Parasitological Society of Southern Africa

The following are abstracts of papers and posters presented at the 36th Annual Congress of the Parasitological Society of Southern Africa (PARSA), 18–20 September 2007, Pestana Kruger Lodge, Malelane, South Africa

Keynote Addresses

Understanding the role of gametocytes in the transmission of malaria and spread of antimalarial resistance

K I Barnes
Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa. E-mail: karen.barnes@uct.ac.za

Although eliminating the pathogenic asexual stages of Plasmodium falciparum is pivotal for the successful treatment of individual symptomatic patients, at a population level reducing the carriage of viable gametocytes is crucial for limiting the transmission of malaria parasites. Gametocytes are the non-pathogenic sexual stages of the P. falciparum parasite responsible for transmission of the infection from the human (or other vertebrate) host to the mosquito vector. The probability of a mosquito being infected depends on the duration and density of viable infectious gametocyte carriage in the human host, although immune responses also influence transmission. For P. falciparum there is a clear, albeit variable, relationship between gametocyte density and transmissibility. Antimalarial drug resistance spreads because of the increased transmission potential of resistant infections. The association between gametocyte prevalence and density (and thus predicted infectivity) with 1) pre-treatment asexual parasite density, 2) dihydrofolate reductase (dhfr) and dihydropterotate synthetase (dhps) mutation frequency, 3) clinical and parasitological response to treatment, and 4) artemisinin-based combination therapy was studied in South Africa and Mozambique. Increased gametocyte carriage was the earliest indicator of increasing sulfadoxine-pyrimethamine resistance, preceding a significant increase in asexual parasites or treatment failure rates. Relatively higher gametocyte carriage in the primary infection, as well as in the recrudescence infection, fuels the spread of the sulfadoxine-pyrimethamine resistant genotype. Artemisinin-based combination therapy was associated with highly significant reductions in gametocyte carriage. The implications of these findings on malaria transmission and the spread of antimalarial resistance will be presented.

Comparison of Babesia rossi and Babesia canis isolates with emphasis on effects of vaccination with soluble parasite antigens

T P M Schetters
Parasitology R&D Department, Intervet International, BV, PO Box 31, 5830 AA Boxmeer, the Netherlands. E-mail: tho.schetters@intervet.com

Babesia canis and B. rossi are large Babesia species that infect dogs and cause clinical disease. The spectrum of disease is highly diverse with either parasite, but upon evaluation of field cases it has been suggested that in general B. rossi is more virulent than B. canis. This difference was also found in experimental infections using B. canis and B. rossi isolates and appeared to be related to a difference in parasitaemia. Whether this difference reflects the essential difference between B. canis and B. rossi species in general, or merely reflects the variability in virulence of individual isolates cannot be discerned. Comparative in vitro and in vivo studies revealed a number of qualitative differences between the B. canis and B. rossi isolates studied; however, more research is required to determine any causal relationship between in vitro and in vivo characteristics. Vaccination with a bivalent vaccine (containing soluble parasite antigen [SPA] from supernatants of in vitro cultures of B. canis and B. rossi) induced protection against clinical babesiosis upon challenge infection with either parasite. The dynamics of parasitaemia upon challenge infection of vaccinated animals indicated a biological difference between the B. canis and B. rossi isolates studied. Vaccinated dogs that were challenged with B. rossi parasites (2 isolates tested) effectively controlled parasitaemia. By contrast, vaccinated dogs that were challenged with B. canis isolates (2 isolates tested) had little or no effect on parasitaemia but showed reduced levels of SPA in plasma. Apparently the nature of vaccine-induced immunity differs with respect to the challenge species.

Genes and health: The role of immune gene variability (MHC) in parasite resistance in fragmented animal populations

S Sommer
Leibniz-Institute for Zoo- and Wildlife Research (IZW), Evolutionary Genetics, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany. E-mail: sommer@izw-berlin.de

Current discussions in conservation genetics focus on the relative importance of using selective neutral markers or markers of coding genes to identify processes of adaptive and evolutionary relevance in free-ranging animal populations faced by changing environmental conditions. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC) because its gene products play an important role in immune functions. The central role of the MHC in terms of pathogen and parasite defense is undoubled (reviewed by Sommer 2005). We studied the importance of genetic diversity on resistance to gastrointestinal parasites in 10 populations of yellow necked mice (Apodemus flavicollis), a common rodent in Europe. The populations were sampled in habitat fragments of various sizes and differed in their levels of genetic diversity due to population size and gene flow. We found no evidence of an association between neutral genetic diversity measured by microsatellites and pathogen resistance amongst populations. However, the number of functionally important MHC-alleles within a population was significantly correlated with the parasite load. On an individual level, specific MHC-alleles were associated with high/low infection intensity. These alleles differed in mutations in the functionally important antigen binding sites. Similar results were observed in studies on the impact of fragmentation on the genetic constitution and parasite resistance in 2 lemur species (Microcebus murinus, Cheirogaleus medius) in Madagascar. The studies highlight the importance of adaptive genetic diversity in population health and conservation genetics.

Oral Presentations

Monogenea parasitising marine fishes in the Tsitsikamma National Park on the South Coast of South Africa

Q T Anderson1, P H King1 and N J Smit2
1Department of Biology, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa. E-mail: piking@ul.ac.za
2Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 South Africa

The class Monogenea consists of small hermaphroditic ectoparasites with direct life cycles that are highly host specific. They are parasitic on marine and freshwater fish and are usually found on the skin, fins, nasal fossae and gills. They attach with a specialised posterior structure, the opisthaptor bearing hooks, hooklets, clamps or suckers. We investigated the monogeneans on the gills of selected marine fish in the Tsitsikamma National Park. All fish species were collected with hand nets and line in rock pools and lagoons. Fish were anaesthetised with clove oil whereafter the gills were removed. Monogeneans were fixed in 70 % EtOH or 10 % formalin and stained in ammonium picrate for light microscopy. Other material was fixed in glutaraldehyde for scanning electron microscopy. The following species were found to be infected with monogeneans: Amblyclion kenkei, Diplodus capensis, D. hortentitius, Chirodactyles brachydactylus, Liza richardseni, Rhabdosargus holubi and Sparodon durbanensis. Morphological studies revealed that there were 9 different monogenean species, all of which were highly host
The parasite load on each fish was low, ranging from 1 to 72 parasites per fish. None of the monogenean species found have previously been studied in this geographical location. The study indicated 9 unknown monogenean species from 7 fish hosts. Future studies on other fish species should be attempted in order to report on the diverse spectrum of monogeneans that seem to infest marine fish along the southwestern coast of South Africa.

Characterisation of South African Theileria equi and Babesia caballi isolates based on 18S rRNA gene sequences

R Bhooa, E Zweygarth, A J Guthrie, L Franssen, F Jongejan, M C Oosthuizen, B L Penzhorn and N E Collins

1Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X4, Onderstepoort, 0110 South Africa. E-mail: raksha.bhooa@up.ac.za
2Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort, 0110 South Africa
3Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag X4, Onderstepoort, 0110 South Africa

characterisation revealed variation in the sequences, explaining the failure of the real-time PCR assay to detect all samples. The sequences of the 18S rRNA gene were further analysed using samples representative of different geographical locations around South Africa. Whole blood samples were obtained and tested using the reverse line blot hybridisation assay. Samples that hybridised only to the Theileria/Babesia-genus specific probe and not to the Babesia or Theileria species-specific probes were selected for further sequence analysis. Results indicated that extensive sequence variation occurs in the 18S gene of Theileria equi and Babesia caballi. It is also evident that it will not be possible to design a real-time PCR assay to detect Theileria equi and Babesia caballi isolates based on the 18S rRNA gene and that the different gene will need to be identified for that purpose.

Malaria in the concrete jungle

L Blumberg, I Weber, L Baker, J Nyaluza and J Frean

National Institute for Communicable Diseases, Johannesburg, South Africa. E-mail: lucilleb@nicd.ac.za; johnf@nicd.ac.za

Despite being a statutorily notifiable disease, malaria cases in travellers outside the 3 malaria provinces in South Africa are erratically reported and little is known about the burden of disease. Lack of awareness by both the public and health professionals may lead to late diagnosis and sub-optimal outcomes. Imported malaria is common in Gauteng. Over a 12-month period, 1705 patients with malaria were reported per a questionnaire directed at hospital admissions. The majority of patients had returned from Mozambique (85%), where a diagnostic modality was reported (n = 1665). 98% of the malaria diagnoses were based on laboratory test results. Of 543 female patients, 39 (7%) were pregnant. 22.6% of patients were designated as severe. Thirty-seven patient deaths were reported (CFR 2.1%). In 976 cases (46%) a delay of more than 2 days was recorded, and 76% of patients did not suspect malaria. The majority of patients were treated with quinine as per the National Treatment Guidelines. Using laboratory data a further 4679 cases were identified during the first 6 months of the study period. A different category of malaria is that acquired by importation of infected mosquitoes. Gauteng receives a large volume of road traffic from risk areas inside and outside the borders of the country. Over an 8-year period we recorded 46 cases of malaria in residents who had not travelled to known risk areas, and we presume that most were manifestations of minibus taxi malaria. The case fatality rate was more than 10-fold higher than the national malaria case fatality rate. Medical practitioners should always be aware of the possibility of the diagnosis of malaria and travellers should be aware of the symptoms. Malaria should be looked for in any patient with otherwise unexplained fever and thrombocytopenia, even if there is no history of travel.

The use of multimedia in teaching veterinary histomorphology

J Boomker

Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa. E-mail: joop.boomker@up.ac.za

Multimedia are currently used in the Department of Veterinary Tropical Diseases as an effective and interesting way of teaching Veterinary Histomorphology to undergraduate and postgraduate students. It is well suited to demonstrate histomorphology and video. It is equally well suited to view the different morphological configurations of all 3 of the helminth orders by transferring micrographs taken with either a standard or stereoscopic microscope to multimedia software, such as Analysis™. The pathology caused by the various parasites can be added without too much trouble, provided 35 mm slides and/or video snippets of good quality are available. These are then scanned in and converted to Quest™ (slides) or converted to Flash™ format (video), and since Flash and Quest are compatible, a good quality product can be obtained. In this presentation the CD ROM that was produced for the training of post graduate students in the ‘Helminths of Ruminants’ module of the web-based M.Sc. is used as an example of how the different media can be integrated.

Prevalence of blood parasites in lions in Southern Africa

A-M Bosman, K Ebersohn, M C Oosthuizen, E Venter, W Killian and B L Penzhorn

1Department of Veterinary Tropical Diseases Faculty of Veterinary Science, Onderstepoort, South Africa. E-mail: bossein.bosman@up.ac.za
2Etosha Ecological Institute, Okaukuejo, Namibia

Babesia is an intracellular erythrocytic parasite that occurs in various mammal species. The 2 most frequently reported species in felids are Babesia felis, which causes clinical babesiosis in domestic cats, and Babesia leo, primarily reported from asymptomatic lions. A recent study showed that B. felis and B. leo occurred more frequently in the host from which they had initially been described, but were also detected in other felid species. Identification of blood parasites using morphology alone can be misleading, while nuclear acid techniques such as the reverse line blot (RLB) can be of great value to differentiate between various parasites in the same animal. Blood specimens were collected from captive as well as free-ranging lions. DNA was extracted and PCR amplicons of the V4 variable region of the 18S rDNA were analysed by the RLB assay. Results showed that although a high number of samples tested positive for B. leo, a number of samples that were collected from captive lions also tested positive for B. felis. These 2 parasites also occurred as mixed infections in some samples. Specimens collected from lions in Etosha National Park, Namibia, tested positive only with the genus-specific probe, which indicated that these parasites, which morphologically resemble B. leo, had sequences in the 18S rDNA gene that differed from those of B. leo. These results are currently under investigation.

Mantoscyphidiophorans (Ciliophora: Peritrichia) of gastropods in a marine environment

J Christie, L Basson and L van As

Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa. E-mail: christiep.scil@ufs.ac.za

Along the South African coast, several marine gastropods are host to a number of sessile peritrichs (Ciliophora) that belong to the genus Mantoscyphidium. These are M. fanthami found on various Oysterle species; M. brachi on all the limpet species and M. midle
and M. spadicae on Haliotis species, respectively. For the present study, gastropods, also known as alitreauls, spiny chitons as well as 3 species of limpets were collected from intertidal pools during spring low tide in April 2007 from the De Hoop Nature Reserve. The gills of these gastropods were removed and smears were made to collect the mantoscyphidians. Wet smears were fixed in Bouins and stained with Mayer’s haematoxylin to examine the nuclear apparatus. Gill material with chilophorans was fixed in 2.5 % glutaraldehyde and prepared for the scanning electron microscope and fixed in 70 % ethanol for confocal microscopy. The objective of this study is 2-fold: (1) to determine the ideal preparation technique for these species and (2) to determine the role that confocal microscopy can play in (a) distinguishing between different species and (b) in describing morphological differences between populations.

The ultrastructure of a louse found parasitising the European bee-eater Merops apiaster

F C Clarke1, C Baker2 and G Hasle

1Dept of Biology, University of Limpopo (Medunsa Campus), PO Box 139 MEDUNSA, 0204 South Africa. E-mail: clarke@medunsa.ac.za

2Electron Microscopy Unit, University of Limpopo (Medunsa Campus), PO Box 139 MEDUNSA, 0204 South Africa

The classification of lice is based on internal characteristics such as carinae and endocarinae, visible in cleared and mounted specimens as seen through the light microscope. This study intends to provide a detailed ultra-structural study to confirm previously described characteristics and describe characteristics previously not recognised. Specimens were collected from European bee-eaters on the farm Olifantskop in the Ellisras district, fixed in 70 % ethanol, routinely prepared for SEM and viewed in a Leica Stereoscan 420 at 10 to 15 kV. The head is exceptionally large compared to the body. The typical clypeus of the non-circumfasciate head was found to be very large but modified by a large anterior notch. Ventrally, the notch follows into a broad, shallow groove. Pulvilar lobes appear to be absent. The mouthparts are bilaterally symmetrical and mandibles appear more delicate and slender, with mandibular notches, shallow and longer than expected. The antennae appear typical in both sexes with plate, pore and peg organs clearly defined. The antennae are protected by an exceptionally large conus and large temporal regions. The prothorax appears much reduced and narrow, with the abdomen short and round, an indication that this is a body louse. Each leg bears 2 dorsal, opposed by 2 ventral, pretarsal claws. Six pairs of anal spiracles are present on segments III–VIII with only a stigmatal scar on the 2nd segment. The female gonopore is broad, flanked by a setae-bearing lateral flap on each side. None of the male specimens revealed everted parameters, or a pseudopenis.

Malaria Decision Support System Project

M Coleman

Medical Research Council, Durban, KwaZulu-Natal, South Africa. E-mail: mcoleman@mrc.ac.za

Malaria is a vector-borne disease that causes extensive morbidity and mortality. Both morbidity and mortality have rightly received a lot of attention in monitoring of malaria control programmes. However, other indicators that are vital to the success of reducing morbidity and mortality have received less attention. This project looks at ways of integrating multiple indicators into a Malaria Decision Support System to facilitate informed decision making and policy making for malaria control. Malaria vector control relies on the use of insecticide; Vector control programmes apply insecticides often on the basis of anecdotal data and/or general guidelines. The MDSS allows; i) Monitoring of entomological and epidemiological parameters related to disease transmission. ii) Improvement of vector control via prompt timely and focussed application of control methods. iii) Better informed decision making regarding spatial distribution of malaria risk and heterogeneity at town-sub-town level. Continuous monitoring of house structure is advised to ensure that appropriate insecticides for wall surfaces are procured and used. Any alternative or supplementary interventions will be dependent on a sound knowledge of local household characteristics and understanding focal malaria risk. Cluster analysis will allow for focused integrated malaria control strategies to be implemented.

Taxonomic review of the genus Eupolystoma (Monogenea: Polystomatidae)

A Delport and L Du Preez

Zoology, School of Environmental Sciences & Development, North-West University, Potchefstroom Campus, Potchefstroom, South Africa. E-mail: adri.delport@nwu.ac.za

The aim is to identify malaria clusters and heterogeneity of risk factors for disease transmission at town and village level. This will allow for informed decisions regarding focused interventions. Malaria clusters were determined over 3 seasons using SaTScan™, with specific reference to retrospective space–time permutation and the Bernoulli purely special model. Notified cases were investigated to obtain household information using field forms. Among the 7 towns investigated 4 significant spatial clusters and 2 temporal clusters were identified. One outbreak and 1 alert were confirmed by clusters. Bednet ownership was high (86 %) but usage low (63 %). Households walls constructed from mud were predominant (56 %). Thirteen per cent of cases were wrongly classified as local or imported. Relational data sets produced valuable information regarding spatial distribution of malaria risk and heterogeneity at sub-town level. Continuous monitoring of house structure is advised to ensure that appropriate insecticides for wall surfaces are procured and used. Any alternative or supplementary interventions will be dependent on a sound knowledge of local household characteristics and understanding focal malaria risk. Cluster analysis will allow for focused integrated malaria control strategies to be implemented.
Copper oxide wire particles in control of *Haemonchus contortus* in naturally infected sheep in Kenya

J B Githiori1, J M Mugambi2, A Vatta3, P J Waller4 and G Medley5

1International Livestock Research Institute (ILRI), PO Box 30709-00100, Nairobi, Kenya. E-mail: j.githiori@cgiar.org
2Kenya Agricultural Research Institute PO Box 32, Kikuyu, Kenya
3Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110 South Africa
4Department of Parasitology (SWEPAR), National Veterinary Institute, SE-751 89, Uppsala, Sweden
5University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, United Kingdom

The utility of copper oxide wire particle (COWP) boluses in reducing *Haemonchus contortus* infections was assessed in 2 groups of 24, 6 to 9 months-old, Red Masai and Dorper crosses. COWP boluses were administered at 2 g and 4 g dosages to assess if they had an extended anthelmintic effect against incoming or established *H. contortus* infections. Within each group, 8 sheep were randomly allocated a 2 g- or 4 g-dose or were left as controls and were exposed to pasture infections before or after treatment with COWP. Two grams of COWP resulted in a faecal egg count reduction (FECR) between 47 and 31 % from weeks 4–6 post-treatment in the group used to assess the effect of COWP on incoming larvae and between 92 and 44 % from weeks 2–6 post-treatment in animals that had established infections. The 4 g bolus had a FECR of between 84 and 44 % from week 4–6 post-treatment in sheep used to assess the effect of incoming larvae while a FECR of 96–50 % from week 2–8 in sheep already infected using the same dose. Significantly lower faecal egg counts were observed in animals treated with both doses of COWP in sheep which had established infections. No significant differences were observed in measurement of PCV in animals treated before or after infections. COWP had a limited effect on incoming larvae but had an extended period of effect on existing *H. contortus* infections. COWP boluses have the potential to be used as a dewormer by resource-poor farmers, as an adjunct in the control of *H. contortus* or for the treatment of *H. contortus* in naturally infected sheep.

The micromorphology of the cattle tail louse *Haematopinus quadripertusus*

E D Green1 and M L Turner2

1Department of Anatomy, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa. E-mail: edward@medunsa.ac.za
2Electron Microscope Unit, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa

Lice collected from cattle in the Caprivi, Namibia, were identified as the cattle tail louse *Haematopinus quadripertusus*. This obligative haematophagous louse is a tropical species reportedly causing cattle to become emaciated. As this species is difficult to distinguish from the shortnosed cattle louse *H. cyanurus*, it was decided to do a scanning electron microscopic (SEM) study in order to determine micromorphological characteristics of *H. quadripertusus*. The lice were ultrasonically cleaned and routinely prepared for SEM and viewed in a Leica 420 stereoscan. The head was elongated with well-developed ocular points, and extended anteriorly to the distal haustellum which was surrounded by 4 pairs of long setae. The antennae bore several sensoria distally. The robust thorax was characterised by large notal pits, posterior processes, a pair of lateral mesothoracic spiracles and ventral a sternal plate with anterior processes. The 3 pairs of legs each ended in a robust tarsal claw which closed against a distotubal process. Two protrusible scaled pads further increased the potential to grasp the hairs of the host. The integument of the abdomen was membranous with rows of short setae and small sclerotised plates. Six pairs of bulbous paragerties which bore the abdominal spiracles and pairs of postspiracular setae, protected the abdomen laterally. A spiracular plate surrounded the spiracle lumen which was lined with pedunculate scales. The female gonopods VIII were lined with a fringe of setae, and lay adjacent to a small sclerotised genital plate. Gonopods IX had posterior-medial processes specialised to clasp the hairs of the host during egg-laying. The subgenital plate of the male had a species-specific shape with 4 anterior setae. These observations may be of morpho-taxonomic importance in distinguishing these closely related species.

A SEM study of the adult *Varroa jacobsoni* mite from honey bees

E D Green1 and M L Turner2

1Department of Anatomy, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa. E-mail: edward@medunsa.ac.za
2Electron Microscope Unit, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa

The adult mites were collected from bees at the USDA-ARS Carl Hayden Honey bee Research Centre, Tucson, Arizona, USA. These were identified as *Varroa jacobsoni*, which is not easily distinguished from *V. destructor* except by the size of the dorsal shield. As most descriptions of these haemolymph-sucking parasites have only made done using light microscopy, a scanning electron microscopic (SEM) study was done to investigate the micromorphology of these small mites which devastate honey bee colonies. Adult mites were routinely prepared for SEM and viewed in a Leica 420 stereoscan. The body of the female is ellipsoidal measuring 1500 µm wide and 1000 µm long. This dorsal shield was covered with feathery setae, except by the margin where 23 movable hooked setae occurred. The ventral surface is protected by the sternal, genital, and anal shields medially and paired endopodal and mesopodal shields lateral to the legs. The shape and chaetotaxy of each of these plates were characteristic. The body of the male is smaller and more rounded. The legs of both sexes were short and ended in terminal membranous ambulacra which lacked claws. The tritosternum was bisected and prominent process or mouthparts are made up of a pair of sensory pedipalps each bearing a 2-tined palpal claw. The chelicera lacked a fixed digit, while the movable digit in the female was lance-shaped for piercing with 2 denticulate processes for tearing. The chelicera of the male was modified as a tubular spermadactyl. The lumen of the stigmata were lined by sharp setae, while the peritremes wound along unique diverticular processes. These micromorphological structures may prove useful in future taxonomic investigations of *Varroa* mites.

Trichodinid ectoparasites of Anuran larvae

H Groenewald1, L Basson and J G Van As

1Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa. E-mail: groenewaldh.sci@ufs.ac.za

Most trichodinids (Ciliophora: Peritrichia) are described from fish and are associated with fish hosts only. Some species are, however, also associated with other vertebrate hosts, such as amphibians (adult and tadpoles), as well as some invertebrates. One such species occurring on both fish and tadpoles is *Trichodina heterodentata* Duncan, 1977. *T. heterodentata* has an apparent affinity for cichlid hosts, but seems to be equally widely distributed on tadpole hosts. One of the objectives of the present study is to determine whether this species occurs on both tadpole species and cichlid hosts, or whether a different species is found on tadpoles in general. A further objective is to look at tadpoles and determine whether all tadpole species have the same trichodinid species. To determine the above, tadpoles will be collected from different locations in South Africa and Botswana. Skin and gill smears will be made and the trichodinids from the different tadpole species and populations will be compared with each other. The same will be done with trichodinids found on cichlids from the same locations as the tadpoles. A dental ring will also be used according to which 3 consecutive dentals are drawn as this method has proven itself to pick up morphological differences between populations. Fisher’s least significant difference (LSD) will be used to determine if the variation between the different populations is significant enough for them to be described as different species. Tadpoles are seasonal and only present in water systems for a few months a year and this aspect will also form part of the overall study. Trichodinids can be found on tadpoles even in the absence of any fish hosts in a water body, raising the question where these ciliophorans come from and which hosts they occur on when the tadpoles have metamorphosed into adults.

The composition of the helminth fauna of helmeted guineafowls, *Numida meleagris*, from the Limpopo Province, South Africa

K Junker and J Boomker

Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa. E-mail: s25397592@tuks.co.za

Helmeted guineafowls are common in South Africa and widespread on the African continent. Despite this, few studies have been undertaken to elucidate the helminth fauna and its structure in South African hosts. During July 2005 and November 2006, 15 helmeted guineafowls were collected on a farm approximately 60 km west of Musina (Messina), Limpopo Province. The crop, proventriculus, gizzard, small intestine and caecum colon were opened in separate containers and their helminths collected. All the guineafowls were parasitised by helminths and harbourcd acanthocephalans, cestodes and nematodes concurrently. A total of 22 species was recovered from the alimentary canal, comprising 11 cestodes, 6 nematodes, 3 acanthocephalans and 1 cestode and one acanthocephalan. Nine of the gastro-intestinal helminths were identified as core species, another 9 as secondary species and 4 species were classified as satellite species. While 4 nematodes, 1 cestode and the single acanthocephalan are considered generalists, many of the helminths have to date been recorded from guineafowl genera only and are recorded as specialists. This may change as more data become available. Seasonal changes in the helminth community structure and the dominance of host ages and changes in diet patterns, and sex does not influence the composition of the helminth community markedly. Host age is not an important determinant of community patterns, but some species were more numerous in young birds and some species had a higher prevalence in older birds. Guineafowls have a diverse helminth community and are usually tolerant of their helminth parasites.

Holy cows and sacred beetles – Sustainable parasite management on cattle farms

U Kryger, P B Tshikae and C H Scholtz

Department of Zoology & Entomology, University of Pretoria, Pretoria, 0002 South Africa. E-mail: bptshikae@zoology.up.ac.za

Cattle farming forms a substantial part of South Africa’s agricultural industry. Most cattle farmers use veterinary drugs on livestock in order to control endo- and ectoparasites. These antiparasiticides enter the agro-ecosystem (either unchanged or metabolised) via the excretions of cattle. These residues may negatively affect non-target organisms, notably the beneficial dung beetles. In this presentation we review the biological importance of dung beetles and their ecosystem services: The dung burying activity of dung beetles leads to soil improvement and recycling, soil aeration, water infiltration, reduction of pasture fouling and reduction of dung-breeding pest and parasite populations. We will illustrate the dire consequences to an ecosystem suffering the loss of a functional dung beetle community by the example of Australia’s cattle dung fiasco, which could only be solved by introducing dung beetles from other parts of the world (the majority from South Africa). We will explain our research focus on identifying parasite management options for cattle farmers in South Africa that are dung beetle friendly and sustainable. While these include various factors (including the diagnosis of pasture health and overgrazing), the central point of this talk will be our testing of veterinary drugs for their dung beetle compatibility. In short-term laboratory assays and long-term field trials we determine the lethal and sub-lethal effects of antiparasiticides on selected dung beetle species and the dung beetle community as a whole. Furthermore, we will explain the translation of our research results into an easy-to-use decision tool for farmers– our ‘dung beetle friendliness trademark’.

Integrated control of ticks (Ixodidae) and tsetse flies (Glossinidae) in sub-Saharan Africa

A A Latif

Parasites, Vectors & Vector-borne Diseases Programme, Onderstepoort Veterinary Institute, ARC-OVI, Private Bag X05, 0110 South Africa. E-mail: a.latif@agrica.za

Vector-borne diseases, particularly trypanosomosis and tick-borne diseases (TBDs) seriously limit livestock production and development and are major contributors to poverty in the continent. In addition, tsetse flies and ticks also transmit fatal human diseases such as sleeping sickness and tick-bite fever in many countries. The tsetse fly infests 10 million square kilometres of arable land in 37 African countries south of the Sahara. Babesiosis and anaplasmosis (transmitted by *Boophilus* species and biting flies), heartwater (transmitted by *Amblyomma* species) and dermatophilosis (associated with *Amblyomma* infection) are presently endemic in all the tsetse infested areas, while the tick *Rhipicephalus appendiculatus*, the vector of East Coast fever (*Theileria parva* infection in cattle), the major disease of economic importance, is present in 15 of the 37 tsetse-infested countries in eastern and southern Africa. Currently tick-borne diseases are controlled by the application of chemical acaricides to protect highly susceptible cattle through dipping, spraying or application of residual pour-ons. In much of Africa, regular tick control on indigenous cattle has not been practised against TBDs. The control of tsetse flies is also largely dependent on the use of chemical insecticides. Recently, there has been a shift towards using pyrethroid acaricides, which were originally developed to control ticks and at the same time are insecticides, to treat cattle as bait animals to control tsetse flies. Treated animals are introduced to graze fly-infested areas and tsetse flies are killed after feeding. The reports from different control projects have shown successful reduction in tsetse populations and, incidentally, reductions in tick burdens on cattle. However, the regular use of acaricide-bait cattle to control tsetse fly populations, with the opportunistic and unplanned killing of ticks has many disadvantages. This paper compares the ecological and epidemiological factors in the control of ticks/TBDs and tsetse/trypanosomosis. These factors include: the generated resistance in cattle to vectors, endemisation of the tsetse and trypanosomosis, application of field immunisation, natural enemies for vector control, vaccines against vectors, diagnostics, and treatment. As no single existing or potential control option will provide the ideal means to control tsetse and ticks, an integrated approach is seen as the way forward.

An overview of the OpeXpeer translocation Project of the EWT Wildlife Conflict Prevention Group

A Le Roux

OpeXpeer Project. E-mail: opeXpeer@ewt.org.za

One of the EWT WCPG programmes concerns animal and environmental health. The objective of this programme is to achieve environmentally responsible animal husbandry. There are presently 2 facets to this:

1. Operation OpeXpeer: achievement of this objective will be evident from an increase in the number of farmers using environmentally compatible ectoparaciticides and a natural expansion of the redribled opeXpeckers; into areas of their former range. The paper will present an overview of this project for 2006 and 2007.

2. The 2nd leg of this programme is Operation Dung beetle. This will look at endoecides and is in collaboration with the University of Pretoria. A separate paper will be presented on this topic at PARS 2007.

A monogenean parasitising *Pseudocrenilabrus philander* collected from the Padda Dam

L le Roux and A Avenant-Oldewage

Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 South Africa. E-mail: asklelou@uj.ac.za

Fish farming is a fast-growing industry in South Africa. *Pseudo-
crenilabrus philander* is aesthetically pleasing and could become an important ornamental fish. It is already utilised by fish farmers and fishermen in the Limpopo Province. The crowded circumstances in culture systems notoriously lead to an increase in monogenean infestations, with high mortalities and economic losses. A clearer understanding of the naturally occurring parasites of this fish species is therefore paramount. For the past 10 years a tiny monogenean has been recorded with a 100 % prevalence from southern mouthbrooders collected from the Padda Dam. Mono-
Monogenean species of Quadriacanthus Paperna, 1961 (Monogenea) on the gills of the sharp-toothed and blunt-tooth catfish from the Okavango Delta, Botswana

E M Modise1, P H King1 and C Baker2

1Department of Biology, University of Limpopo, Medunsa Campus, 0204 South Africa; E-mail: emodise@ul.ac.za
2Electron Microscope Unit, University of Limpopo, Medunsa Campus, 0204 South Africa

Quadriacanthus species are gill parasites of Siluriformes, (catfish) and are represented by 26 species throughout Africa. These species are equipped with a unique attachment organ, the opisthaptor at the posterior end of the body. The objectives of this investigation were to identify and study the morphology of monogenean parasites on Clarias gariepinus (sharp-tooth) and Clarias nganesis (blunt-tooth) from the Okavango Delta in Botswana. Fish were collected from different localities in the Delta using gill nets. Collected fish were anaesthetized, identified, cleaned, cloacal contents removed. The gills were examined for monogeneans using a dissection microscope. These parasites were collected and mounted in amoninum picrate whereafter the opisthaptor armatures and reproductive organs were studied by light microscopy. Additional material was fixed in gluteraldehyde for scanning electron microscopy. Two monogenean species of the genus Quadriacanthus Paperna, 1961 were found to infest C. gariepinus. These species infect C. gariepinus. These 2 species show distinct variations in the opisthaptor, especially the shape of the dorsal bar and the dorsal accessory cercrites. The most characteristic feature is the shape of the copulatory organ. Clarias nganesis was found to be infested with 2 Quadriacanthus Paperna, 1961 species. These species differ from each other by the shape and size of the ventral and dorsal accessory cercrites, the dorsal bar and the copulatory organ. This study demonstrated 4 distinctive monogenean species from the sharp-toothed and blunt-tooth catfish. All of these monogenean species also demonstrated a high degree of host specificity as shown by most other monogeneans in Africa.

Digenetic parasites from Lymnaea natalensis sheddings from the Tshwane area

E B E Moema1, P H King1 and C Baker2

1Department of Biology, University of Limpopo, Medunsa Campus, 0204 South Africa; E-mail: emoema@ul.ac.za
2Electron Microscope Unit, University of Limpopo, Medunsa Campus, 0204 South Africa

Lymnaea natalensis serves as the major intermediate host for the giant liver fluke, Fasciola gigantica. This snail was found to be the most abundant within the Tshwane area, thus playing an important part as 1st intermediate host in life-cycles of most other digenetic parasites. The aims of this research project were to study both the morphology and possible life-cycles of 7 different cercarial types that were shed by this snail. Lymnaea natalensis was collected from various water bodies around the Tshwane area whereafter the cercarial shedding was studied using standard light and scanning electron microscopy techniques. The following cercarial shedding were used, namely Siphidium species, 2 types of strigeid, an echinostomatid, a clionostomatid and an avian schistosome cercaria. Most of these cercariae are undescribed and their life cycles are unknown. Strigeid- and clionostomatid cercariae were found to utilise fish as 2nd intermediate hosts, whereas echinostomaid and xiphidium cercariae were mostly found to re-penetrated the same snail hosts. The definitive hosts for clionostome and striged forms are possibly piscivorous birds, such as cormorants and darters, whereas echinostome and xiphidium parasites on the other hand possibly mature in snail-eating birds like ducks. Avian schistosome cercariae are known to penetrate the definitive hosts (usually ducks or geese) directly. Subsequent life cycle studies would therefore be imperative in order to describe all the larval and adult forms involved within the life cycles of these lesser known parasites.
Virulence in mice of Trypanosoma congolense stocks obtained from buffaloes at Hluhluwe-Imfolozi game reserve in KwaZulu-Natal, South Africa

M Y Motloang1, A A Latif1, L Ntantiso2, P Van Den Bossche3,4 and P A O Majiwa1

1ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110 South Africa. E-mail: motloangm@arc.agric.za
2KZN State Veterinary Services
3Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110 South Africa
4Institute of Tropical Medicine, Veterinary Department, Nationalestraat 155, 2000 Antwerp, Belgium

Trypanosomosis is a disease of humans and domestic animals caused by haemoproteozoon parasites of the genus Trypanosoma. In livestock, Trypanosoma congolense is the most pathogenic and causes a disease known as Nagana. Previous studies indicate that T. congolense exhibit variation in their virulence profiles, a feature which can be reproduced in mice. In Southern Africa, cattle kept in the vicinity of wildlife appear to develop more severe disease when infected with trypanosomes. It is known that wildlife act as reservoir of the virulent strains of trypanosomes suspected to be responsible for the severe disease in livestock. In order to test this hypothesis, 5 isolates of T. congolense were collected from buffaloes in KwaZulu Natal, RSA and tested for their virulence profiles in Balb/c mice. For each isolate, 103 trypanosomes were inoculated intraperitoneally into 6 mice. One group of 6 mice was used as uninfected control. For each group, parasitaemia, packed cell volume (PCV) and time to death were monitored at regular intervals. The prepatent period, i.e. the duration of time to the first appearance of parasites in the blood as determined through a haematocrit cell technique, was 7.9 ± 0.6 days. In the 5 groups, the evolution of parasitaemia presented a single peak associated with a steep decrease of the PCV of the mice. The median survival time of mice infected with the 5 isolates ranged from 9 to 14.5 days. Additional studies will be conducted using trypanosome clones derived from each isolate, in order to determine more precisely the magnitude of variation in virulence of the trypanosomes infecting wildlife and livestock in KwaZulu-Natal.

The animal health industry and our environmental responsibility

P T Oberem
Afrivet Business Management (Pty) Ltd. E-mail: peter.oberem@afrivet.co.za

The size- and segmentation of animal health products sold in South Africa are analysed and the segments most likely to have a major environmental impact are identified. Within these segments, the factors determining the magnitude of the environmental effects are examined. The most significant groups of active ingredients used in Animal Health Products are focused upon. Flagship species affected by animal health products are listed with a closer look at oxpeckers and dung beetles and which products are most likely to affect them. The role that Industry and the regulatory authorities could and should play to limit these effects are discussed.

The isolation and characterisation of a Babesia bovis stock from outbreaks on a farm in KwaZulu-Natal, South Africa

C Olds1, A Latif1, N Collins1 and E Zwegarath1

1Parasites, Vectors and Vector Borne Diseases Programme, Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110 South Africa. E-mail: dsbc@arc.agric.za
2Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa

Cattle farming forms an important part of South Africa’s agricultural industry and is at risk of incurring severe losses due to babesiosis caused by either Babesia bovis or B. bigemina. This study focused on farms in the Swartberg region of KwaZulu-Natal, where, despite vaccinations, babesiosis outbreaks still occur. PCR tests based on 2 single-copy variable B. bovis genes (Bv80 and BvVA1) were used to determine if the outbreak was a result of vaccine failure or field isolate breakthrough. Bv80 PCR products were sequenced to determine the relationship between size difference and sequence variation. In addition to this, the 18S rRNA V4 hypervariable region was sequenced for each strain to ascertain if changes in the Bv80 sequences were reflected in changes in the 18S rDNA sequences. Bv80 variable region profiles and 18S rDNA analysis indicated that the vaccine strain was not responsible for the outbreaks experienced. Current vaccination against babesiosis makes use of a live blood vaccine, an approach that has a number of limitations. The microaerophilous stationary phase culture technique allows for the in vitro cultivation of B. bovis parasites for prolonged periods, facilitating the isolation of secreted protein antigens with potential protective properties. In vitro cultivation of the vaccine and field strains according to published methods yielded limited success. Preliminary results using ALBUMAX® supplemented medium have shown promising results thus far. This adaptation of the Swartberg strain is the 1st step in the isolation of potentially protective antigens to be used for the development of a recombinant vaccine against bovine babesiosis.

Tick, fly, and mosquito control – lessons from the past, solutions for the future

R J Peters1, P Van den Bossche2,3, B L Penzhorn3 and B Sharp4

1Argos Veterinary Science (Pty) Ltd, P O Box 1726, Mt Edgecombe, 4300 South Africa. E-mail: rosel@nxcorp.co.za
2Institute of Tropical Medicine, Veterinary Department, Nationalestraat 155, Antwerp, Belgium
3Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
4Malaria Research Lead Programme, South African Medical Research Council, Durban, South Africa

In order to continue to produce livestock in a sustainable fashion, it is suggested that what was used in the past will continue to form the mainstay of future control. For the foreseeable future, we must conserve what we have, and use it in combination with all the principles of integrated pest management. In many countries, the use of focused treatments of animals, environmental control of breeding sites, disease management (including the principles of enzootic stability), and resistant breeds. While new technologies, such as the development of vaccines both against the insect pest in some cases or the disease they transmit in others, and genetic engineering hold out some hope for the future; these are not sufficiently well advanced to permit wholesale application.

Pentastomid infection in fish intermediate hosts

P P Ramololo1, W J Luus-Powell1, A Jooste1 and K Junker2

1Department of Biodiversity, University of Limpopo, Sovenga, 0727 South Africa. E-mail: powerl@ul.ac.za
2Department of Veterinary Tropical Diseases, University of Pretoria, P Bag X04, Onderstepoort, Pretoria, 0110 South Africa

The vermicorp pentastomids, also called tongue worms, comprise an ancient taxon of approximately 131 species. The adults of most species inhabit the nasal passageways and lungs of reptiles, such as snakes, lizards and crocodilians, while others are found in the air sacs of gulls and terns, the nasopharynx and sinuses of canines, or parasitise amphibian hosts. Pentastomiasis in humans is rare, but cases were reported from Africa, the Middle East and South-East Asia. The life cycle usually involves a vertebrate intermediate host in which larvae undergo several molts to reach the infective stage. They are named for the 5 structures near the anterior end of the body: the mouth (oral cadre), and 2 pairs of claw-like hooks. During parasitological surveys of fishes, infective larvae were recovered from the body cavity or swimbladder of different fish species. Larvae were fixed in 70 % ethanol and mounted in Hoyer’s medium for measurement and identification. Selachius weidi were recorded from Flag Boshielo Dam (Mpumalanga) from the body cavity of the mormyrid, Marcusenius macrolepidotus with a prevalence of 17.2 % and abundance of 0.28. The cysts had a yellowish colour and closely resemble the cysts of Clinostomum metacercaria. Larvae of 2 genera were recorded from dams in the Phalaborwa region (Limpopo Province) from the swimbladder of Oreochromis mossambicus, i.e.,
Alophia sp. and Subtribetra rilejyi with a prevalence of 15 % and abundance of 0.27. A single specimen was recorded from a dam in the Komatiportoo region (Mmumalanga) from Claritas gartinius. Larval infections have previously been reported from the Cichlidae, Cyprinidae, Cyprinodontidae and Poecilidae. Infections recorded during this study from the Mormyridae and Claridae represent new host records.

A review of Myxobolus species (Myxosporea) on African Hydrococcus species

I R Rangaka, P H King and L Basson

1Department of Biology, University of Limpopo, Medunsa Campus, 0204 South Africa. E-mail: pking@ul.ac.za
2Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa

Hydrococcus species belong to the family Characidae and represent the well-known tigerfish in Africa. In spite of the increasing interest in myxosporeans infecting fish in Africa, the available data and knowledge on these parasites from Hydrococcus species are very limited. Myxobolus hydrocyni was the 1st species described from Hydrocopus forskali by Kostoui and Tuguebaye (1994) in Chad. Later this species was also described from the gills of H. forskali by Fomena and Bouix (2000) in Cameroon, and the gills of H. vitatus by Reed (2000) in the Okavango Delta, Botswana. This study focused on providing descriptions of Myxobolus species infecting H. vitatus in the Okavango Delta, Botswana. Fish were collected and transported to the camp where they were kept in aerated aquaria. Gills, skin and organs were examined for the presence of Myxobolus spores. Spores were studied live, photographed, and also stained with silver nitrate. Seven myxosporean species were observed from spores. Spores were studied live, photographed, and also stained in order to provide descriptions of these species. Later this species was also described from the gills of H. forskali by Fomena and Bouix (2000) in Cameroon, and the gills of H. vitatus by Reed (2000) in the Okavango Delta, Botswana.

Thelileria species infection in the Cape buffalo (Syncerus caffer) in 2 game parks in South Africa

M E Chaisi, K P Sibeko, N E Collins and M C Oosthuizen

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0101 South Africa. E-mail: e27130712@tuksa.co.za

Corridor disease, caused by Theileria parva, is a controlled disease in South Africa. Cape buffalo are the natural reservoir hosts of this parasite, which is transmitted by Rhipicephalus appendiculatus and R. zambezensis. Buffalo also appear to be the original hosts of 2 other Theileria species infecting cattle, the relatively benign T. mutans and the apathogenic T. velifera, both of which are transmitted by Amblyomma hebraeum. Theileria buffeli, which may infect cattle, and the hitherto uncharacterised Theileria sp. (buffalo) have thus far only been identified in some buffalo populations in the country. Theileria parasites usually occur as mixed infections and although the benign and non-pathogenic forms do not have any significant economic importance, they can interfere with the diagnosis of the pathogenic forms and therefore confuse their epidemiology. To screen for Theileria species that occur in South African buffalo, DNA was extracted from 198 buffalo blood samples originating from the Kruger National Park and the Hluhluwe-Imfolozi Park. The V4 variable region of the 18S rRNA gene was amplified and subjected to the Reverse Line Blot (RLB) hybridisation assay. RLB results demonstrated the presence of T. parva, T. mutans, T. velifera, T. buffeli and Theileria (sp.) buffalo, either as single infections or as mixed infections. In a number of samples the PCR products did not hybridise with any of the Babesia or Theileria species-specific probes present, only with the Babesia/Theileria genus-specific probe, indicating the presence of a novel species or variant of a species. This warrants further investigation.

The evaluation of Avoton® Pour-on (0.5 % m/v abamectin formulation) against nematode and ixodid infections in cattle

M Cronjé, T Strydom, N Potgieter and J Scholz

Intervet (Pty) Ltd, Malelane Research Unit, Malelane, South Africa. E-mail: tms.strydom@intervet.com

The efficacy of a 0.5 % m/v abamectin formulation (Avoton® Pour-on) administered topically at a dose rate of 1 ml per 10 kg body weight, was evaluated against a mixed induced nematode infestation, an induced Rhipicephalus (Boophilus) decoloratus infestation and a natural mixed multi-host tick infestation. Results against nematodes were obtained by conducting a controlled test and by comparing untreated and treated group nematode burdens at necropsy. Efficacy was obtained against the dose limiting species Cooperia sp. Efficacy was also obtained against Bunostomum sp. Oesophagostomum sp. Ostertagia sp. and Haemonchus sp. Results against R. (Boophilus) decoloratus were obtained by conducting a stall test and comparing the daily number of ticks collected from the untreated and treated groups. The efficacy lapsed on Day 41, thus demonstrating a period of protection against R. (Boophilus) decoloratus of approximately 3 weeks. Knock-down efficacy results against Rhipicephalus appendiculatus and Amblyomma sp. were obtained by conducting counts on animals at intervals and comparing the counts with the pre-treatment counts. A knock-down efficacy of >80 % was achieved from Day 7 onwards.

Poster Abstracts

Efficacy of 3 anthelmintics in communally grazed sheep as reflected by faecal egg counts in a semi-arid area of South Africa

F R Bakunzi

North West University, Department of Animal Health, PO Box 1372 Mafikeng, 2745 South Africa. E-mail: bakunzi@unievst.ac.za

A survey was conducted on the occurrence of anthelmintic resis-
Southern African marine fish siphonostomatoids

S M Dippenaar
Department of Biodiversity, School of Molecular and Life Sciences, University of Limpopo, South Africa. E-mail: susand@ul.ac.za

Copepoda 'or feet' animals are the most common and abundant metazoans in the sea. Worldwide there are more than 11 500 known species of copepods that belong to 9 or 10 different orders. More than 4224 are symbiotic and belong mostly to 2 orders, Plococlostomatoida (> 1771 species) and Siphonostomatoida (> 1840 species). The Siphonostomatoida consists of 37 families that are mainly marine with a third of the known species infecting vertebrates (20 families) while the remaining two-thirds infect invertebrates (17 families). To date, representatives of 15 of the 17 families infecting invertebrates (excluding Archidactylinidae and Tanypleuridae) have been recorded from southern African marine fish. The recorded families represent all the clades in the estimated cladogram using morphological characters and the invertebrate associates as an outgroup. These 15 families include 64 genera and 188 species, a mere 10 % of the known symbiotic Siphonostomatoida. The recorded specimens were collected from only 186 hosts (about 7 % of known hosts). Considering the richness of marine fish species, estimated at 2500 in southern Africa with more than 2400 species just for South Africa, an extensive investigation of all possible fish hosts is bound to increase the number of recorded siphonostomatoids considerably and thus also our knowledge of a small part of the invertebrate marine biodiversity.

Dynamics of host–parasite associations between dung beetles and the dog nematode Spirocerca lupi

C A du Toit and C H Scholtz
Scarab Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002 South Africa. E-mail: cdtot@zoology.up.ac.za

There is a plethora of literature on the clinical aspects of spirocercosis in dogs, while very little deals with the host–parasite associations and the dynamics of these associations between dung beetles and this nematode. We conducted a pilot study during 2006 in the Tshwane (Pretoria) Municipality to determine and compare the prevalence of infection in dung beetles with the larvae of S. lupi between rural, urban and peri-urban areas. Prevalence of infection was significantly higher in dung beetles in the urban area (3.5 %) compared with those in the rural area (2.3 %). The current study aims to determine the prevalence of infection in dung beetles in 5 areas of high and low human population densities within 2 geographical regions (Tshwane (Pretoria) Municipality and Grahamstown) and compare the prevalence between the 2 regions. Sampling will be conducted 4 times over a breeding season using pig dung baits pitfall traps. Dung beetles collected from the traps will be identified to species level and dissected to confirm the presence or absence of S. lupi larvae. The parasite counts will be collated from the observations. We will also determine which species of dung beetles collected in each geographical region are susceptible to infection under natural conditions, since it is not known exactly which or how many species of dung beetles transmit this parasite. A better understanding of the dynamics of the intermediate host–parasite associations between dung beetles and Spirocerca lupi may contribute towards identifying management priorities for those with a technical, economical or legal and political interest in the problem, and the need for better control and preventative measures to be investigated for this disease in dogs.

The micromorphology of the warthog flea Echidnophaga larina

E D Green
Department of Anatomy, University of Limpopo, PO Box 232, MEDUNSA, 0204 South Africa. E-mail: edward@medunsa.ac.za

Sticktight type fleas collected from a warthog near Bloemfontein were identified as Echidnophaga larina. A scanning electron micro-

scopic (SEM) study was made to understand the micromorpho-

logical characteristics of these fleas which enable them to attach,

feed and reproduce on the almost hairless thick integument of the

warthog. The fleas were fixed in 70 % ethanol, routinely prepared for

SEM and viewed in a Leica Stereoscan 420. E. larina had a charac-
teristic angulate frons, a large metepimeron and a compact abdo-

men formed by compressed tergites and sternites. The head bore

large rounded eyelike structures anterior to the antennal fossa containing

spiny setae forming the internal filter apparatus. The micro-

morphology of the posterior reproductive apparatus on tergite VIII

for SEM and viewed in a Leica Stereoscan 420. The maxillary

laciniae were elongated with a rasplike toothed structure specialised

for penetrating the thick epidermis of the host. The legs were well

developed, with each terminal tarsus bearing a pair of elongated

apical claws. The 5th tarsal segment bore 4 pairs of lateral plantar

bristles, with the 2nd pair slightly longer and closer to the 1st than to

the 3rd pair. This segment also bore a pair of strong pre-apical plan-

ataria. The chaetotaxy of the body and legs clearly recorded. These micromorphological structures may be useful in

future comparative studies of related fleas.

Gyrodactyliasis – a cause for concern?

W J Luus-Powell 1, P S Mahlangu 2, J Theron 2 and H Hattingh 1
1Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga, 0727 South Africa. E-mail: powellw@ul.ac.za
2Aquaculture Research Unit, School of Agricultural and Environmental Sciences; University of Limpopo, Private Bag X1106, Sovenga, 0727 South Africa

Fish disease can be a significant cause of economic loss in the aquaculture industry. Disease is rarely a simple association between a pathogen and the host. Stress, the environment and the consequent management practices all play major roles. Previously we reported on a small parasitic flatworm (fluke) that was the cause of great losses in catfish production. Gyrodactyliasis refers to an outbreak of these monogenean flukes. The gyrodactylids are probably the most successful group of parasitic flatworms with regard to the number and kind of animals which are utilised as hosts. More than 300 species have been described and 17 species are currently known from freshwater fish in Africa; with only 2 species, i.e. G. transvaalensis and G. ryasi, described from Clarias gariepinus, from South Africa. Attachment with long anchors, together with subsequent feeding, damages the epidermis of the host, allowing secondary infection. The Gyrodactylidae are viviparous and give birth to fully developed adults. Intra-uterine embryos already contain 2nd and 3rd generation embryos. Four individuals are thus produced from a single zygote. This form of reproduction permits fast population growth and greatly reduces generation time. A severe case of gyrodactyliasis was identified after a commercial fish farmer from the Modjadje’s Kloof region (Limpopo Province) received 4000 Oreochromis mossambicus fingerlings, 4 cm in length, from a fingerling producer. Fingerlings were raised in a 22 m3 recirculating system at 27 °C and fed with a balanced dry feed. Approximately 1 week after introduction, the fingerlings were concentrated at the surface with very little vertical movement, while some showed signs of rubbing and flashing. Within a day after noticing the change in behaviour, approximately 40 % of the population died. Fish were examined microscopically and a heavy infestation (550–700+ gyrodactylids per fish) was identified on the skin of all specimens. Fish appeared pale and fed with excess mucous secretion and epithelial proliferation. Severe secondary fungal infection, leading to finrot, was observed in most of the affected cases. A therapeutic salt treatment was recommended and no further deaths were reported but the cost of treatment, decreased growth during the period of recovery and loss in dead fish increased the production cost radically.
Skin and gill parasites of Oreochromis mossambicus and Tilapia sparrmanii

M Mpheho1, P H King2 and C Baker2

1Department of Biology, University of Limpopo, Medunsa Campus, 0204 South Africa. E-mail: pking@ul.ac.za
2Aquatic Microscope Unit, University of Limpopo, PO Box 84, Medunsa Campus, 0204 South Africa

Oreochromis mossambicus (Mozambique tilapia) and Tilapia sparrmanii (banded tilapia) are freshwater fishes of the family Cichlidae and are found in most rivers and dams in southern Africa. They are an important food source for man and other vertebrates and are attractive aquarium subjects. The aim was to study the skin and gill parasites of naturally infected fish from 2 farm dams and the fisheries at Hartebeespoort Dam. Freshwater fish were sampled using hand and cast nets. In the laboratory they were placed in aerated tanks and fed on fish flakes. For examination, fish were anaesthetised using clove oil. Skin smears were made, gills removed and scraped onto microscope slides. Parasites were studied using standard light microscopy techniques and ciliates were stained with Mayer’s haematoxylin and silver nitrate. The following ciliates were found on the skin of O. mossambicus: Trichodina heterodentata, Trichodina acuta, Chilodonella hecastica, lechthuspiorius multililis, an Apsiroma sp, and an Epistylis sp. A fungus of the genus Saprolegnia was also observed. Two rodent species of O. mossambicus, namely Trichodina centrostigeata and I. multililis, as well as a monogenean parasite of the genus Dactylogyrus. The following parasites were sampled from the skin of T. sparrmanii: T. centrostigeata, Trichodina compacata, T. heterodentata, C. hecastica, an Apsiroma sp, a Gyrodactylyus sp and a Saprolegnia sp. The gills were infected with T. centrostigeata, C. hecastica and an Apsiroma sp. It is clear from the results that a wide diversity of parasitic ciliates, monogeneans and a fungus naturally occur on the skin and gills of these 2 freshwater fish species.

Metazoan parasites and health of Clarias gariepinus from Nwanedi-Luphephe Dams – preliminary results

S D Ntuli1, W J Luus-Powell1 and J Theron2

1Department of Biodiversity, School of Molecular and Life Sciences, 2Aquaticulture Research Unit, School of Agriculture and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727 South Africa. E-mail: powellw@ul.ac.za

Fish parasites are sensitive to changes in the aquatic environment and the presence of certain parasites is a good indicator of the deteriorated health of fish and consequently a deteriorated environment. Chronic exposure to pollutants causes biochemical, physiological and behavioural host changes that ultimately can influence the intensity and prevalence of parasitism. Pollution can increase parasitism if the host defense mechanisms are negatively affected, thereby increasing host susceptibility. However, pollution can also decrease parasitism if the parasites are more susceptible to a particular pollutant than the host, or if pollution levels eliminate the suitable intermediate host. The parasite fauna of fish thus represent the result of the interrelationship between the parasites, their hosts and many interdependent influences of the environment. Parasites from Clarias gariepinus formed part of a research project on fish health and the diversity and correlation between pollution levels and parasites in the Limpopo River System. Metazoan parasites were collected from different sites in the Limpopo River and tributaries. We report on 1 winter survey from the Nwanedi-Luphephe Dams. Parasites were fixed using standard methods and stored in 70 % ethanol. A parasite index (PI) was determined. The results indicate that the water quality is good at the sampling sites of the Dams with low metal concentrations and TDS values. All the fish examined were in good health with no abnormalities (except for occasional discoloration) recorded. The following parasites were recorded: Macrogyrodactylus congoensis and Dolops rarvarum from the skin; unidentified digenean cysts from the gills; Glossidium sp., Polychocrothium sp. and Paramallanurus sp. from the intestine; and Contracaecum larvae from the body cavity. The hypothesis that the PI for ectoparasites will be higher in unpolluted water was well supported for this survey, with a higher PI for ectoparasites than endoparasites recorded. But, when dealing with moderate levels of pollution, parasite communities may be less informative as pollution indicators. The key to utilising parasites as bioindicators is a thorough knowledge of parasite biology, at the population as well as community level.

Diversity of myxosporeans from 2 fish species in the Okavango Delta, Botswana

I I Rangaka1, P H King2 and L Basson3

1Department of Biology, University of Limpopo, Medunsa Campus, 0204 South Africa. E-mail: pking@ul.ac.za
2Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa

Some myxosporean parasites cause marked pathology in their fish hosts. Large aggregations of plasmodium cysts in vulnerable organs such as the gills and ovaries interfere with normal organ functions. This consequently compromises fish health, production and market value of fish in the aquaculture industry, therefore emphasising the importance of myxosporean research worldwide. The project objectives comprise investigate myxosporean species invading the internal organs of 2 fish species in the Okavango River and Delta in Botswana, and to determine their taxonomic status. Fieldwork involved the collection of fish from the Okavango River using gill nets, as well as rod and line. Fish were anaesthetised with clove oil, whereafter the internal organs were removed. These were compressed between 2 glass slides and the run-off liquid was examined for live spores using light microscopy. Results revealed the presence of 13 myxosporeans of 2 genera, Myxobolus Bütschi, 1882 and Henneguya Thelohan, 1892, from Hydrocynus vittatus Castelnau, 1861 and Hesperotus obio Bloch, 1794. Six different Myxobolus species and 1 Henneguya species were found in the organs of H. vittatus, whereas 5 Myxobolus species and 1 unknown myxosporean were found to infect the internal organs of H. odi. Previous studies in the Okavango Delta indicated the presence of myxosporean parasites only on the gills and skin of these 2 fish species. This study, however, is the 1st to show histozyoxic myxosporeans in the internal organs of tigerfish and the African pike from the Okavango system.

Characterisation of South African Theileria parva isolates by PCR-RFLP analysis of the parasite antigen gene, polymorphic immunodominant molecule (PIM)

K P Sibeko1, N E Collins2, M C Oosthuizen2 and D Geysen3

1Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa. E-mail: kgomotso.sibeko@up.ac.za
2Department of Animal Health, Institute of Tropical Medicine, 155 Nationalestraat, Antwerp B-2000, Belgium

East Coast fever (ECF), caused by cattle-associated Theileria parva, was eradicated in the 1950s in South Africa (SA). However, Corridor disease, caused by buffalo-associated T. parva, still occurs and is a controlled disease. Successful discrimination of T. parva subtypes in South Africa is important for obtaining accurate data on the epidemiology of theileriosis in order to improve control strategies to protect livestock against the disease. In this study, restriction fragment length polymorphism (RFLP) analysis of the variable regions of the parasite polymorphic immunodominant molecule (PIM) was used to discriminate between T. parva isolates. DNA was extracted from cattle and buffalo blood samples collected from different geographical areas in South Africa, the variable region of the PIM gene was amplified and subjected to RFLP analysis. Selected amplicons were sequenced and the data analysed using phylogenetic methods. PIM RFLP profiles from some isolates were homogeneous and the majority of the profiles were typical of buffalo-associated isolates. A new profile was identified from the Welgevonden isolate, and the majority of the profiles were typical of buffalo-associated isolates. The Ladysmith isolate with the PIM RFLP profile was similar to that of Muguga, a Kenyan isolate that causes ECF. Phylogenetic analysis revealed the presence of 3 groups and included sequences similar to buffalo T. parva parasites and recombinant sequences. Recombinant sequences clustered together in a single clade. The Welgevonden isolate grouped with buffalo-associated PIM sequences and the Ladysmith isolate with the
It is not known whether the Muguga-like PIM profiles or sequences are associated with pathogenicity, although there have been no incidences of ECF in South Africa since its eradication and classic ECF was not diagnosed in cattle on the Ladysmith farm.

The geographic distribution and a taxonomic description of ticks in the Free State Province

S Terry1, A J Jordaan1 and I G Horak2

1Department of Zoology and Entomology, PO Box 39, University of the Free State, Bloemfontein, 9300 South Africa. E-mail: terrys.sci@ufs.ac.za
2Division of Parasitology, Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110 South Africa

Surveys aimed at determining the geographic distribution of ticks in Free State Province have been and are being conducted as a follow-up to the earlier surveys completed in the 1940s. Moreover, tick species and the diseases they transmit, which apparently did not previously occur in the Free State Province, have recently been reported here. In the 1st phase of the project surveys are in progress on communal and commercial farms, buffalo ranches and in private and public nature reserves. The geographic distributions of the localities at which ticks are collected during the project will be compared with those obtained in the earlier surveys. This may reveal shifts in the distributions of ticks of medical and veterinary importance and also add to the data on the distributions of recently described species. A reassessment of the geographic distribution of ticks in the Free State Province has thus become a necessity. In the 2nd phase the taxonomy of all stages of development of 4 closely related species in the genus Rhipicephalus is being revised. This will facilitate the identification especially of their immature stages. The 4 ticks will be reared in the laboratory and their larvae, nymphs and adults will be redescribed in detail using both light and electron microscopy, thus creating a data set against which previous and current collections can be revisited and precise identifications can be ascribed. The combined output of the 2 projects should add to a more accurate inventory of tick biodiversity in South Africa.

Anthelmintic efficacy of copper oxide wire particles against artificial Haemonchus contortus infections in indigenous Zulu goats

A F Vatta1, J B Githiori2, P J Waller3 and G F Medley4

1Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110 South Africa. E-mail: vattaaf@arc.agric.za
2International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
3Department of Parasitology (SWEFAR), National Veterinary Institute (SVA), Uppsala, SE-751 89, Sweden
4Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom

The occurrence of widespread resistance of Haemonchus contortus to all major anthelmintic groups has prompted investigations into alternative control methods in South Africa. One alternative is the use of copper oxide wire particle (COWP) boluses. To assess their efficacy against H. contortus in goats, 18 male indigenous faecal-egg-count-negative Zulu goats were each given c. 1200 infective larvae of H. contortus 3 times per week during weeks 1-2 of the experiment. These goats constituted an established infection group. At the beginning of week 7, 6 goats were each treated with a 2 g-COWP bolus given orally; 6 goats received a 4 g-COWP bolus each and 6 animals were not treated. A developing infection group was made up from a further 20 goats. At the start of week 1, a 2 g-COWP bolus was administered to each of 7 of these goats; a 4 g-COWP bolus to each of another 7 goats and no bolus was given to a further 6 animals. Each of the goats was given c. 400 H. contortus larvae 3 times per week during weeks 1-6. In week 11, all 38 goats were euthanased for worm recovery from the abomasum and small intestines. In the developing infection goats, both the 2 g- and 4 g-COWP treatments were ineffective in reducing the worm burdens relative to the controls (which had mean burdens of 1051 worms). However, the 2 g- and 4 g-COWP boluses were 95 % and 93 % effective, respectively, in reducing the worm burdens of the established H. contortus infections when compared with the controls (which had mean burdens of 442 worms, P < 0.05). The COWP boluses have the potential to be used as an alternative to conventional anthelmintics for the control of established H. contortus infections in goats.