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Introduction
Species distribution modelling (SDM) has emerged as a powerful tool in ecological research 
(Peterson et  al. 2011), greatly facilitating the understanding of geo-ecology and predicting the 
potentially suitable environment for species (Stewart et al. 2022). In principle, SDMs link defined 
species locations to predictor variables to evaluate patterns of species occurrence and habitat 
suitability (Elith, Kearney & Phillips 2010; Guisan, Thuiller & Zimmermann 2017; Wolmarans, 
Robertson & Van Rensburg 2010). The SDMs may even be used to predict species survival in 
response to future environmental shifts (Peterson et  al. 2011). While SDMs often integrates’ 
climatic variables such as temperature and precipitation (Zhang et al. 2020), they also include 
other abiotic variables such as soil, land use, land cover and topography (Buri et al. 2017; Dubuis 
et al. 2013). Because of their fine spatial resolution for better fluctuations, the latter variables are 
included when the study aims to create SDM at local scale. Given their unique modelling ability, 
SDMs have become a popular strategy and a most widely used tool for characterising species 
distribution and predicting habitat suitability (Araújo et al. 2019).

Advances in computing resources and machine learning algorithms, as well as the availability 
of fine-scale remote sensing products and climate data are an important step forward in the 
use of SDMs for various applications (Guisan et al. 2017; Kass et al. 2021; Thuiller et al. 2009). 
These developments offer the opportunity to implement SDMs with great effect because 
the  resolution at which they are computed greatly influence their overall performance 
(Lee-Yaw et  al. 2022). Besides, the growing utility of SDMs lies in their relatively simple 
application with publicly available software packages, as well as low data requirements 
(Zurell 2019) and guidelines (Guisan et al. 2017).

Poplars (Populus alba, Populus canadensis, Populus canescens, Populus deltoides, Populus fremontii, 
Populus nigra and Populus simonii) are found throughout the world and are invasive in South 
Africa, where they are spatially permitted in certain areas under controlled conditions, as 
specified in the country’s invasive species legislation. To better trace their geographic 
distribution, this study predicts the potentially suitable habitat of poplar trees in South Africa 
based on generalised linear model (GLM), Random Forests (RF) and Support Vector Machines 
(SVM) models and also assesses the climatic variables with the greatest impact on prediction 
performance. The results show excellent performance for all models (Area Under the Receiver 
Operation Characteristics Curve [AUC] > 0.9) in predicting the poplar distribution, with RF 
achieving the best performance (r = 0.83 and AUC = 0.965), followed by SVM (r = 0.72 and 
AUC = 0.959) and then GLM (r = 0.65 and AUC = 0.937). In a geographical perspective, all 
models show a similar pattern, with the highest concentrations being in the south-western 
parts of the Western Cape, the Southern Cape on the Garden Route, the central-eastern Free 
State, Mpumalanga, and the southern parts of Limpopo. The evaluation of the relative 
importance of the bioclimates used showed that the warmest and driest quarter’s precipitation 
and annual precipitation significantly contribute to the poplar population. These results 
demonstrate the power of machine learning and regression models for predicting suitable 
habitats and extracting valuable environmental-climatic knowledge for monitoring and 
managing invasive tree species such as poplars.

Conservation implications: Poplars are among the most aggressive invasive plant species in 
South Africa. The results of this study are expected to help conservation authorities understand 
the current climatic factors affecting the species distribution, as well as potential sites.

Keywords: species distribution model; poplars; random forest; support vector machine; 
generalized linear model; bioclimates; alien invasive species.
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Several studies have shown the high model performance in 
SDMs applications. In this regard, Zhang et al. (2020) predicted 
the possible distribution of Anredera cordifolia using Random 
Forest (RF) and also identified the temperature as the most 
important factor influencing the predictive performance of 
this species. Yudaputra, Pujiastuti and Cropper (2019) 
predicted the potential current distribution of Guettarda 
speciosa in Indonesia using the Maximum Entropy (MaxEnt), 
Support Vector Machine (SVM), RF, Generalized Linear Model 
(GLM), Domain, and Bioclim. Their study showed that MaxEnt 
outperformed other competitors with the highest area under 
the receiver operation characteristics curve (AUC) value of 
0.89. Kaky et al. (2020) evaluated the performance of ensemble 
and MaxEnt modelling approaches in predicting the potential 
spread of Egyptian medicinal plants, where they found RF and 
MaxEnt performing better than SVM and Classification and 
Regression Tree (CART) in predicting the potential distribution 
of target species. However, the low performance of some 
models does not make them weak modelling approaches. 
Some models will perform poorly if all competency 
requirements are not met. For example, SVM sometimes 
performs better  than MaxEnt and RF, possibly because the 
data structure is conducive to optimal performance. Therefore, 
ensuring that the model requirements are fully met before 
application and evaluation is essential. In general, studies 
have demonstrated high potential of machine learning and 
regression techniques for predicting species distributions in 
landscapes and ranking explanatory factors affecting 
distribution trends (Ahmed, Atzberger & Zewdie 2021; 
Shabani, Kumar & Ahmadi 2016). While these have been 
widely and successfully used to quantify the dispersal of many 
(native and non-native) floral species, they have not been 
applied in the study of Poplars in the Global South regions.

In South Africa, Populus alba and Populus canescens are 
classified as a Category 2 weed under the National 
Environmental Management and Biodiversity Act (NEMBA) 
(No. 10 of 2004) and Conservation of Agricultural Resources 
Act (CARA) (No. 43 of 1983) of South Africa’s Invasive 
Species Legislation (Henderson 2007). This means that 
poplars (Category 2) plants may not occur on land or inland 
water surfaces other than a demarcated area or a biological 
control reserve (Roy, Pauchard & Stoett 2023). For example, 
in most conservation areas under South African National 
Parks (SANParks), they are classified as a species of 
very  high concern, encroaching on ecologically sensitive 
landscapes such as riparian zones; they are therefore 
cleared under continuous surveillance (SANParks 2020). 
Essentially, poplar species consumes a lot of water in 
streams, thereby worsening the conditions for aquatic 
species in the streams (Théroux Rancourt, Éthier & Pepin 
2015). Like any woody species, poplar competes with native 
species for resources, with a better chance of consuming 
more and more because of its growth structure and crown, 
which intercepts rain and sunlight that would otherwise be 
used by native species (Kumschick et al. 2020; Zhang et al. 
2021). For these reasons, it is important to understand their 
spatial distribution and climatic drivers so that they can be 

appropriately monitored and managed in the country. This 
study was conducted at national scale because at smaller 
spatial scale the bioclimatic variables do not give better 
variations (Fournier et al. 2017).

To achieve the aim of this study, the performance of GLM, RF 
and SVM models in predicting the existence and distribution 
of poplar trees in South Africa was tested and compared. The 
predictive power of each model under current different 
climatic conditions and evaluation of the most influential 
climatic parameters for Poplar distribution in the country was 
examined. The results of this study could provide valuable 
insights to support alien invasive species management actions 
and decision-making processes.

Research methods and design
Study area
This study was conducted in South Africa, the southernmost 
country on the African continent (Figure 1). The country lies 
between the 22–35° S and the 16–33° E (Van Wilgen et  al. 
2020). The country’s interior consists of a large, almost flat 
plateau with an altitude of about 1000 m in most places above 
the sea level (King 1942). South Africa has a temperate climate 
with warm and humid summers and cold and dry winters 
(Blamey et al. 2017). The country’s annual average rainfall is 
464 mm, with the Western Cape receiving winter rainfall 
(June to August) and the rest of the country receiving summer 
rainfall (December to February) (Roffe, Fitchett & Curtis 
2019). South Africa consists of nine vegetation biomes or 
units: Forests, Savannah, Fynbos, Grassland, Karoo, Desert, 
Nama-Karoo, Succulent Karoo, Indian Ocean Coastal Belts 
and Albany Thicket (Dayaram et  al. 2019; Mucina & 
Rutherford 2006). Large impact craters, orogenic belts, 
granite belts and cratons are only a few examples of South 
Africa’s extremely diverse geology (Du Toit 1940). South 
Africa’s topography is made up of the craggy mountains of 
the Cape Fold Belt and the great escarpment, which encircle 
the country to the west, south and southeast. There is a 
narrow coastal plain strip beyond this (Haughton 1969).

Data collection
To quantitatively predict poplar (Populus nigra, Populus 
simonii, Populus fremontii, Populus deltoides, P. canescens, 
Populus canadensis and P. alba) distribution in South Africa, 
spatially referenced poplar occurrence sample points were 
obtained from the Global Biodiversity Information Facility 
(GBIF) (https://www.gbif.org/ accessed on 12 June 2023 
and updated on 20 December 2023). After filtering the data 
by South African boarder and removing duplicates, 
467  poplar occurrence points were finally obtained and 
eligible for analysis. The species breakdown in terms of 
their locations is shown in Table 1. About 600 absence 
points were generated using the random point function in 
R environment.

This study also attempted to identify the South African 
protected areas most likely to be affected by poplars by 

http://www.koedoe.co.za
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superimposing the best-modelled poplar distribution results 
on the protected area shapefiles and extracted protected 
areas where poplar occur using intersection function in 
Quantum Geographic Information System (QGIS). Only 
mostly affected protected areas are reported; however, the 
wider distribution is provided.

Environmental predictors
The Bioclim algorithm was used in this study; this is a 
commonly used climate-envelope-model (Booth et  al. 2014) 
integrated into the R environment using a raster package, for 
environmental prediction from the Worldclim database 
(Table  2). Soil, land-use  cover and topography have been 
documented as important environmental variables for plant 
species distribution (Huang et  al. 2021; Krauss et  al. 2008). 
However, in this study, the focus was only on the current 
climate variables affecting the poplar species’ range 
distribution in South Africa.

All Bioclim variables were spatially scaled to a 1 km 
grid  and  cropped to the extent of the South African 
border. Temperature Bioclim in the Worldclim database is 

usually multiplied by 10 for storage purposes to  
reduce size. Temperature units were converted to degrees 
Celsius.

Modelling methods
This study was conducted using all available poplar species 
data as indicated in section ‘Distribution of poplar in South 
Africa’. Some species (e.g. Populus fremontii) had insufficient 
occurrence data and were unable to meet the modelling 
requirements for separate analyses. The commonly applied 
models for species distribution that include the GLMs 
(Melo-Merino, Reyes-Bonilla & Lira-Noriega 2020), RFs 
(Breiman 2001) and SVM (Vapnik 1998) were used in the R 
statistical environment. Stepwise logistic regression was 
used to select the best model combination. This process was 
set to repeat 10 times in a row to ensure that robust 
modelling output is achieved. The predictors from the 
model that yielded the lowest akaike information criterion 
(AIC) score were selected for modelling. This process is 
important as it allows for proper fitting of the model, which 
is a model that does not possess multicollinearity and data 
redundancy.

For all models, the same initial set of inputs was included, 
that is, poplar occurrence and absence points as response 
variable and 13 selected Bioclims as environmental predictors. 
Species presence was given value 1 and absence was given 
value 0 for modelling. Distribution data were divided into 
two parts, 75% for training and 25% for testing. The GLM 
was implemented using the ‘GLM’ function, link function 
and error distribution are given with the family arguments. 
Random Forests was implemented with ‘randomForest’ and 
the SVMs in R using the ‘ksvm’ in package ‘kernlab’ because 
it contains many different SVM formulations and ‘kernals’ 
and provides useful options and functions such as a method 
for plotting. Next, the RF was used to evaluate the most 
important variables (Genuer, Poggi & Tuleau-Malot 2010) in 

TABLE 2: Bioclimatic variables and their descriptions.
Bioclimatic variables Description

Bio 1 Annual Mean Temperature
Bio 2 Mean Diurnal Range
Bio 3 Isothermality
Bio 4 Temperature Seasonality
Bio 5 Maximum Temperature of the Warmest Month
Bio 6 Minimum Temperatures of the Coldest Month
Bio 7 Temperature Annual Range
Bio 8 Mean Temperature Wettest Quarter
Bio 9 Mean Temperature Driest Quarter
Bio 10 Mean Temperature of the Warmest Quarter
Bio 11 Mean Temperature of the Coldest Quarter
Bio 12 Annual Precipitation
Bio 13 Precipitation of Wettest Month
Bio 14 Precipitation of Driest Month
Bio 15 Precipitation Seasonality
Bio 16 Precipitation of Wettest Quarter
Bio 17 Precipitation of Driest Quarter
Bio 18 Precipitation of Warmest Quarter
Bio 19 Precipitation of Coldest Quarter

TABLE 1: Poplar species gathered from global biodiversity information facility, 
including localities and counts.
Poplar species Province No.

Populus simonii Western Cape 2
Populus nigra Northern Cape, North West, Free State, 

KwaZulu-Natal, Western Cape, Eastern 
Cape, Mpumalanga, Gauteng and 
Limpopo

58

Populus fremontii KwaZulu-Natal 1
Populus deltoides Northern Cape, KwaZulu-Natal, Western 

Cape, Eastern Cape, Mpumalanga, 
Gauteng and Limpopo

36

Populus canescens Northern Cape, North West, Free State, 
KwaZulu-Natal, Western Cape, Eastern 
Cape, Mpumalanga, Gauteng and 
Limpopo

309

Populus canadensis Free State and Mpumalanga 3
Populus alba Northern Cape, North West, Free State, 

KwaZulu-Natal, Western Cape, Eastern 
Cape, Mpumalanga, Gauteng and 
Limpopo

58

Total 467

No., number.

0 180 360
km

Populus alba
Populus canadensis
Populus canescens
Populus deltoides
Populus fremontii
Populus nigra
Populus simonii
South Africa

FIGURE 1: Depicts the distribution of different Populus species in South Africa.

http://www.koedoe.co.za


Page 4 of 14 Original Research

http://www.koedoe.co.za Open Access

determining the occurrence and distribution of poplar in the 
South African landscape. All the models were set to repeat 
10 times to ensure that our modelling results are consistent 
and accurate. The accuracy of all models was assessed by the 
area under the curve (AUC).

Ethical considerations
This article followed all ethical standards for research 
without direct contact with human or animal subjects.

Results
Model performance and validation
The geographic distribution of poplar trees (P. alba, 
P.  canadensis, P. canescens, Populus deltoides, P. fremontii, 
Populus nigra and Populus simonii) were modelled in South 
Africa using GLM, RFs and SVM models, and their 
performance is shown in Table 3. The results show excellent 
performance for all models, with RF achieving the highest 
correlation of 0.83 and 0.965 AUC. This was followed by 
SVM and then GLM with correlation and AUC of 0.72 and 
0.959, and 0.65 and 0.937, respectively (Table 3). A key feature 
of these results is the superior performance of machine 
learning methods than a regression model. In Figure 2, the 
comparison of the model accuracies with the receiver 
operator characteristics (ROC) curve is shown. Here, ROC 
shows the proportion of the true positive (presence) rate and 
the false positive (absence) rate for poplars. Higher RF AUC 
values indicate the ability to identify the presence and 
absence of poplar samples (Figure 2a), followed by SVM 
(Figure 2b) and then GLM (Figure 2c).

Distribution of poplar in South Africa
In this section, the results of the modelled poplar distribution 
are presented for South Africa using RF, SVM and GLM, 
and  the results are shown in Figure 3. All models showed 
a  similar pattern of poplar distribution, with higher 
concentration in the south-western part of the Western Cape, 
the southern Cape on the Garden Route, the central-eastern 
Free State, and the north-eastern part of the country in 
Mpumalanga, even in Limpopo (Figure 3a–c). However, RF 
had a better prediction performance than its counterparts 
(see Figure 2).

Populus nigra, P. alba, and P. canescens appear to have suitable 
habitats throughout the rest of the country, except for the 
extremely hot and arid northern parts of the Northern Cape 
(Figure 4a). This conclusion was reached after overlaying all 
poplar species points on the results of a RFs modelling 
application. Many provinces have populations of P. deltoides; 
however, it has not been recorded in provinces such as 
the  North West and the Free State. Nevertheless, there 
are  just a few records of P. simonii (Western Cape), 
P. fremontii (KwaZulu-Natal), and P. canadensis (Free State 
and Mpumalanga) in South Africa (see Figure 4a). Overall, 
poplar species appear to be highly distributed in temperate 
regions with adequate rainfall patterns and less in arid 
deserted areas (see Figure 4b and Appendix 3). This is not 
surprising because the majority of poplar species require an 
inordinate amount of water to flourish and survive.

In assessing the occurrence status of poplars in South African 
protected areas, this study found that poplars are common 
in few protected areas, where conditions are more 
favourable. These include Golden Gate Highlands National 
Park, Table Mountain National Park, Cape Peninsula Nature 
Reserve, Tweefontein Reserve and the Platberg Private 
Nature Reserve to name but a few (see Appendix 1 and 
Appendix 2).
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FIGURE 2: Receiver operator characteristics curve for (a) random forests, (b) support vector machine, and (c) generalised linear model.

TABLE 3: A summary of model performance.
Model Correlation AUC

Random forests 0.83 0.965
Support vector machine 0.72 0.959
Generalised linear model 0.65 0.937

AUC, area under the receiver operation characteristics curve.
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Of the 13 predictors used, Bio 4 (temperature seasonality), 
Bio 10 (mean temperature of the warmest quarter), Bio 11 
(mean temperature of the coldest quarter), Bio 12 (annual 
precipitation), Bio 13 (precipitation of wettest month), Bio 14 
(precipitation of the driest month), Bio 17 (precipitation of 
the driest quarter) and B 18 (precipitation of the warmest 
quarter) were found to be significant in determining the 
occurrence status of poplars (Table 4). The results seem to 
indicate that seasonal variation in temperatures and average 
temperatures of the warmest and coldest quarter are potential 
influencers of poplar distribution as far as temperature 
is  concerned. From rainfall perspective, precipitation 
experienced annually, during the wettest month, driest 
month, driest quarter and warmest quarter are all integral in 
contributing towards the existence and invasion of poplar 
species in South Africa. Overall, the results suggest that 
regions that receive sufficient rainfall in all phases of the year 
and experience optimum temperatures during warm and 
coldest months are likely to host poplar occurrences.

The study ranked the contribution of all 13 environmental 
variables in determining poplar occurrence and distribution 
and found the warmest and driest quarter precipitation, and 
annual precipitation to be the top three contributing factors 
(refer to Figure 5). The findings highlight the significance of 
wet conditions and water availability for poplar presence in 
South Africa.

Discussion
This study provided a successful prediction of poplar species 
distribution in South African landscapes and allowed the: (1) 
understanding of the geographic distribution and pattern of 
poplars in the country, (2) identification of environmental 
conditions that most affect poplar occurrences and dispersion, 
and (3) testing of the superior performance of Machine 
Learning models (RF and SVM), for modelling species 
distribution over a regression model.

The results showed that poplars are mainly found in regions 
of warm temperature and high rainfall in South Africa, 
including the south-western parts of the Western Cape and 
Northern Cape, the southern Cape on the Garden Route, the 
central-eastern Free State, western parts of KwaZulu-Natal, 

Gauteng, eastern parts of Northwest, the north-eastern part 
of the country in Mpumalanga and Limpopo. These also 
include protected areas found in the aforementioned regions, 
such as Golden Gate Highlands National Park (Daemane, 
Van Wyk & Moteetee 2010), Table Mountain National Park, 
Cape Peninsula Nature Reserve, Tweefontein Reserve, and 
Platberg Private Nature Reserve, to name but a few. The 
findings also seem to suggest that species such as P. nigra, 
P.  alba, P. canescens, and P. deltoides are mostly found 
throughout the country, in the wetter and warmer provinces. 
Their ability to thrive in semi-drier to wetter conditions may 
cause this adaptation (Caudullo & De Rigo 2016; De Rigo 
et al. 2016). The majority develop themselves organically and 
thrive when enough water and sunlight are available. For 
windbreaking and decorative purposes, poplar species 
including P. simonii, P. fremontii, and P. canadensis are planted 
in homes and streets and are carefully tended to with 
frequent irrigation. Overall, the results are consistent with 
Ntshidi et  al. (2018) and Mtengwana et  al. (2021), because, 
from a geographic perspective, invasive species predominate 
in the wetter parts of the country, which are important water 
sources for the country’s major rivers. Poplar needs enough 
water and warmer temperatures for better growth and 
survival (Fischer et al. 2018; Kalcsits, Silim & Tanino 2009). 
This justifies their occurrence in riparian zones, and 
warmer and wetter parts of the country (Sperandio et al. 2022; 
Xi et al. 2021). While its invasiveness has not been extensively 
studied, like any other invasive species, it competes with 
native important species for resources, and at most 
outcompete them (Poudel et  al. 2019; Zhang et  al. 2021). 
Therefore, the results of this study are important as they 
enable the understanding of the patterns of their spread 
across the country and selected protected areas to know 
what interventions to put in place to monitor and manage 
them. In protected areas under the SANParks, poplar is 
categorised as species of special concern, which requires 
constant monitoring and management (SANParks 2020). 
However, knowledge about what constitutes to its spread is 
not yet available. Therefore, it is hoped that this gap will be 
filled as an extension of this study.

It is well known that the geospatial distribution of plants is 
largely influenced by an interplay of multiple mechanisms, 
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FIGURE 3: Modelled distribution of poplars in South Africa using (a) random forests, (b) support vector machine, and (c) generalised linear model.
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FIGURE 4: (a) Random forests prediction map and (b) a June 2022 to June 2023 rainfall map with poplar points overlayed on both.
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including climate and other environmental characteristics 
(Chen et  al. 2014). Although some of these parameters are 
not part of this modelling approach, they are likely to help 
determine poplar distribution. To some extent, the variations 
in topography and land cover are related to climatic variations 
(Huang et al. 2021; Krauss et al. 2008); hence, it is preferred to 
focus solely on the bioclimatic variables. Therefore, it is 
assumed that the observed distribution of the  poplars 
depends solely on the current climate. For this reason, the RF 
was used to evaluate the most influential climatic variables. In 
doing so, this study found that warmest and driest quarter’s 
precipitation and annual precipitation are the most important 
variables in the prediction of poplar trees. In fact, warmer and 
humid conditions are favourable for poplars, while cold and 
dry conditions appear to be unsuitable. Likewise, Yudaputra, 
Robiansyah and Rinandio (2019) using RF, examined the 
variables essential to the dispersal of Eusideroxylon zwageri in 
Indonesia and found that precipitation in the coldest months, 
precipitation seasonality, and isothermality are the most 
important variables affecting the dispersal of the target 
species. This information is important for predicting the 

habitat suitability of landscapes to allow for the existence of 
species and thus their future spread (Burns, Clemann & White 
2020; Zhang et al. 2019).

The results of this study are consistent with previous 
studies in which machine learning methods (RF and SVM) 
outperformed a regression model (GLM) (Ahmed et al. 2021). 
The superior performance of RF was also confirmed by 
Jensen et al. (2020) in their prediction of an invasive Kudzu 
vine in the USA using Sentinel-2. Random Forest uses only a 
random subset of the predictor variables for each subset as 
each tree grows. This creates decorrelated trees and reduces 
the variance of the final model (Hastie, Tibshirani & 
Friedman 2009). Additionally, RF avoids overfitting, 
although they can have quite a complex response, making 
RF the best model for modelling species distribution. As the 
second-best model, SVM works by constructing a series of 
hyperplanes to separate data points based on their class 
(Ahmed et al. 2021; Kass et al. 2021). Performance is often 
poor when the number of background samples significantly 
exceeds the occurrence records. This is largely due to class 
overlap (García-Roselló et al. 2019). This issue was combated 
by applying weights, which significantly increases the cost 
of misclassifying presence points (Duan et al. 2014). Support 
Vector Machine has been acknowledged for its performance 
in SDMs in many studies. For example, Bedia, Busqué and 
Gutiérrez (2011) used SVM and other models to predict the 
distribution of plant species in an alpine rangeland in 
northern Spain. Hailu et  al. (2017) reported that SVM 
performed well together with MaxEnt in assessing the 
spatial distribution of Coffea arabica in the Ethiopian 
highlands. It is said that SVM essentially performs better 
than RF, especially when the number of observed occurrences 
is small, since it can be trained with few meaningful pixels 
(Pouteau et al. 2012). Generalized linear model is the least 
performing model in this study and is commonly used to 
determine the distribution pattern of  species using the 
iterative weighted linear regression technique to obtain the 

TABLE 4: Evaluation of environmental factors for predicting the distributions of 
poplars.
Exploratory variable Bioclim P Significance

Mean_Diurnal_Range 2 0.271961 -
Temp_Seasonality 4 0.000045 ***
Max_Temp_warmest.Month 5 0.531755 -
Min_Temp_Coldest_Month 6 0.28809 -
Mean_Temp_Driest_Quarter 9 0.467704 -
Mean_Temp_Warmest_Quarter 10 0.0000528 ***
Mean_Temp_Coldest_Quarter 11 0.0000974 ***
Annual_Precip 12 0.000367 ***
Precip_Wettest_Month 13 0.001182 **
Precip_Driest_Month 14 0.00000431 ***
Precip_Wettest_Quarter 16 0.076492 -
Precip_Driest_Quarter 17 0.000157 ***
Precip_Warmest_Quarter 18 0.022961 *
Precip_Coldest_Quarter 19 0.471873 -

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Precip_Warmest_Quarter
Precip_Driest_Quarter
Annual_Precip
Mean_Temp_Coldest_Quarter
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FIGURE 5: The importance of bioclimatic variables measured using random forests (a) percentage IncMSE and (b) IncNodePurity.
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estimated maximum likelihood of the parameters (Fukuda 
et al. 2013; Godsoe 2014). Its relative performance to RF and 
SVM is consistent with other similar studies. However, in 
some applications, the GLM has been found to perform 
better than the Boosted Regression Tree in predicting the 
distribution of eight different species in Australia (Shabani 
et al. 2016). Overall, all three models performed well as they 
achieved an AUC > 0.9, confirming their value to model 
species distributions, especially machine learning-based 
techniques.

Conclusions
This study predicted poplar distribution in South Africa 
using machine learning (RF and SVM) and regression (GLM) 
models. The results showed that poplars are mostly 
distributed in the warmer regions that receive the above 
average rainfall of the country, from the southwest of the 
Western Cape and Northern Cape, the central Free State, 
western parts of KwaZulu-Natal, eastern parts of North 
West, Mpumalanga, Gauteng, to the southern parts of 
Limpopo. This distribution appears to affect several protected 
areas from a conservation perspective, including the Golden 
Gate Highlands National Park, Table Mountain National 
Park, Cape Peninsula Nature Reserve, Tweefontein Reserve, 
and Platberg Private Nature Reserve to name but a few. The 
results of this study showed that machine learning methods 
(RF, 0.965 and SVM, 0.959) outperformed GLM (0.937) in 
predicting the occurrence and distribution of poplar trees 
under the current climatic conditions, with RF performing 
the best. Based on RF, the warmest and driest quarter’s 
precipitation and annual precipitation were the most 
influential climatic parameters for poplar distribution in 
South Africa. With continued evolution of SDMs, more 
poplar distribution data and availability are expected to 
further improve the understanding of species distribution 
and environmental variables that influence predictive 
performance. 
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Appendix 1
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FIGURE 1-A1: Protected areas overlaid on the poplar habitat suitability map to represent protected areas best suited for poplar growth.
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Appendix 2
TABLE 1-A2: A list of protected areas where poplars occur.
Species name Latitude Longitude Protected area Type of protected area

Populus alba -30.711154 27.689445 Balloch Protected Environment Protected Environment
Populus alba -25.625 29.375 Buks Private Nature Reserve Nature Reserve
Populus alba -34.053869 18.430926 Cape Floral Region Protected Areas World Heritage Site
Populus alba -34.079385 18.406036 Cape Floral Region Protected Areas World Heritage Site
Populus alba -34.208938 18.401856 Cape Floral Region Protected Areas World Heritage Site
Populus alba -34.053869 18.430926 Cape Peninsula Nature Area Nature Reserve
Populus alba -28.52354 28.413926 Clarens Private Nature Reserve Nature Reserve
Populus alba -28.516535 28.404204 Clarens Private Nature Reserve Nature Reserve
Populus alba -25.97609 27.83956 Fossil Hominid Sites of SA World Heritage Site
Populus alba -28.505556 28.618333 Golden Gate Highlands National Park National Park
Populus alba -28.50488 28.61942 Golden Gate Highlands National Park National Park
Populus alba -34.048175 18.91107 Lourens River Protected Natural Environment Protected Environment
Populus alba -32.375 25.375 Mountain Zebra-Camdeboo Protected Environment Protected Environment
Populus alba -32.193655 24.78448 Mountain Zebra-Camdeboo Protected Environment Protected Environment
Populus alba -28.283675 29.113439 Platberg Private Nature Reserve Nature Reserve
Populus alba -28.283675 29.113439 Platberg Private Nature Reserve Nature Reserve
Populus alba -34.079385 18.406036 Silvermine Nature Reserve Nature Reserve
Populus alba -34.053869 18.430926 Table Mountain National Park National Park
Populus alba -34.079385 18.406036 Table Mountain National Park National Park
Populus alba -34.208938 18.401856 Table Mountain National Park National Park
Populus alba -25.125 30.625 Tweefontein Reserve Forest Nature Reserve
Populus alba -25.125 30.625 Tweefontein Reserve Forest Nature Reserve
Populus alba -33.860669 18.599146 Tygerberg Nature Reserve Nature Reserve
Populus canescens -33.966542 18.92672 Assegaaibos Provincial Nature Reserve Nature Reserve
Populus canescens -33.997081 18.4229 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.026757 18.413942 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.006993 18.387344 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.006336 18.411158 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.025989 18.413635 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.027215 18.414266 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.0537 18.4309 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.107 18.4095 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.031178 18.39395 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.053984 18.431027 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.053728 18.430565 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.062271 18.411171 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.0552 18.4306 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.9837 18.43437 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.031726 18.393571 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.054034 18.430863 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.000756 18.412271 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.006164 18.414939 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.062021 18.409423 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.987648 18.428804 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.875 22.125 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.125 19.125 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.05395 18.430772 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.201709 18.390701 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.966542 18.92672 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.969362 18.934983 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.997283 18.415584 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.996747 18.41566 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.997462 18.415873 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.054055 18.43079 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.062137 18.411015 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -34.065174 18.412399 Cape Floral Region Protected Areas World Heritage Site
Populus canescens -33.997081 18.4229 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.006336 18.411158 Cape Peninsula Nature Area Nature Reserve

TABLE 1-A2 Continues on the next page →
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TABLE 1-A2 (Continues...): A list of protected areas where poplars occur.
Species name Latitude Longitude Protected area Type of protected area

Populus canescens -34.0537 18.4309 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.031178 18.39395 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.053984 18.431027 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.053728 18.430565 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.062271 18.411171 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.0552 18.4306 Cape Peninsula Nature Area Nature Reserve
Populus canescens -33.9837 18.43437 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.031726 18.393571 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.054034 18.430863 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.000756 18.412271 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.006164 18.414939 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.062021 18.409423 Cape Peninsula Nature Area Nature Reserve
Populus canescens -33.987648 18.428804 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.05395 18.430772 Cape Peninsula Nature Area Nature Reserve
Populus canescens -33.997283 18.415584 Cape Peninsula Nature Area Nature Reserve
Populus canescens -33.996747 18.41566 Cape Peninsula Nature Area Nature Reserve
Populus canescens -33.997462 18.415873 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.054055 18.43079 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.062137 18.411015 Cape Peninsula Nature Area Nature Reserve
Populus canescens -34.065174 18.412399 Cape Peninsula Nature Area Nature Reserve
Populus canescens -28.516643 28.40519 Clarens Private Nature Reserve Nature Reserve
Populus canescens -25.625 28.125 De Onderstepoort Nature Reserve Nature Reserve
Populus canescens -34.108132 19.240476 Diepklowe Private Nature Reserve Nature Reserve
Populus canescens -34.014633 19.592889 Greyton Natuurpark Nature Reserve
Populus canescens -33.375 22.375 Groot Swartberg Mountain Catchment Area Mountain Catchment Area
Populus canescens -34.071052 23.068163 Knysna National Lake Area Protected Environment
Populus canescens -34.08293 18.869153 Lourens River Protected Natural Environment Protected Environment
Populus canescens -34.082997 18.870622 Lourens River Protected Natural Environment Protected Environment
Populus canescens -34.082436 18.87118 Lourens River Protected Natural Environment Protected Environment
Populus canescens -34.066775 18.896596 Lourens River Protected Natural Environment Protected Environment
Populus canescens -32.006647 24.814122 Mountain Zebra-Camdeboo Protected Environment Protected Environment
Populus canescens -24.963083 30.631032 Ohrigstad Dam Nature Reserve Nature Reserve
Populus canescens -24.957372 30.627905 Ohrigstad Dam Nature Reserve Nature Reserve
Populus canescens -31.445146 19.070025 Oorlogskloof Nature Reserve Nature Reserve
Populus canescens -31.511203 19.116789 Oorlogskloof Nature Reserve Nature Reserve
Populus canescens -31.448824 19.068098 Oorlogskloof Nature Reserve Nature Reserve
Populus canescens -33.92787 18.850667 Papegaaiberg Nature Reserve Nature Reserve
Populus canescens -33.94088 18.844733 Papegaaiberg Nature Reserve Nature Reserve
Populus canescens -33.927813 18.850595 Papegaaiberg Nature Reserve Nature Reserve
Populus canescens -33.931747 18.851838 Papegaaiberg Nature Reserve Nature Reserve
Populus canescens -34.014633 19.592889 Riviersonderend Mountain Catchment Area Mountain Catchment Area
Populus canescens -33.627432 23.330077 Sustersdal Private Nature Reserve Nature Reserve
Populus canescens -33.997081 18.4229 Table Mountain National Park National Park
Populus canescens -34.026757 18.413942 Table Mountain National Park National Park
Populus canescens -34.006993 18.387344 Table Mountain National Park National Park
Populus canescens -34.006336 18.411158 Table Mountain National Park National Park
Populus canescens -34.025989 18.413635 Table Mountain National Park National Park
Populus canescens -34.027215 18.414266 Table Mountain National Park National Park
Populus canescens -34.0537 18.4309 Table Mountain National Park National Park
Populus canescens -34.107 18.4095 Table Mountain National Park National Park
Populus canescens -34.031178 18.39395 Table Mountain National Park National Park
Populus canescens -34.053984 18.431027 Table Mountain National Park National Park
Populus canescens -34.053728 18.430565 Table Mountain National Park National Park
Populus canescens -34.062271 18.411171 Table Mountain National Park National Park
Populus canescens -34.0552 18.4306 Table Mountain National Park National Park
Populus canescens -34.031726 18.393571 Table Mountain National Park National Park
Populus canescens -34.054034 18.430863 Table Mountain National Park National Park
Populus canescens -34.000756 18.412271 Table Mountain National Park National Park
Populus canescens -34.006164 18.414939 Table Mountain National Park National Park
Populus canescens -34.062021 18.409423 Table Mountain National Park National Park
Populus canescens -34.05395 18.430772 Table Mountain National Park National Park

TABLE 1-A2 Continues on the next page →
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TABLE 1-A2 (Continues...): A list of protected areas where poplars occur.
Species name Latitude Longitude Protected area Type of protected area

Populus canescens -33.997283 18.415584 Table Mountain National Park National Park
Populus canescens -33.996747 18.41566 Table Mountain National Park National Park
Populus canescens -33.997462 18.415873 Table Mountain National Park National Park
Populus canescens -34.054055 18.43079 Table Mountain National Park National Park
Populus canescens -34.062137 18.411015 Table Mountain National Park National Park
Populus canescens -34.065174 18.412399 Table Mountain National Park National Park
Populus canescens -34.006993 18.387344 Table Mountain Nature Reserve Nature Reserve
Populus deltoides -34.010574 18.404726 Cape Floral Region Protected Areas World Heritage Site
Populus deltoides -25.625 28.125 De Onderstepoort Nature Reserve Nature Reserve
Populus deltoides -34.010574 18.404726 Table Mountain National Park National Park
Populus deltoides -34.010574 18.404726 Table Mountain Nature Reserve Nature Reserve
Populus nigra -30.715312 27.697108 Balloch Protected Environment Protected Environment
Populus nigra -26.5839 25.574 Barberspan Nature Reserve Nature Reserve
Populus nigra -25.922158 27.974828 Diepsloot Nature Reserve Nature Reserve
Populus nigra -28.505786 28.618008 Golden Gate Highlands National Park National Park
Populus nigra -28.504375 28.612449 Golden Gate Highlands National Park National Park
Populus nigra -28.505313 28.620811 Golden Gate Highlands National Park National Park
Populus nigra -28.508797 28.622981 Golden Gate Highlands National Park National Park
Populus nigra -28.505086 28.616564 Golden Gate Highlands National Park National Park
Populus nigra -28.503198 28.62032 Golden Gate Highlands National Park National Park
Populus nigra -28.504928 28.616906 Golden Gate Highlands National Park National Park
Populus nigra -28.505086 28.616564 Golden Gate Highlands National Park National Park
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Appendix 3
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FIGURE 1-A3: South African Climatic Zones with poplar species overlayed.
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