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A Fluidity Approach to Non-Newtonian Laminar
and Turbulent Flow

J. Harris*
University ol Malafii

The rheological properties of some non-Newtonianfluids can be equally well represented on the basis of
fluidity. The analysis reveals that there can be some advantage in this in that an explicitformfor the

friction factor in laminar flow is found.
The analysis is extended to the turbulent region and a logarithmic formfor the time-average axial

velocity inflow is found using afunctional analysis method which obviates the need to involve a mixing
length hypothesis. The expressionfor the velocity leads to africtionfactor - Reynolds number relation
which also has a fluidity number as a parameter.

Methods are considered for the solution of problems which obviate the need for iteration. The corre-
sponding treatment for the usual viscous reprcsentation is given in the Appendix.

Nomenclature

a pipe radius
A, A' functions of m and m' respectively
A+ constant defined by equation (47)
B.* Br* integration constants
C, C' functions of m and m' respectively
Cr friction factor defined by equation (22)
D pipe diameter
F( ) function of ...
J flow coefficient in equation (13) (constant)
J' flow coefficient defined by equation (28) (variable)
K power-law coefficient equation (l) (constant)
K' power-law coefficient equation (4) (variable)
K" Visco - plastic coefficient in equation (6) (variable)
m fluidity index in equation (13)
m' fluidity index in equation (56)
NR Newtonian Reynolds number
N;' non-Newtonian Reynolds number defined by equa-

tion (8)
N", Hedstrom number

NF fluidity number defined by equation (25)

Ni fluidity number defined by equation (35)

N*. fluidity Reynolds number defined by equation (24)
Ni, fluidity Reynolds number defined by equation (33)

N*, fluidity Reynolds number defined by equation (57)

a volumetric flow rate
y coordinate normal to the solid surface
lP lL pressure gradient
a shear rate constant in equation (14)
a' shear rate factor in equation (27)
n shear rate

It Newtonian viscosity

Itp plastic viscosity in equation (2)

lio plastic viscosity in equation (5)

p fluid densitY
a fluidity in equation (12)
at fluidity in equation (14)

€ dimensions coordinate (- yla)
r shear stress
rw shear stress at solid boundary
ry effective yield stress in equation (3)

r'y effective yield stress in equations (5) and (6)

O (), X (), V () functionof ...

*Professor, Head of Department of Mechanical Engineering, University of
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Introduction

Laminar and turbulent pipe flow correlations for non-Newtoni-
an fluids have been the subject of quite extensive theoretical
analysis and experimental investigation over the last two to
three decades. A number of laminar and turbulent correlations
have been proposed that mostly rest on the so-called power-law

T_Kr"

the Bingham plastic

r : ltri + ry (2)

or the generalised Bingham plastic (plasto-viscous) fluid.

n' Fort, :11
evaluated from viscometric data, in the correct range of shear
stress of interest. If pipeline data are available, the equivalent
expresslons are:

(l)

(4)

rw: ,; (+) + r'v (s)

rw : K" (81-)"" + r'v (6)
\D)

Non-Newtonian friction factor correlations are usually based
upon a Reynolds number, which has been defined in a variety of
ways, and in the case of materials with an apparent yield stress, a
further parameter termed the Hedstrom number

(7)

Such correlations have been summarised by Heywood (1980)
and Heywood and Cheng (1982), for example.

In the laminar region of flow there is no problem in calculat-
ing one of the three quantities of pressure gradient, volumetric
flow rate or pipe diameter (/P lL, Q, D), given the other two, for
a power-law fluid. For a plasto-viscous model this is not the
case, for the expressions cannot be written explicitly in terms of
pressure gradient and therefore to find this for a given volumet-
ric flow rate and pipe diameter, an iterative method must be
used that converges on the correct solution.

The turbulent flow of power-law fluids represented either by
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the viscometric equation (l) or by the pipe-line equation (4) in
which K, tr, K' and n' are constants, has been treated in various
ways, but the most widely quoted is the friction factor - Reyn-
olds number correlation of Dodge and Metzner. (1959). This is
based on the defined generalised Reynolds number.

7

Such fluid models have generally been neglected in the literature
up to the present time. Data in the literature may be used to
evaluate constants in the appropriate model. For example
Walker and Goulars (1984), publish data on coal and kaolin
clay shuries. From this data, for a coal shurry of 1,139 specific
gravity the rheological properties may be described as,

Where

and

The friction factor - generalised Reynolds number chart con-
tains n (n') as a parameter and provided the volumetric flow rate
and pipe diameter are known (and the fluid properties are speci-
fied) a friction factor may be determined. The case of either pipe
diameter or volumetric flow rate being unknown is treated in
this paper. For non power-law fluids, Dodge and Metzner
suggest that n' and K' can be variables.

Plasto-viscous fluids of the type exemplified by equations (2)
and (3) (or (4) and (5)) have been treated in two ways, that is
either by an additional parameter, equation (7) or by using vari-
able K' and n' in equation (4). The problem about this latter
method is that to find the appropriate values of K' and n', the
proper shear stress level must be known. Harris (1966, 1967,
1963) has questioned the physics of using laminar date for non-
Newtonian turbulent flows.

In the present work a plasto-fluidity model is used for laminar
flow this leads to an expression which can be explicit in either
friction factor, or Reynolds number, and this is not possible for
the equivalent Bingham plastic so that to find the wall shear
stress (or equivalently, friction factor) an iterative method inust
be used that converges on the correct solution.

To extend the analysis based on a plasto-fluidity model con-
sideration is given to developing a corresponding expression re-
lating friction factor and Reynolds number in the turbulent
region.

In the Appendix methods are described that obviate the need
for iterative methods for turbulent flow calculations in the case

of the well-known power-law fluids. (Iteratrive methods are not
required for laminar flow.)

Ftuidity Models

In place of the well-known Newton's viscous law that is written
in elementary form as,

T-pY

one could equally have
n: gT

(l l)

(t2)

where s is the fluidity.
Similarly, in place of equations (l) and (2) one could also have

n - 8,62 trto 56

Whilst for a kaolin clay slurry of 1 ,258 specific gravity

t - 18,53 rr'82 153

(8)

(e)

( l0)

(l 7)

(l 8)

(le)

Equations (17) and (18) appear to describe the data equally as

well as a (generalised) Bingham plastic.

Laminar Flow Analysis

It may easily be shown that the volumetric flow rate in laminar
flow is related to the wall shear stress and pipe diameter (under
conditions of no apparent slip) by the well-known relation

Such a rearrangement is not possible in the case of the corre-
sponding Bingham plastic fluid model.

Defining,

(22)

Combining equations (16) and (19)

a:#(# I
Rearranging this expression gives,

then equation (21) may be written in the form,

cr: -{r + +)*
where N*r, the fluidity Reynolds number is defined as,

"'-* 
z-! ! l

N*, : 4pu- -J'D*
(m + 3)'"

N., the fluidity number, is defined as

NF-Dl
um

a :(*)'l' r2idt

?t Tw
a-

vf-it* ,pu:^

(20)

(2r)

(23)

n:Jz'
and t- sit d

In equation (14) a is a rate constant, and in this simple case it is
given by,

a: TrA, (15)

(As may be seen by comparing equations (2) and (14)).
The more general case of a plastofluidity model is,

Equatio n (23) is explicit in the friction factor whereas in the
corresponding case of the generalised Bingham plastic the fric-
tion factor is not capable of being explicitly expressed.

Also from equation (20)

(13)

( 14)

or
where
and

8u-/D - 4Jril(m + 3) 4al3
8u-/D - J'zT a'

J' : all@ + 3)
d' - 4al3

(24)

(2s)

(26)
(27)
(28)
(2e)t-Jz' q, ( l6)
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Equation (27) is the form appropriate for pipe flow.

Turbulent Flow Analysis

The turbulent flow analysis below folloivs the framework out-
lined by Hunsaker and Rightmire (1947), originally due to Mil-
likan. The same results are obtained from this functional analy-
sis technique as with Prandtl's mixing length theory, but no such
physical assumptions as mixing lengths are involved. A smooth
bounding surface is considered.

It is assumed that the time-average mean axial velocity as a
distance y from the solid boundary can be expressed in the fol-
lowing functional form,
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Then differentiating equation @2) in turn with respect to N{fl
and (, the respective expressions are, (treating Ni as constant),

da : Fv'
dNilfl :^

and o:#+Niflz'

Eliminating X' between equations (45) and (46),

-&: Nr* d@-- A*- s d( 
r\RF 

dN*fl 
r

(4s)

(46)

(47)

u : f(q, Tn, y, t, J, d, m)

Then by dimensional analysis it may be shown that,

whereAisaconstant.
Hence, integrating each expression in equatio n (7) yields,

(3 l)

(32)

(33)

(34)

(35)

(30)

(36)

and

and

@:A+lnNfifl+Bl

V:-A+ln(+Br*

(48)

(4e)

(50)

Where

and

Hence

Now by definition,

i : ,[(Nilr(, Ni)

u * : ,l(r*lg)

Nffl : JQ^(r*ld^-La

(- yla

Ni:ffi

Comparing this result with equation (42), then

x, : A+ln(Nilfl(, Nf) + 3+

It may be postulated that the velocity defect in the fully turbu-
lent core, is independent of fluid properties, hence,

uo u : f(q, T*, y, z)

Thus, the dimensionless velocity, equation (3 I ) is shown to have
a logarithmic form. In the case of Newtonian flow this form is
found by comparison with experimental data to be valid across
a substantial portion of the pipe cross-section, even well into the
fully turbulent core. At the present time, such verification is not
available for non-Newtonian fluids.

The friction factor - Reynolds number relation may be de-
veloped by combining equations (40) and (50), with ( - l. This
yields,

Also by dimensional analysis it may be shown that the dimen-
sionless velocity defect may be expressed as,

uou
- v/G)

uo um

l+- A+ln(Nilfl, Nf) + c*
VC'

Nifl: 
*flNil,.cl-l

I

Nfr : N.C,,

Iu'

Noting the combination of N*. and N. in equation (23), it can
(37) 

rJJ:i;T:'iJ#1il:: }ii,il:,ll :::":;n.!:?,;il *::L'l:

(51)

(s2)u*
: constant

' 12:5 constant
Vc, u* v,r

From equation (31) the dimensionless centreline
given by,

uo

# : @(Nilfl,Nf)

Combining equations (31), (37) and (41) yields,

@(Nilfl, Nf) - /(Nilfl(, Nf) - v/G)

Omitting brackets, this may be written,

From the definitions of Nfrr, Nr, Ni, and Nfr in equations (24),
(25), (33) and (35) it may be shown that

um 12t-

u* VC,

(38)

(3e)

(40)

velocity is

(41)

(s3)

(54)

Hence the friction factor - Reynolds number relation sought is
obtained by combining equations (52), (53) and (54),

(5s)(42)

(43)

(44)

where A - A (m) and C - C (m) are constants to be deter-
mined from experimental data.

Corresponding with the well-known power-law treatment of
non-Newtonian fluids by Dodge and Metzner (1959), one could
postulate a fluidity model of the form

Let
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+: J'r$'

From this a generalised fluidity Reynolds number may
defined,

9

steady laminar shearing motion may sometimes be described in
terms of a fluidity model. The use of such a model greatly sim-
plifies the pressure drop-volumetric flow rate relation for flow
through a pipe. Furthermore the relation may be made explicit
in either pressure gradient or volumetric flow rate, which is not
the case for the Bingham plastic model. The friction factor-
Reynolds number relation is similarly simplified.

Using a functional analysis method an expression is de-
veloped for the friction factor in turbulent flow, based on the
analysis of the velocity profile. In this the friction factor be-
comes a function of the fluidity Reynolds number and a second
dimensionless group called here the fluidity number. Logarith-
mic forms of velocity and friction factor are found.

The expressions derived for the friction factor-Reynolds
number relations in the laminar and turbulent region, require
experimental verification. A method is given which obviates it-
eration methods for constant m'. This method also applies to
rough pipes.

The Appendix outlines design procedures for power-law
fluids which also avoid iterative methods.

In equation (59), A' and C' may be given theoretical forms
based on the equivalent Newtonian expression. Thus,

Note that in the general case, both J' and m' are functions of r,,.
The above Reynolds number may be compared with that previ-
ously defined in equation (24), from which it may be noted that
with m' : m

l_r z_t l 
_.1_

N*r-8 *'Qu,o*'J'''D*'

(s6)

be

(57)

(58)

(se)

(61)

and

This is identical in form to equation (28). Then equation (55)
would be written in the form,

where A' - A' (m') and C' - C' (m') are determined
experimentally.

Although this appears simpler in form than equation (55), in
practice complications would arise due to both J' and m' being
in general, functions of wall shear stress.

Design Procedures

To avoid using iterative techniques if the volumetric flow rate is
required, given the pressure gradient and pipe diameter (and
fluid properties) an expression may be developed which is inde-
pendent of the volumetric flow rate. Thus it may easily be shown
that

(60)

The right-hand side of this expression may be calculated from
the given data and thus the expression may be plotted on the
friction-factor Reynolds number chart, which for a constant m'
would yield a straight line. The intersection of this with the ap-
propriate friction factor-Renolds number plot gives the re-
quired Reynolds number and hence the volumetric flow rate
may be calculated.

Similarly, if the pipe diameter is unknown, but the volumetric
flow rate and pressure gradient are given it may be shown that

+: A'log(N;r.C;-#) + C'
JC,

N*r.glt'-frr - \yrn*e' r(+),,'-*,
ft3m

Appendix

Power-Law Pipeline Design Methods

For the turbulent flow region, an expression for friction factor
for a power-law fluid has been developed by Dodge and
Metzner (1959)

A':4,0m
C' - 2,21 + 4,0mlo, (m + 3)

2o^-t

*:#'ot,o(N*c;-l) -#
N*. c;-rit : z'-*1,\?*o'-^r(4) -t

\L/

(Al)

This may be conveniently displayed on a friction factor-Rey-
nolds number chart as shown in figure Al.

If the volumetric flow rate and pipe diameter are known, and
n is given, then the friction factor can be determined. There are
two other cases to be discussed:

(i) Pressure gradient and pipe diameter known

It may easily be shown that

(2)

N* ct constonl

t3-2nl /3 : conslonl

Calculating the right-hand side from the given data and plotting
the resulting expression on a friction factor-Reynolds chart
would yield a straight line for a constant value of m'. The inter-
section with the friction factor-Reynolds number curve for the
appropiate value of m will again yield the value of Reynolds
number from which the pipe diameter may be calculated.

The Appendix outlines the corresponding procedures in the
case of power-law fluids and the friction factor chart for these
fluids.

Conclusion

The rheological properties of some non-Newtonian fluids in

log C1

n vo lues

Figure A1 - Friction factor-Reynolds number chart for a power-law
lluid (smooth tube) with design curves. Gurve 1, Volumetric llow rate

unknown. Curve 2, Plpe diameter unknown.

log NR
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For the given case the right-hand side of equation (A2) (which
incidentally, also applies to rough pipes) may be calculated.
Hence the expression may be plotted on Figure Al and where
this intersects the friction factor curve with the appropriate n
value, the value of the Reynolds number is defined, and hence
the volumetric flow rate may be found.

(ii) Pressure gradient and volumetric flow rate known

It may also be shown that
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priate n value, the appropriate Reynolds number is defined, and
hence the pipe diameter is found.
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\.sl.-z"r : ffi'-i(f)io-'r
(A3)

Therefore again in this case, the right-hand side of equation
(A3) may be calculated (and it also applies to rough pipes).
Hence this expression may be plotted on Figure Al and similar-
ly where this intersects the friction factor curve with the appro-


