning ratio is common to cater for an unbalanced small 
dataset with the aim to improve model effectiveness and 
accuracy [40]. Table 2 below shows the composition of the 
small custom dust dataset. 

4.2.1 Hardware and Software Requirements 
The basic requirement for the dust detection application is a 
smartphone with a camera. The android camera being used in 
this experiment is 12 Megapixels. The minimum requirement 
for machine learning processes is NVIDIA GPUs [41]. GPU-
accelerated deep learning process decreases the training 
waiting time especially if models are being trained for large 
datasets. All machine learning processing was done in the 
cloud platform (Jupyter Notebook) due to the free availability 
of GPU and storage. 

Table 2 Composition of surface dust dataset 

Labels Clean Ash 
Dust 

Rock 
Dust 

Pollen 
Dust 

Total 

Total 
Samples 

170 170 170 170 680 

Train 
Samples 

102 102 102 102 408 

Validation 
Samples 

20 20 20 20 80 

Test 
Samples 

68 68 68 68 272 

4.3 The Dataset 
The dataset is based on images of surface dust which will be 
captured using the rear android camera. The dataset 
comprises 4 classes namely: Clean, Pollen Dust, Ash Dust 
and Rock Dust. Figure 7 depicts the creation of a dust dataset 
intending to increase the variety of the dust images leading to 
a more robust dataset. Among them are: 
• Dust acquisitions images from projecting yellow, blue 

and white light sources. 
• Dust acquisitions images of varying light intensities of 

the light source: 100%, 75%, 50% and 25% of the 
highest capability of the LEDs.  100% capacity of light 
source corresponded to the range. 1000 to 1200 Lux, 
75% capacity of light source to 700 to 800 Lux, 50% 
capacity of light source to 300 to 500 Lux and  25% 
capacity of light source to  100 to 250 Lux. The 
variation of light intensity can be observed in figure 7 
from left to right. 

• Dust acquisition images by varying the position of the 
light source i.e., 10, 15, 25, 30 degrees with respect to 
the normal of the dust sample. 

• Dust acquisition images by varying the distance of the 
camera from the dust samples. The distances ranged 
from close focus (4 cm close to dust deposit) to 35 cm 
(maximum distance reached due to camera resolution. 
For distances higher than 35 cm dust lying on the 
surfaces could not be observed properly. 

 

 
Figure 7 Dust image acquisition 

• Dust acquisition images by changing the spread 
orientation and amount of dust sprinkle deposited 
under the different lighting conditions. The amount of 
dust sprinkle/spread on the surface was done in a 
random way ranging from little sprinkle (covering 

LED light source 

Phone camera 

Dust samples, i.e., ash 

Surface of the tile 
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small tile area) to large layered dust deposit 
(occupying large surface area). The spread was also 
oriented differently by rotating the tile for more dust 
spread variations. Dust spread was sprinkled to vary 
between 1 to 100% of the plate area. 

4.4 Data Pre-processing 
Data pre-processing is done using Keras Library. Its 
ImageGenerator function provides options such as zoom, 
rotate and flips added to the existing images to augment the 
dataset. This process minimizes the risk of over-fitting the 
model and it is useful where the dataset is small as a means 
to increase validation accuracy. The data augmentation 
technique is only applied to the training dataset. The original 
dataset is initially augmented by varying the light intensity, 
position of camera, distance of camera and spread of dust 
particles as mentioned previously. Further augmentation of 
the dataset is done using the zoom, rotate and flip options. 
Figure 8 shows the augmentation plots for the ash dust, pollen 
dust and rock dust training samples. 

 
Figure 8 Data augmentation of dust images 

5 Results and Discussion 
This section elaborated on the performance comparisons of 
traditional CNN model [12] and adoption of transfer learning 
approach, results of the five pre-trained models based on 
convergence rate, performance analysis metrics for image-
based surface dust classification. 

5.1 Training and Validation 
From the learning curves of figure 9, the traditional CNN 
architecture [12] gave a rather worse performance compared 
to the one with the transfer learning approach. From the gap 
of the validation loss with the training loss learning curves, 
the model using transfer learning generalizes more than the 
model from scratch. It is noted that the gap between training 
loss and validation loss is small implying that the model is 
better at generalization on unseen data. The values obtained 
for the training accuracy, validation loss and training time for 
10 epochs can be seen in table 3. 

The maximum validation loss was obtained for traditional 
CNN. If the model from scratch is trained for the higher 
number of epochs, the model can achieve better accuracy 
with a high probability of model overfitting. The time it takes 
for transfer learning is approximately 4 times less than the 
traditional CNN approach. This is because of a reduced 
number of parameters that resulted in quick computations and 
more accurate results for the transfer learning approach. 

Table 3 Table of comparison for training accuracy, 
validation loss and training time 

 Techniques 
Adopted 

Traditional 
CNN 

Transfer-
learning 

Pa
ra

m
et

er
 

C
on

si
de

re
d 

fo
r 

A
ss

es
sm

en
t 

Training 
Accuracy 

0.630 0.920 

Validation 
Loss 

2.00 0.450 

Training 
time/min 

75 20 

Epochs 10 10 
 

CNN model from scratch 

 
CNN model using Transfer Learning 

 
Figure 9 Comparison between traditional CNN and transfer 

learning CNN 

From figure 10, MobileNetV3 achieved an overall 
accuracy of 92% as compared to other models certainly due 
to its depth wise separable convolution approach. Its accuracy 
is approximately 4% higher than MobileNetV2. This is due 
to the further removal of unnecessary complex layers from 
the MobileNetV2 architecture resulting in better accuracy 
and faster computations in its version 3 architecture. 
InceptionV3 can also be a good choice due to its fair accuracy 
of 79% but its training time is high. This can be the cause of 
complex stacked layers of the inception model. InceptionV2 
performed the worse among the others with the lowest 
accuracy of 60%. The ResNetV2 was a good competitor for 
the InceptionV3 model but was overcome in terms of 
accuracy for dust detection. The model size of MobileNet 
after compression was observed to be 30MB, the lowest 
among all the pre-trained models. 
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Figure 10 Comparison between pre-trained models as dust 

feature extractor 

5.2 Convergence Rate 
The convergence rate is a state where a model achieves a 
certain loss value where further training will not improve the 
model. The convergence rate is affected by factors such as 
model size, the complexity of the model and the training 
method used. It is seen in figure 11 that InceptionV2 achieved 
maximum validation accuracy at 15 epochs. The inception 
models are complex with many trainable layers therefore it 
takes more time to reach convergence. MobileNetV3 
converges with a minimum epoch of 5. ResNet architectures 
are the fastest to converge at 4 epochs. 

 

 
Figure 11 Convergence rate comparison of pre-trained 

models as dust feature extractors 

5.3 Performance Metrics 

5.3.1 Dust model evaluation through classification 
report 

Using the classification report function from the python 
Scipy library, metrics such as accuracy, precision, recall, 
specificity and F1-score including the macro and weighted 
average are calculated from its respective confusion matrix.  

The confusion matrix consists of four scenarios namely 
True Positive (TP), True Negative (TN) and False Negative 
(FN) as given in table 4 for ash dust. 

Table 4 Confusion matrix parameters 

Parameters Descriptions 
TP The dust model detects the presence of ‘ash 

dust ‘and the surface in reality contained 
ash as dust. 

TN The dust model does not detect ‘ash dust’ 
and the surface in reality contained another 
type of dust except the ‘ash dust’ 

FP The dust model detects the presence of ‘ash 
dust’ and the surface, in reality, did not 
contain ash as dust. 

FN The dust model does not detect ‘ash dust’ 
and the surface in reality contained ash as 
dust. 

5.3.2 Accuracy 
Accuracy gives the model's overall fraction of total samples 
correctly categorized by the classifier as in equation 1. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (1) 

5.3.3 Precision 
Precision is different from accuracy. It indicates what fraction 
of the positive predictions were actually correct. The higher 
the value of the precision metric, the better the dust model is 
performing. The formula for precision is given as in equation 
2. 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2) 

5.3.4 Recall or Sensitivity 
Recall indicates the ratio of actual positives out of all positive 
samples the classifier accurately predicted as positive. It is 
also known as the True Positive Rate or sensitivity [42]. It is 
a metric for the classifier's ability to properly anticipate target 
outcomes that are related to the actual value. The higher the 
recall factor, the better the model is performing. Recall is 
calculated as in equation 3. 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 (𝑆𝑆𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑦𝑦) = 𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 (3) 

5.3.5 Specificity 
Specificity is the opposite of recall. It gives the ratio of actual 
negatives out of all the negative samples that were correctly 
classified by the dust classifier. It is also named as True 
Negative Rate [42]. It is calculated as given in equation 4. 

𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝑦𝑦 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 (4) 
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5.3.6 F1-Score 
F1-Score is a combination of precision and recall. It is known 
as the harmonic mean of precision [30]. It is calculated as in 
equation 5. 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 𝑥𝑥 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑥𝑥 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛

 (5) 

5.3.7 Macro and Weighted Average 
Macro averaging metrics are the unweighted mean average of 
precision, recall and F1 -score of each class label. It will 
perform the computation individually, that is by treating all 
the dust classes equally [43]. Weighted Average is a function 
that computes the probability score based on the proportion 
of each label in the dust dataset.  

For analysing the effectiveness of the surface dust 
classifier, relying solely on accuracy classification can be 
delusive since we do not know what specific error the dust 
classifier has been making. 

Table 5 shows the performance of the five pre-trained dust 
models based on different metrics such as precision, recall 
and F1-score obtained from their respective confusion 
matrix. 
Table 5 Metrics values for each dust type by the pre-trained 

models 

 Precision Recall F1-
Score 

Number of 
Samples 

 Inception V2 
Ash Dust  0.73 0.62 0.67 68 
Rock Dust 0.67 0.50 0.57 68 
Pollen Dust 0.58 0.82 0.68 68 
 Inception V3 
Ash Dust  0.72 0.69 0.71 68 
Rock Dust 0.74 0.59 0.66 68 
Pollen Dust 0.59 0.74 0.65 68 
 ResNetV2 
Ash Dust  0.95 0.85 0.90 68 
Rock Dust 0.82 0.93 0.87 68 
Pollen Dust 0.91 0.88 0.90 68 
 MobileNetV2 
Ash Dust  0.97 0.91 0.94 68 
Rock Dust 0.98 0.93 0.95 68 
Pollen Dust 0.88 0.99 0.93 68 
 MobileNetV3 
Ash Dust  1.00 1.00 1.00 68 
Rock Dust 1.00 0.99 0.99 68 
Pollen Dust 0.99 1.00 0.99 68 

 
The number of samples of each class was 68. Since the 

dust dataset was a custom one, it was meticulously built by 
considering class imbalance factors to prevent biased 
classifications. From table 5, the dust model gave an overall 
good performance metrics for all dust types. MobileNetV3 is 
seen to be more precise with ash dust. MobileNetV2 gave a 
similar result to that of MobileNetV3 but seemed better 
performing with rock dust with 0.95 as the value for F1-score. 
ResNetV2 was more sensitive to rock dust with similar F1 
scores for the ash and pollen dust types implying a balance 
for both recall and the precision metrics. The iInceptionV3 
gave the highest F1-score for ash dust prediction while the 

inceptionV2 was able to better predict pollen dust. However, 
MobileNetV3 gave the best sensitivity of 1.00 for ash and 
pollen dust inferring FN predictions will be minimal for ash 
and pollen dust detection. 

5.4 Testing Results 
Eventually, after training the best pre-trained model was 
verified by using the test data for the prediction of the first set 
of elements on Jupyter Notebook. Table 6 shows the 
generalization accuracy for the first five test samples only 
with the maximum accuracy reaching close to 99.6% for the 
correct prediction of pollen dust type indicating that the 
MobileNetV3 was the optimal pre-trained model for correct 
classification of the surface dust. 

Table 6 Surface dust prediction on test data 

 Ash Dust 
(%) 

Clean 
Surface 

(%) 

Pollen 
Dust (%) 

Rock Dust 
(%) 

0 1.29 0.05 4.66 94.0 
1 3.18 94.4 0.51 1.90 
2 0.07 0.002 99.6 0.32 
3 0.11 0.006 9.79 90.1 
4 0.41 0.02 98.8 0.81 

 
Figure 12 shows another visualization of the predictions 

obtained from the MobileV3 dust model. Out of 30 test 
images displayed, only 4 images were wrongly predicted by 
the dust classifier. If we consider the 30 test images only, the 
model achieved an accuracy of 86.7% with up to 92% if 
larger test data were displayed. It can be observed there is a 
high variability in the results of the test set. This is 
specifically due to the combinations of different coverage 
percentages and different light intensities that have not been 
leaned by the machine learning model. This can be remedied 
by further increasing and augmenting the dataset used for the 
model training phase. 

 
Figure 12 Surface Dust model visualization (correct 

classification is displayed using the blue font and 
incorrect classification is displayed using red font) 
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5.5 Testing of Dust Application on Android 
Device 

5.5.1 Dust amount detection 
For this work, a tile of 30cm by 30cm was used throughout. 
The goal for this experimentation is to know whether the dust 
application is able to correctly determine the amount of dust 
based on the created threshold (low, medium and high). The 
method devised for determining the actual amount of dust in 
terms of area covered is shown in figure 13. 

 
 

 
 

Figure 13 Diagram (not to scale) for measuring the actual 
area of dust 

The dust area is estimated by calculated the L and W 
dimensions using: 

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑛𝑛𝑆𝑆𝐴𝐴𝑃𝑃𝑃𝑃(%) 𝑑𝑑𝐴𝐴𝑃𝑃𝑆𝑆 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 =
𝐋𝐋 × 𝐖𝐖
30𝑥𝑥30

× 100 

5.5.2 Dust level threshold  
For the dust prediction through the application, a threshold 
was devised for categorization in terms of three dust levels as 
in figure 14. Thirty tests were conducted on unseen dust 
images to evaluate the accuracy of surface dust application 
by comparing the actual amount of dust in terms of area 
coverage as explained in the above section. 

 

 
Figure 14 Hierarchical distribution of surface dust detection 

level 

For simplicity, only five tests were shown as in table 7 
with the predicted dust type, confidence score and level given 
by the dust classifier. Out of 30 tests, the model was able to 
correctly predict the amount of 28 dust samples. 
Table 7 Actual vs predicted values on dust detection 

amount 

Actual dust 
area (%) 

Prediction by android application 
Dust Type Confidence 

Score 
Dust 
Level 

1 11.1 Ash 75.1 Low 
2 21.7 Pollen 90.1 Low 
3 44.4 Rock 82.5 Medium 
4 69.4 Ash 88.2 High 
5 87.1 Rock 95.4 High 

 

5.5.3 Effect of varying camera distance from dust 
sample 

The general trend, from figure 15, is a decrease in accuracy 
with an increase in distance, cm. The prediction accuracy at 
the minimum distance, 10 cm, is around 68%. At 15 cm 
height, the dust application observes a drastic increase of up 
to 74% in prediction accuracy. This is because, at a certain 
height, the field of view also increases which enhances 
prediction. This implies that the MobileNetV3 algorithm 
seems to better discriminate the dust features at an optimal 
wide field of view. 

 

 
Figure 15 Bar chart for accuracy against camera height from 

dust sample 

With increasing camera height from the dust sample, the 
dust classifier seems to correctly predict rock dust type 
compared to ash and pollen dust. This can be due to the size 
of rock dust. However, above 20cm the performance of the 
dust application decreases with smaller prediction accuracy 
percentages. The maximum height where the dust application 
can manage to detect dust is approximately 35cm above the 
dust sample but with an increased probability of wrongly 
predicted dust. 

 

5.5.4 Testing dust model behaviour with surface 
colour and texture 

This test was conducted using three different plain coloured 
tiles namely yellow, Gray, Blue and a textured tile. The 
camera height of 15 cm was fixed. The normal lighting 
conditions were used. The dust accuracy prediction given by 

   

 

High 
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the dust application is repeated 50 times to obtain an average 
for each type of tile investigated. The result obtained is shown 
in figure 16. 

 

 
Figure 16 Result of dust prediction accuracy against 

background colour 

From figure 16, the dust application was able to correctly 
detect the presence of different dust types for both coloured 
and textured surfaces. For coloured surfaces, the grey tile as 
the background colour achieved the highest accuracy of 90% 
for pollen dust detection, yellow background with an 
accuracy of 86% for rock and 82% for ash dust detection. The 
model seems to perform better when there is a higher contrast 
between the foreground and the background colour. For 
instance, pollen dust being yellow provides a good distinction 
from the grey background. The ash and rock being darker in 
shades are more distinguishable from a pale-yellow 
background. For textured surfaces, the dust application gave 
an overall satisfactory accuracy above 50% for all dust types. 
The pollen dust detection seemed to be much affected with a 
textured surface. This may be because of its grainy-like 
appearance where the dust model may confuse with the 
background texture and the actual pollen dust. 

5.5.5 Testing dust model behaviour with light 
intensity of the surrounding. 

The dust application was tested to see how the model behaved 
under the effect of external light intensity. Figure 17 shows 
the setup of the experiment. An android lux meter was used 
to measure the light intensity of the surroundings on an hourly 
daytime basis. A plain white tile was used to avoid any 
secondary effects on the accuracy values. The android camera 
height was fixed at 15 cm. 

The mean value of the luminosity range obtained by the 
lux meter was taken. The graph of the prediction accuracy of 
each dust type with respect to intensity value is shown in 
figure 18. 

From the graph in figure 18, the external light intensity 
does not seem to have a major impact while categorising the 
dust types since the gap between their lines is small. A 
noticeable increase in dust prediction accuracy was observed 
at light intensities in the range of 170-200 lux for pollen dust, 
ash dust and rock dust. However, if the light intensity 
continues to increase, the percentage accuracy shows a 
decreasing slope. This implies that the dust classifier is at its 
best at optimal light intensity ranging from 170-200 lux. The 
decrease in accuracy can be due to the effect of extra 
brightness falling on the dust sample which affects the pixel 

values resulting in a more saturated image being captured by 
the camera. The dust details are more faded and hence 
difficulty is experienced by the dust classifier to correctly 
give a good confidence score for the respective dust classes. 

 
Figure 17 Experimental set up for testing dust application 

with light intensity 

 
Figure 18 Result of dust prediction accuracy against light 

intensity 

6 Conclusion 
The goal of this research is to use pattern recognition on a 
smartphone to analyze and classify dust inside, particularly in 
households, in order to gain some relevant information for the 
selection of countermeasures to be taken to enhance air 
quality and better manage household cleaning. MobileNetV3 
architecture model proved to be the best-suited model as a 
dust feature extractor with an accuracy of 92%, fast training 
time and low sized model that classifies surface dust through 
a real-time dust vision application. During the training phase, 
the MobileNetV3 model was found to be 4% more accurate 
than MobileNetV2. Through the performance metrics 
analysis, the dust classifier seemed to be more efficient while 
classifying the ash dust amongst the other dust labels despite 
very good F1-scores were also obtained for the other dust 
types. A captivating future work will be the creation of a dust 
dataset to recognize a wider range of dust for research on dust 
localization using powerful camera lenses. Another future 
work will be to test the dust application on different types of 
smartphones, with each having a different screen size and 
camera specifications. Alterations can also be made to the 
properties of the surface on which dust lies, e.g. colour, 

Position of Luxmeter  

Light reaching dust 
sample due to 
surrounding. 
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colour variations, texture and even geometry. Because the 
application is currently only available for android users, it 
could be expanded to include IOS devices in the future. This 
research could lead to low-cost surface dust monitoring 
devices in the food industry. 

Contributions 
Ms P. Dabee has worked on the dataset generation and 
development of CNN models as well as the android mobile 
application. 

Dr. B. Rajkumarsingh has supervised Ms P. Dabee in the 
work and also worked on the paper write-up. 

Dr. Y. Beeharry has reviewed and re-organized the paper 
as well as the referencing. 

Lessons Learned 
During the dataset creation phase, any type of background 
was used which was the main reason why the performances 
of the CNN models were lower. Thus, a major learning during 
the conduction of the work was that dataset creation for the 
training of the CNN models requires clean background in 
view to obtain more accurate predictions. 
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