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Determination of Structural Flexibility
by Dynamic Methods

S. Franco*
ESCOM, Johannesburg

Verification of structural flexibility is often required in mechuical and civil engineering applications.
This is especially neefud whm dynamic forces are involved.

When an assembly consists of diferent sub-structures, a ainimal stifness is requiredfrom each part of
the assembly to ensure an overall stffiess performance. An example of such an application came about
recently where the stffiess of the newly commissioned 300 ton balancing plan at Escom's Central
Maintenance Services facility, had to be established.

The stffiess of the bed plate and pedcstals had to be measured and compared with specified values.
Depmding on the type of structure,flexhility measurements are usually carried out by ,stng a static

force, namely weights,jack, tension rope et cetera, in conjunction with some sort offorce and deflection
indicators. llhile the method is very simple, when dealing with large stiff stuctures this method may be
dfficult to apply. In these cases dynamic methods could be considered.

Nomenclature 
H.. : e, : i ,n*o *Ai Modalresidueatpointiduetounitloadatpointk '^'* - Fr - h "ft, + (p,- ja,JT -!t'A:" Modal driving point residue derived at testing point "A"

a acceleration
e eccentricity of unbalanced motor weights

tcl damping matrix
F force

t f) force vector
f frequency
H* Frequency response function at point i due to unit load at

point k
K stiffness
k"" average stiffness

tMl mass matrix
t q) deflection vector
r mode number
S, modal root
6 deflection
tdj deflection matrix
6, modal percentage at critical damping

Vi, modal deflection at point i
cD circular frequency

aa

VirVr,

Theoretical Background
Ar : -ilA'l

The response of a multi degree freedom system to sinusoidal A'* : j I A' I

excitation can be determined by the following equations [1]: s - ie)

(l)

ar- yI tAl y/r where [Al - [O Ml
.AJ : L, CJ

€, - modal viscous damping
o)r - modal natural frequency (@ : 2nf)

The response function is often written in the form []:

H*: i A[ + -T- Q)rf, L s sr s s:

where: O, 
""0 

sr are the residue and root of the expression
respectively.

In most practical cases, real modes are assumed which means
that the residue consists of the imaginary part only.

Therefore substituting:

system equation:

tMl tq) + tcl {q} + tKl {q} : tf}

system frequency response function (FRF)
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(3)

r=l

H* is the frequency response (deflection) at point i due to unit
sinusoidal force at point k.

Whenrrl:0then:



t2

2lAil IJT=4

where 0,, are the static deflection components of the flexibility
matrix [d].

The information contained in [d] is sufficient to determine any
stiffness required.

In this paper we have used the structure flexibility rather than
the structure stiffness defined in the stiffness matrix, neverthe-
less once [d] is obtained, the stiffness matrix can be easily found
by the relation [2]:

tKl : tal-' (s)

The following conclusions can be made so far:
(l) Structural stiffness can be approximated from FRF at low

values of ar.

(2) Structural stiffness information is contained in the FRF and
therefore can be determined from the modal parameters

A[, (np (,

In the next sections it will be shown how these conclusions could
be implemented in practice.

Determination of FlexiUifity using an
Unbalanced Motor

The method is based on recording vibration signals while an
unbalanced variable speed motor is being run up or down. The
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vibration signal is preferably monitored through a tracking fil-
ter into a real time analyser.

Once the motor unbalance (m.e) and the running speed a.r is

known, it is a simple matter to calculate the stiffness. Assuming
that the vibration is recorded in acceleration and at frequencies
below resonance, we get

N

Hk: 6k: I (4)
0)r

t F (m. e)o (m. e)alar\- 
a - dlr' 

^

(6)

where (me) is the amount of unbalance.
In order to get reliable results one must ensure that the mea-

surements are done in the stiffness control range, where mass
and damping effects are negligible. In a logarithmic display that
will mean a straight positive slope line free of resonances. A
typical plot of vibration during run up is given in figure l.

Determination of Flexibility from
Modal Parameters

A simple way of obtaining modal parameters is to use an impact
technique where a force signal and accelerometer response are
recorded simultaneously [3], [4]:

The procedure usually involves some sort of transfer function
curve fitting technique for parameter estimation.

A "Gen Rad" analyzer was used in conjunction with "MOD-
AL PLUS" SDRC software, where AI*, ar, and (, are readily
calculated. If the response is obtained in terms of acceleration,
equation (4), which is written in terms of deflection, should be
changed to:

I

I

J

Log Frequency
Figure 1 - Typical plot of vibration during run-up.
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Flgure 2 - Typical driving point transler function with its associated
parameter estlmation.
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and the flexibility can be derived therefrom.
A typical driving point transfer funtion with its associated

parameter estimation is shown in figure 2.

Experimental Confirmation

In order to assess the two dynamic methods suggested in this
paper a simple experiment was carried out.

A U beam of 100 x 50 x 6 mm was clamped at its ends as

illustrated in figure 3.

An unbalanced motor was attached to the middle of the beam
in such away that the excitation could be acting in either theYZ
or YX planes and consequently the flexibility in the Y direction
could be measured with excitation in two different planes. With
the motors attached, the stiffness at the rniddle of the beam
(point A) was measured statically by adding weights and record-
ing deflection. The stiffness was found to be 1,182 MN/m. In
addition, it was established that the assembled beam has a reso-
nance around 4}Hzin the vertical direction (Y) and 27 Hzin the
horizontal direction (X).

Next the motor was run up while the acceleration signal at
point 66 A" was recorded through a once-per-revolution tracking
filter onto a real time portable anallser operating in its peak
mode.

The unbalanced force was determined by the expression
F - l,zP(Hz) (N). The stiffness was calculated according to
equation (6).

The test results are summarised in table l.

The next stage was to obtain a driving point transfer function at
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point A using a calibrated hammer and accelerometer. The sig-
nals were processed by an analyser to give the required mode
parameters.

The results of the stiffness calculations using the inverse of
equation (7) are summarised in table 2.

Table 2 Calculated results

MODE Al" q, (,

I
2
3

5,969 40,186 0,0096
0,215 167,01 0,01 6
g.7g 326.05 0.0096

K - d'*' - 1,344 MN/m

Conclusion

The reasonable agreement is stiffness between static and dy-
namic flexibility measurement (Static: 1,182 MN/m, Dynamic:
1,127; l,l0l MN/m using unbalanced motor and 1,344 MN/m
using modal parameters) suggests the two dynamic methods de-
scribed here as alternatives to static techniques. Although spe-
cialised instrumentation is needed and extra precautions are re-
quired, in some cases it could prove to be the only practical way
to measure stiffness.

The two dynamic methods have advantages and disadvan-
tages which should be considered for each particular
application.

The unbalanced motor is capable of producing higher forces
and required relatively simple instrumentation. However, the
attachment could be a problem and in some cases can even af-
fect the results.

Problems such as reluctance to drill interface holes in the

cot,

(7)

Table I Test results

SETTION BB

Flgure 3 - Schematic diagram of test rig

faK
Hz m/Sec2 MN/m f a K f a K K"u

Excitation in YZ Plane 18,25 5,09 1,033 15,25 2,23 1,152 13,0 l,l3 1,196 1,127

Excitation in YX Plane 17,00 3,96 0,999 16,25 2,83 1,169 15,25 2,26 1,134 l,l0l

10 0x50 Chann eI

i
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structure or interface plates not being stiff enough could often
be encountered. In these respects the modal parameter method
is ideal since it does not require any attachment or interface.
However, the instrumentation is more sophisticated and a high-
er degree of skill is required. For example, the parameters could
be estimated only after the operator is convinced of the transfer
function quality which can be controlled largely by interchang-
ing the hammer tips.

In the case of the unbalanced mototr, recordings should be
taken in the stiffness control area. This could cause problems if
the structure resonance is low. The motor then has to be run at a
very low speed where its force is low.

With the modal parameter method a wider range of frequen-
cy is considered. Usually small numbers of modes are required,

l5

since the importance of the higher modes diminish rapidly.
Both methods were used successfully on different applica-

tions of Escom plant.
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