
N&O JOERNAAL FEBRUARIE 1985

Multiobjective Design of an
Antisymmetric Angle-Ply Laminate

by Nonlinear Programming
S. Adali

CS|R, Pretoria*
An antisymmetrically laminated angle-ply plate is optimized with the objectives of minimizing the maxi-
mum dynamic deflection, maximizing the naturalfrequencies andlor maximizing the buckling load. The
design variables are the fiber orientation and the thickness of individual layers aid are computed by using
the methods of nonlinear programming. The concept of Pareto optimality is used informuliting thi design
problem and in reducing the multiple objectives into a single performance index. Numerical results are
presented in theform of optimal tradeoff curves which allow the designer to assess the varioits possibilities
oPen to him before deciding on a certain design. In this sense, the present design is an interaciive process.

Introduction

Multiobjective design of a structural element becomes a necess-
ity when the element works under more than one loading con-
dition during its service life. In such a case, the designer is faced
with the problem of satisfying a number of conflicting objectives
with a single design which should meet all the design require-
ments in the best possible way. To solve such a problem, the
designer should first find out about the best capabilities of the
structure in question in terms of its performance with regard to
the specified objectives under different loadings. The designer,
finally, chooses a certain design after consideration of various
possibilities open to him. In this sense a multiobjective design is
an interactive process in which the designer seeks a compromise
solution.

In the present paper, we optimize an antisymmetrically lami-
nated angle-ply plate with respect to the maximum dynamic
deflection, natural frequencies, and the buckling load. The de-
sign variables are the fiber orientations and the thickness of the
layers which form the laminate. The objectives of the design are
the minimization of the maximum deflection when the plate is
acted upon by a harmonic excitation, the maximization of the
natural frequencies, and the maxrmization of the buckling load.
The plate is taken to be rectangular and simply supported. The
concept of Pareto optimality is used in the design, which seems
to be a natural and physically meaningful extension to single
purpose optimal design.

Previous work on the optimal design of composite plates has
which the coupling

isymmetrically lami-
tive of increasing the

on the convergence of the method, the reader is referred to tl5].
The numerical results are given for a laminate made of a carbon
fiber reinforced epoxy plastic material and are presented in the
form of optimal tradeoff curves which represent the points of
optimum plate response.

Problem Formulation and Solution

we consider a simply supported rectangular plate of length a,
width b, and composed of an even number of 

-anisotropic 
lami-

nae, each of which is oriented at an angle of 0 oon one side of the
middle surface with the corresponding equal thickness lamina
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Figure 1 - Geometry and cross-section ol the antisymmetrically lami-
nated angle-ply plate

oriented at an angle of -0kon ,fr. other side (Fig. l). Each layer
possesses a plane of elastic symmetry parallel to the middle sur-
face and is of constant thickness ftk. Such plates are commonly
known as antisymmetric angle-ply laminates. The XYZ coordi-
nate system and displacement components (J, V, and W inthese
directions are shown in Fig. l. The linearized equations of mo-
tion of the laminated plates are available in literature [ 6, l7l
and tbr the antisymmetric angle-ply laminates the displacement
equatrons are

A,rU*r + AuuUr, + (Ar, + Auu)Vr, 3BruWr*

-BruWrr, - 0 (l)
(A,, + Auu)Ur, + A*Vrr + ArrV* B,uWrr*

-3BruWrrr: 0 (2)
D,,Wrrrr + 2(Dr, + 2Duu)Wrrr, + DrrW rr*

-B,u(3Urr, * Vrrr) - Bru(Urr, + 3Vrr) - p(X,Y) (3)

Where A,1, 84, D, are the laminate stiffnesses given by
rHp

(Au,Bu,Di) _ 
J _r,r(l,z,z2)e',1' 

dz,

/ fnp \
( i..., 8,, - I Zg,,|,dZ l t+l\ J-niz /

with Q',1'denoting the plane stress reduced stiflness components
of the kth layer given in Appendix and H the total thickness of
the plate. We note that the notation of [ 7] is used throughout

71
I
I

t

zrw

1F(X,Y)
I ,rn

M IDOLE
SURFACE



l4

the paper. In equation (3), P(X,n - p Ai W + F(X,Y) when

a forcing function e''o' F(X,n is applied on the plate;
P(X,n - p{2'W when the plate undergoes free vibrations
with frequency Q; and P(X,n _ - Afr W rr when a buckling
load No in the X-direction acts on the plate. We note that in
equations (l-3), the body forces and the inplane and rotary iner-
tia terms are neglected. For the simply supported plate, the dif-
ferential equations ( l -3) are subjected to the boundary
conditions

W-0,Mr: B,u(U, + Vr) D,,Wrr D,rWrr:0
U:0,Nrr: Auu(U, + V) B6Wy, BruWrr:0 (5)

along the edges X - 0,o, and
W-0,Mr: Bru(U, + V) D,rW,r DrrWrr:0
V-0,Nrr: Auu(U, + V) BruWrr BruWrr:0 (6)

along the edges Y - 0,b where M, is the resultant bending
moment normal to the n-direction and N,, is the resultant nor-
mal force normal to the n-direction and parallel to the t-
direction.

We introduce the following dimensionless quantities:

r_ afb,x: Xla,y- Ylb,hk: Hrl H,/(x,y)_ F(ax,by)lg
u : E2bH2(Jf gaa,v : ErH'Vf ga3,w : ErH'Wlgan
o,j : Aul EzH,b,j : BulE2H' ,du _ DijlE2H3 (7)

N- N0b2 lEzH3 ,e)2 - pQ2b4 f E2H3 ,L2 - p)"iba lErH'

where g : -..X* F(ax,by); H k is fhe thickness of kth layer;

and E, is the transverse modulus of elasticity of the material.
By substitutin g (7) into ( I -3) we obtain the nondimensional

form of the governing equations which are given in the
Appendix.

The multiobjective design problem consists of determining
the optimal fiber orientation 0o and the thickness h* of the kth
layer where k - 1,2 ,K, with K denoting the number of
layers so as to satisfy the following objectives:

(a) minimizatron of the maximum deflection wo when the

plate is acted upon by the load l(x,y) with the forcing
frequency I,

(b) maximization of the natural frequencies co of any given
order when the plate undergoes free vibrations, and

(c) maximization of the buckling load l/ when the plate is

subjected to an inplane load N.

We note that due to antisymmetry we have 0o : -0K- k + r

and ho _ hK -/t + r. Moreover, the design variables should sa-

tisfy the constraints

0

-n12

W^, sin mnx sin nny.

The values for the maximum deflection wo, natural frequencies

@mn,tand the buckling load N are given in the Appendix. We note

that the maximum deflection l,t' is given by a finite series if flx,y)
in (l l) can be expressed in a finite number of terms. In the se-

quel, we illustrate the design procedure by considering such a

case in one of the examples.
Now the design problem can be stated as a mathematical pro-

gramming problem in the following form:

u(x,y) : 
Iat 

(J^,cos mftx sin nny

n -It

v(x,y) : I I vo,n sin mnx cos nny
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(12)

( l3)

( l4)

w(x,y): ) I

min I wo I , max @^n, max min N^n
|f.hr }plp 0r.h* m,n

subject to the constraints (8-10) with k - 1,,2, .,Klz.Here
w,t@mntand N,,naregiven by (A8), (A9), and (Al0), respectively.

We note that each of the optimization problems in ( l3) com-
prises a nonlinear programming problem due to the dependence
of the expressions for wo, @mnt and N-, on the design variables 0o

and hr in a nonlinear manner.

Pareto Optimality

The objectives of the present design problem are three-fold:
(a) the minimization of the maximum dynamic deflection,
(b) the maximization of the natural frequencies, and
(c) the maximization of the bucking load.
Ideally, w€ wish to determine a set of design variables {0r, hr\

which would simultaneously achieve all these objectives. But,
this is, in general, impossible, since the objectives are normally
in conflict with each other, i.e., the optima of the relevant quan-

tities occur at differettt locations in the design space (0*, ft^). For
this reason, we will use the concept of Pareto optimality which is
both physically meaningful and easy to apply. We define a Pare-

to optimal solution (POS) as follows: If the set { 0i, hi} is a POS,

then for any other {00, h*} either the values of all the objective

functions remain the same or at least one of them gets worse as

compared to its value at {0i, h;}. We compute the solutions by

minimi zing a single performance index obtained by combining
the multiple objectives in a weighted sum

L,^r: t'ho

J(0 k,h) :

where Jt : I wo l, J, : -@,,n, Ji - -|y', and Fi
the constants which reflect the relative importance of minimiz-
ing J,. Consequently, the numerical problem to be solved is the

following:

_1

T lJ,(or,h*)L
i: I( l0)

Due to the antisymmetry requirements and the constraint (10),

which, in effect, eliminates one thickness variable, the number
of effective design variables is K-l of which Kl2 are ?o's and

(Kl2) I are ho's.

The explicit solutions of the bending, free vibration and buck-
ling problems are obtained in the literature [16, I 1]by the meth-
od'of separation of variables and by expanding the load / into
the double Fourier series

J(r,y) mnx srn nfty. rll\ItisknownthataminimizingsolutionofJ(0k,h)withp,>\", i - 1,2,3 is a Pareto optimal solution [18, 19,20]. Moreover,
a unique minimi zing solution with Fi
1,2,3,, p, + ltz + 14 + 0, is also known to be Pareto optimal

min J (?k,hk)
0/rp

subject to (8), (9), and (10).

(15)

The displacement functions are given by
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[21].This result enables us to determine the end points of opti-
mal trade-off curves from a computation of single purpose de-
signs provided these are unique. It should be noted that a solu-
tion obtained by minimi zing ( l4) is not necessarily the unique
POS. The numerical results given in the sequel represent the
solutions calculated using the performance index (la). Different
POS's can be computed from the minimization of J(?k,h) with
different values of p, For further details on Pareto optimality
we reler to 122,, 231. Different methods of computing POS are
discussed in [23].

At the beginning of a design process, it is impossible for the
designer to specify the relative importance of each objective
function since the best possible performancqs of the plate are
not known at this stage. In this sense, a multiobjective design is
an interactive process. The designer decides on the values of
relative weights after studying the response of the system under
various loads.

A useflul tool in assessing the performance of a design with
multiple objectives is the optimal trade-off surface in the attain-
able criteria set, that subset of the criteria space (i.e., ,I,-space)

which is the image of the decision set under the mapping
J - (J,J2,J). It represents the points of optimum plate
performance.

In the case of a design with two objectives, we have "an opti-
mal tradeoff curve" in the J,J;plane, the end points of which
give the response of a single purpose design. Intermediate points
represent the trade-off between the objectives with respect to
their best possible values. In the end, it is the designer who must
choose any one of these optimum response points, correspond-
ing to a certain set of values of the weights, by taking various
design requirements into account.

In the next section, w€ give the optimal trade-off curves for a
number of examples.

Optimal Tradeoff Curves

We obtain the Pareto optimal designs of the laminated plates by
minimizing the objective function (14) subject to (E-t0) with
different weights p, The design procedure is illustrated on the
simpler cases of problems with only two objective functions.
This lacilitates the graphical presentation and the discussion of
the results. The numerical results are obtained using a quasi-
Newton nonlinear function minimization routine, formulated
in [4]. In the first example, the laminate is optimized with re-
spect to dynamic deflection and natural frequencies, i.e. in equa-
tion (14) pt _ 0. In the second example, the optimization is

carried out with respect to the fundamental frequency and the
buckling load, i.e. in equation (14) p, _ 0. Optimal trade-off
curves of both cases are determined for various problem param-
eters. Numerical results are given for a carbon fiber reinforced
epoxy plastic for which E,l E, _ 40.0, G,rl E, _ 0.5, vn

- 0.25. We note that the computer program to evaluate wo,

@^n, and N has been tested by comparing the results with those
of [ 7].

For the plate undergoing forced and free vibrations, the ob-
jective function ( 14) becomes

Jo - plwo l + (l p)(-@^n),O

l5

Standard plate with 0r alternating at 45 deg

n',103 2.89 2.20 0.14 0.40 3.53 0. I 5

@r 23.5 53.7 13.4 36.9 24.8 14.2

0k (0/

- 53.e)
rloo103 I.79
@oo 18.4

)r'on/lt'., 0.62

@orl@, 0.78

Design for minimum n,o

(4s l (0/ (e0l

- 45) 0) - e0)
2.20 -0.11 0.20

s3.7 5.8 20.3

l .00 0.7 5 0.51

l .00 0.43 0.55

(-sr.8/0 (0/0

I -7 .7) /0)
t.43 -0.1I

t4.t 5.8

0.40 0.72

0.51 0.41

0k @sl

- 4s)
woo 103 2.89

@o, 23.5

v'orlw', l '00
@orl@, 1.00

Design for maximum a,r

(o/ (e}l Q 7I
0) -e0) -28.8)3.94 0.2t 2.39

72.8 t8.2 4t.6
| .79 l .5 l 5.93

1.36 1.36 l. l 3

(-4s145 ( - e0le0

I -4s) I -e0)
3. 53 0.2t

24.8 t8.2
1.00 t.4
l .00 t.29

Table 2 Frequencies and the buckling loads of plates optimized
with respect to ro or N with 0n and/or hn as design variables and

K_ 4rm: lrn- I

r
Design
Parameters

2

0,,0,

3

0,,02

2

0,,h,

3

0,,h,

Standard plate with 0 r alternating at 45 deg and h*

t3.4
56. I

: 0.25

I 1.0

56. I

@,

N,
t3.4 l l .0
56. I 56. r

0o

Design for
(e0l

- e0)
(0.2s 1

0.25) -
I 8.2
12.s

1.35

0.22

maxlmum a)

(e0l

- e0)
(0.2s 1

0.2s)
l8.l
t2.5
1.65

0.22

(e0l

- e0)
(0.2s 1

0.25)
l 8.2
12.5

1.35

0.22

(e0/

- e0)
(0.2s 1

0.2s)
l8.l
t2.5
1.65

0.22

lt*

@o,

l/"0
@ool@,

lr"o//v,

0k

hk

@oo

l/"0
@ool@,

N"o/N,

(4s l
- 4s)
(0.1 s/
0.3 5)
14.7

67 .s

l.l0
t.20

(4s l
- 4s)
(0. r s/
0.3 5)
t2.0
67 .s

l.l0
t.20

Design lor maximum lV
(4sl @sl

- 4s) - 45)
(0.2s 1 Q.2s l
0.25) 0.25)
t3.4 l I .0
56. l 56. l
I .00 1.00

1.00 l .00

( l6)

Table I Deflections and frequencies of plates optimized with re-
spect to wo or al with 0*'s as design variables and hr : I I K,

f - sin nx sin ry

We choose the forcing function as _f(r,y) _ sin zx sin zy in
which case wo is given by (A8) with m - n - l. We first ob-
tain the design of plates with a single objective by setting p - I
and p - 0 in (16). The results for single purpose designs are
given in Table I for four- and six-layered plates with aspect
ratios I or 2.ln these problems the design parameters are 0rand
the layers are of equal thickness with /zo - I I K.When the forc-
ing frequency l" is less than the first resonance frequency, which
is equal to the fundamental frequency, and "f(r,y) _ sin zx sin
ny, the min-max deflection design is given by layers oriented
alternately at angles 45 deg and - 45 deg. When l. is greater than

6

I
30

I
I

4
2

5

3

I

K
r
l,
m
n

4
I

30
I
I

4
I

l0
2
I

4
2

25
I
I

6
2

25
I
I
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the resonance frequency, this result does not hold true. Table I
shows computations with l" less than and greater than the reso-
nance frequency of the plate. We retained the minus sign of the
maximum deflections to emphasize the cases where the response
of the plate is out of phase with the external force. We assess the
efficiencies of the optimal designs by comparing them with the
corresponding standard plate which we define to be composed
of layers of equal thickness with the fibers oriented alternately
at45 and -45 deg. In the tables, the subscripts op and s refer to
the optimal and standard plates, respectively. Thus the efficien-
cies with respect to wo, @^n and N are defined as the ratios
woof w,, @orl@, and N.o/Nr, respectively. We note that the values

ofcrr,forK - 4and6withr - |,ffi- n : lcoincidewith
the corresponding values in Fig. 5.22 of [7]. Moreover, these
values give the maximum ar,, for those specific single purpose

designs. Optimality and uniqueness of those designs can be as-
certained from Fig. 5.22 of [7]. The results for optimal 0o's are

given for only one half of the laminate with the understanding
that the remaining half is oriented antisymmetrically. We ob-
serve that single purpose designs may be quite efficient with
respect to one of the performance criteria, while they may be
rather inefficient with respect to the other.

Optimal trade-off curves of the cases given in Table I are
shown in Fig. 2. Here the end points of each curve indicate the
values of worf a. and @orl@, for single purpose plates. For inter-
mediate values 0

In the second example, the plate_may be undergoing free vi-
brations or subjected to in-plane loads during its service life.
The design objectives are taken as the fundamental natural fre-
quency and the buckling load and the performance index to be
maximized is

Jh - pN + (l p)at,,

o.?
o t.2 1.4 1.6

'op / ts

Flgure 3 - Optimal tradeofl curyes of plates designed for marimum
lrequencyandbucklingloadwithm _ n_ l,K_ 4
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OESIGN VARIABI FS E 
I

AND8.tn,=ha=O25)

DESIGN VARIABLES

\ 0r*02 ANO hr= O.5-ha
\ \)=z\

\ )= r\
r =2

F
\
\

9=o 9=o

o.4

h2

to

Nop

NS

o.6

-80

02

-60

where 0
given in Table 2 flor four-layered plates with r : 2 or 3.

The design parameters are either 0,,0, with layer thicknesses
hk _ 0.25 or 0, - -02 and h, (h, _ 0.5 h,).The fiber
orientation design for maximum N was given in [ 2]for the case - ?o

r _ 3, K _ 4, hk _ 0.25. The design (451 45) and

*op

ws

( l7)

o.8

4 0.8 t2
'op / 's

Flgure 2 - Optimal tradeoll curyes of plates designed lor minimumtf 
i"ff? :":#T'ffi rrequencY w*h n : 1' hk

oo'
20

o.o
40 60 80

8l

Flgure . - 
l":,n;, il"l" 

of Pareto optimal solutions for plates with

N"o - 56. 1 in [ 2] are the same as our results given in Table 2
for this case.

We note that for the optimal thickness values ft, - 0. 15,

h2 - 0.35, and 0, _ -02 _ ft14, the coupling stiffness coef-
ficients .B'u _ Bru - 0 and the laminate behaves like an ortho-
tropic plate. The critical ratio h,lh, - 0.41 when 0, - -02
was derived analytically inpal as a condition for ^B,u and Bruto
vanish. We observe that the designs for maximum CI), can carry
relatively small buckling loads as compared to standard plates.
We note that for the design angles d, - - 02 : 90 deg, the
ratio h,lh, becomes immaterial in the computation of the stif-
nesses A,j,Bu,Du and consequently does not effect the optimal
design. In Table 2, we set h : h2 _ 0.25 for the case

0t : -02 : 90 deg.

The optimal trade-off curves of the cases given in Table 2 are
shown in Fig. 3. We observe that the efficiency of a design can be
improved considerably by including the layer thicknesses
among the design variables.

Figure 4 shows the curves of 0, plotted against 0, and h, for

( 8r, 8a ) cuRvE
OAJECTIVES :<.r,N

I=1O,il=2
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various cases. The end points of these curves again give the de-
signs for single purpose plates. Any intermediate point corre-
sponds to a Pareto optimal design with 0
formance indices (16) or (17). We observe that the design
parameters continuously change as P moves along the interval
[0, u.

Conclusions

Multiobjective design of an antisymmetrically laminated angle-
ply laminate was given with respect to

(a) maximum dynamic deflection and fundamental and high-
er order natural frequencies, and

(b) fundamental frequency and the buckling load.
The design variables were taken as fiber orientation and/or
thickness of each layer and were determined by the method of
nonlinear programming. The numerical results were presented
in the form of optimal trade-off curves. The final decision as to
what point on these curves will give the most suitable design
must be made by the designer and essentially represents a com-
promise solution with regard to conflicting objectives.

Optimal designs are compared with a standard plate defined
as the one, the layers of which are equal thickness and have
fibers oriented at alternating angles of 45 deg. It was observed
that the performance of a multipurpose plate in general, is better
with respect to one of the objectives but worse with repect to the
other in comparison with a standard plate. Optimal trade-off
curves for a given set of objectives show the best possible re-
sponses of a plate to different loading conditions and thereby
allow the designer to explore various trade-offs involved in a
certain design.
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Appendix

Plane Stress Reduced Stifrness Components of frth Layer

Qif,- Q,,ca + 2(e,, + 2e*)szcz + errf
Qli' : (Q,, + Qr, 4Qu)s2c2 + Q,rGn + c4)

Qii' - Q,rso + 2(Qr, + 2Q*)s2c2 + Qrrcn

Q',t' - (Q,, Q,, 2Qu)sc3 + (Q,, Qr, + 2Q*)s3c

Qtt' - (Q" Q,, 2Qu)s3c + (Q,, Qr, + 2Q*)sc3

Q[t' : (Q,, + Qr, 2Q,, 2Quos'c' + Q*6n + cn)

where
c: cos0o,s- sindo,

Qr, : Erl(l - vnvzt),Q,r: vrrBrl(l - vnvzr)

Qr, - Erl(l - vnvzr) , Q* - Gn , vzr : vrrErfE, (A2)

where E,, E, are Young's moduli in the longitudinal and trans-
verse directions, respectively; v,, is the ratio of transverse-to-
longitudinal strain under longitudinal stress; and G,, is the shear
modulus in the lZ-plane.

Nondimensional Form of the Differentiat Equations and the
Boundary Conditions

arru,.* + a*r2ur, + (ar, + aos)v*, 3bruw.r_,,

- brur'wrr, - 0
(ar, + a*)r2u.,r, * aoov,., + arrr2v, bruw,,,

- 3brur2 w,r,t, - 0

drrw,.,,, + 2(dr, + 2d*)r2w,,r, + drrrawrr,

- b,u(3r2 u,,y* v.....*) - bru(rnurr, * 3r2 v rrr) - p(x ,y)
rt) :0b ru(r2ur* v,) - dnw,r- drrr'w rr:0 at x - 0, I
u : O,auu(r' rr* v..) - b ruw _,,- brut' w rr:0 at x : 0, I
l,t):0,bru(r2ur,* v.,) - drrw,,- drrf'wrr:0 at !:0,1
v:O,a*(r'ur* y,) - bruw*,- brur'wrr:0 at !:0,,1

(A3)

(A4)

(A5)

(A6)

where p(x ,y) - )"2 raw * /(x,y) for the forced vibrations,
p(x,y) - cDzraw for the free vibrations, and p(x,y) : - Nrzw,,
in the buckling problems and

: 
Z+hoso'

du:IT('r''+#) (A7)

where so - SolH, So is the distance to the centroid of the k-th
layer.



l8

Expressions for the Dynamic Deflection, Natural Frequencies and
the Buckling Load

For a forcing funct ionf(x,y) -- 
,L,L,r^,rin 

mnx sin nny the

maximum dynamic deflection is

Lzra f na)
(A8)

Natural frequencies are given by

R&D

and the buckling load is

N : min N,,,,, _
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(Ar0)

f^n

where

T- T +2rmnTrTrTu-rzn2TrTl-m2T,Tt^ntn ' TrT, ri

', 7t4 n
@-^, : 7 t., (Ae)

T1 _

Tt_

Ts:

o r rffi2 + auur2 n2 ,,7-, _ aooffi2 + arrr2 n2 (A I I )

(a,, + auu)rmn T4 _ d,,ffio + 2(d,, + 2duu)r2m2n2

* drrrana

3brum2 + brur2n2 T6 - b,uffi' + 3bror2n2.


