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Near real-time interpolative algorithm for 
modelling air quality in underground mines
by K.W. Brown Requist1, E. Lutz1, and M. Momayez1

Synopsis
As real-time air quality monitoring becomes more prevalent in US underground mines, it is 
important to provide the highest data reliability with the fewest possible sensors. Real-time sensors 
remain costly, and these costs are not exclusively financial; the time required to install, calibrate, 
and maintain real-time sensors poses a large barrier to widespread implementation. Current 
atmospheric monitoring systems typically rely on displaying point-specific values. This requires 
operators to infer real-time airborne contamination distributions. Monitoring and control software 
utilizing mine ventilation network (MVN) solvers has been implemented in limited cases because 
of their ability to simulate ventilation systems quickly, but these solvers use a one-dimensional 
representation of the mine, limiting spatial resolution of estimated distributions. Computational 
fluid dynamics (CFD) has likewise been considered as a means to improve spatial resolution, but 
processing times prevent its use as a basis for monitoring and control. For the real-time monitoring 
of airborne contamination distributions, we propose a spatial interpolation method that can 
estimate the distribution of airborne contaminants in near-real time. This method provides a 
middle ground between fast processing times and increased spatial resolution. With the use of 
a pathfinding algorithm and optimization through absolute percentage error minimization, this 
method outperforms spatial interpolation with a Euclidean distance. By providing contamination 
distribution information to operators, this method and its derivatives stand to outperform current 
atmospheric monitoring systems.
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Introduction
Air quality has long been a concern in underground mines. From the understanding of the role coal dust 
exposure plays in life-long human health outcomes (Wang and Christiani, 2000; Rogan, 1970; Kissell and 
Colinet, 1900) to the recent increased concern regarding crystalline silica exposure (Wang and Christiani, 
2000; Ziskind, Jones, and Weill, 1976; Holman, 1947), the mining industry has been acutely aware of the 
importance of a healthy air mixture in underground working areas. The 2006 MINER Act, stemming from 
the Sago Mine disaster on 2 January 2006, required the US Mine Safety and Health Administration (MSHA) 
to expand its policies for environmental monitoring in underground mines (United States, 2006). This 
legislation laid the pathway for a final ruling in 2008, which required underground coal mines to monitor 
carbon monoxide with sensors that automatically alert and record values and required the training of 
individuals managing these sensors (US Mine Safety and Health Administration, 2008). Since this ruling, 
the data from these federally mandated sensors has been extensively warehoused, with minimal further use. 
Current atmospheric monitoring systems (AMSs) provide methods to display sensor values overlain on a 
mine plan as in Figure 1, or individual graphs of sensor values over time, but critical information available 
to these systems is not leveraged. 

Sensor networks are costly to install and maintain. These costs are not exclusively monetary, particularly 
considering federal requirements for routine maintenance. In the USA, underground mines using real-
time sensors as part of an AMS must visually inspect the sensors daily, bump test the sensors weekly, and 
calibrate them monthly (US 30 CFR 75.351). The time spent in calibration and maintenance results in a loss 
in productivity. Current movements to expand the monitoring and control of ventilation systems have been 
hindered by the operational and capital costs associated with the monitoring of airborne contamination. 
The total cost to establish a wireless sensor network can quickly increase with increasing safety ratings, 
sensor capability, wireless functions, and naturally, the number of sensors. Real-time sensing of airborne 
particulate matter has proven particularly challenging, with purchase prices for diesel particulate matter 
(DPM) and dust sensors in the tens of thousands of US dollars (Shriwas and Pritchard, 2020; Halterman, 
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Sousan, and Peters, 2018). Alternatively, wireless electrochemical 
carbon monoxide sensors are available commercially starting 
at US$105, but notably these do not meet intrinsically safe 
requirements for coal mines (Estrada et al., 2019). With the high 
costs associated with adding more sensors to a mine‘s AMS, 
operations opt to use the minimum number of sensors necessary to 
meet regulatory requirements. In 2018, the largest AMS in the USA 
consisted of 300 sensors, a notable outlier from the industry average 
of 38 (Rowland, Harties, and Yuan, 2018). 

The cost and time associated with expanding air quality 
monitoring capabilities in underground mines poses as significant 
barrier to improved ventilation system monitoring and control. 
Current AMSs have wide-ranging utility as early warning systems 
for mine fires in underground coal mines, but offer no currently 
accepted method to infer the distribution of gases between sensors 
(Shriwas and Pritchard, 2020). This lack of data ultimately limits 
the functionality of the AMS; gas distribution data is virtually 
inaccessible to AMS operators because of the location-specific 
nature of sensor data.

In general, the issue of estimating distributions between known 
sensor locations is a solver problem. Methods for estimation are 
wide-ranging, including deterministic methods like nearest-
neighbour and polygonal interpolation and inverse distance 
weighting, and stochastic methods like ordinary kriging, Bayesian 
maximum entropy, and sequential Gaussian simulation (Lam, 
1983). All of these methods are well documented for the spatial 
interpolation of distributions between known data-points, but 
no method has been implemented in any commercially available 
AMS. This is in part due to current practices with representations 
of underground ventilation systems and difficulties associated 
with creating robust statistical relationships between locations that 
account for changes in mine geometry. 

Various solutions and improvements to modern AMSs have 
been suggested in the literature. Mine ventilation network (MVN) 
solvers have long been the backbone of modern ventilation system 
design. MVN software has shown promising results for real-time 
monitoring and control of mine ventilation conditions. In the 
late 1990s and early 2000s, a real-time monitoring and control 
project was started at the Waste Isolation Pilot Plant (WIPP) in 
New Mexico. This project focused on the use of WIPPVENT, 
a specially designed MVN software for the WIPP monitoring 
infrastructure. The WIPP employed pressure and velocity sensors 
to monitor the flow of air through the mine but (critically) did 
not include any implementation of air contamination monitoring 
(Shriwas and Pritchard, 2020; McDaniel and Wallace, 1997; 
Ruckman and Prosser, 2010). Further implementations of real-time 
monitoring and control using MVN software have not  included air 
contamination monitoring as a key variable in the assessment or 
ventilation system control (Gillies et al., 2004; Wu and Gillies 2007). 

Importantly, MVN software relies on a one-dimensional 
network approach. This allows for fast simulation of the ventilation 
network, making it an ideal candidate for the monitoring and 

control of air flow within a mine (Sereshki, Saffari, and Elahi, 2016). 
As a consequence of the one-dimensional approach, variation of 
contamination estimated using MVN software is only available 
on the mine entry scale. Because mine entries are represented as 
vertices of a directional graph, it is not possible to estimate the 
distribution of airborne contamination within the entry itself. 
Instead, calculated concentrations apply uniformly as the mean 
concentration for the entire entry. This poses a similar problem to 
that seen with traditional AMS systems; the level of data resolution 
is lower than is useful for the holistic monitoring of contamination 
within a ventilation system.

Computational fluid dynamics (CFD) has likewise been 
proposed as a method for improving understanding of 
contamination distributions in underground mines. CFD can 
return models with extremely high spatial resolution, but critically 
struggle with sensitivity to the size of grid used in the simulation 
and the time required to converge on a stable solution (Mora et 
al., 2002; Xiang, Wei, and Haibo., 2017). Additionally, CFD cannot 
model the entire mine with an appropriate grid size in a reasonable 
time-frame. This, then, requires the creation of several disjointed 
CFD models in order to simulate the entire mining environment, 
leading to problems in appropriately modelling boundary and 
initial conditions for the ventilation system, impacting the accuracy 
of CFD results compared to experimental observation of mine 
conditions (Yuan, Zhou, and Smith, 2016). While the spatial 
resolution of CFD methods is highly desirable for AMSs, the time 
required to converge on a solution makes these methods unsuitable 
for real-time monitoring of contamination distributions.

Because current AMSs have no commonly accepted method 
for the estimation of gas distribution between installed sensors, it is 
difficult to establish a mine-wide view of airborne contamination. 
This is especially vital for monitoring and control. While MVN 
software has shown promise for the monitoring and control of air 
flow in underground mines, its implementations for contaminants 
is still problematic. Furthermore, MVN software relies on a one-
dimensional network representation of the ventilation system. This 
means that contamination distributions within mine entries are 
wholly inaccessible to AMS operators who may choose to use a 
MVN-based monitoring system in the future. CFD eliminates the 
issues of resolution, but does so at the expense of calculation time, 
making it currently unfit for use in real-time monitoring systems.

To improve on current AMSs, a real-time monitoring 
method should be capable of increasing data resolution by 
providing estimates of contaminant distribution between sensors. 
Additionally, the method should be able to run in practically 
real-time with one-minute temporal resolution. Because of the 
interrelated nature of airborne contamination from location to 
location in a mine ventilation system, the use of spatial interpolation 
of sensed data is a promising avenue to provide a more holistic 
approach to atmospheric monitoring in underground mines without 
the need for installation of more sensors.

Figure 1—Strata gas monitoring user interface. Sensor locations are overlain in blue over the plan drawing of the mine
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The real-time estimation of gas distribution in underground 
mines is limited by the use of a MVN approach. While such 
approaches are extremely capable of resolving contamination 
distributions, the lack of spatial resolution makes it difficult to 
determine the extent of hazardous air conditions, especially within 
mine entries. We propose a framework for the near real-time 
spatial interpolation of this data, known as the Near Real-Time 
Interpolative Measurement (NeaRTIMe) Algorithm. With the use 
of a pathfinding algorithm, NeaRTIMe attempts to better preserve 
the effect of air flow in the interpolation of data, which is not 
feasible with other methods of spatial interpolation. Traditional 
spatial interpolation methods rely on a Euclidean distance 
between points as the relevant distance metric. With the use of a 
pathfinding algorithm, it is possible to encode the interpolation 
method with a mine’s geometry. This allows for distance metrics 
to be used based on the distance of travel within the mine, rather 
than assuming constant reduction in concentration through 
various media like air, rock, and stoppings. By constraining 
movement to mine entries and measuring the effective distance 
from entry to entry, this provides an improved confidence in the 
interpolated contaminant distribution. The pathfinding algorithm 
runs in pre-processing, allowing for real-time interpolation with 
minimal computational delays. To further decrease error in the 
interpolated estimate of contaminant distribution, an optimal power 
coefficient is determined by minimizing the absolute percentage 
error as calculated by leave-one-out cross-validation. The use of 
interpolative modelling methods for atmospheric monitoring in 
underground mines will allow for time-dependent determination 
of the source of contamination, enable predictive analysis of 
contamination behaviour within the mine and provide an avenue 
for indirect exposure assessment for miners. From data collection to 
visualization, NeaRTIMe is able to provide site-wide interpolations 
in under one minute.

Methods
NeaRTIMe is a spatial interpolation algorithm that leverages 
inverse distance weighting and the A* search algorithm for 
pathfinding to create an interpolation that respects the geometry 
of the underground excavation (Hart, Nilsson, and Raphael, 
1968). Because this is a spatial interpolation method, the primary 
information required to arrive at an estimation is the distance 
between the sensor and the location where airborne contamination 
is to be estimated. To construct these distance values, information 
about the mine’s geometry and orientation is needed.

The pathfinding algorithm used to calculate distances for spatial 
weighting of the sensor data requires a set of interior mine points, 
as well as a set of barriers. This set of barriers comprises air-rock 
boundaries and air-stopping boundaries. Air-stopping boundaries 
are generally defined as boundaries between air and non-rock, 
effectively solid items, such as sealed drifts or crosscuts, or well-
sealed doors. Because these boundaries are found in all mines, 
spatial interpolation of environmental air quality must consider 
these unique interactions.

In order to to move away from proposed one-dimensional 
MVN approaches to monitoring, the one-dimensional network 
model must be updated to a framework that supports higher 
spatial resolution within mine entries. Concepts like an adjacency 
matrix are not a feasible option, because adjacency matrices are 
one-dimensional graphs mapped to a matrix (Ponstein, 1966). This 
retains the overall one-dimensional nature seen in MVN solvers. 
The use of a mesh structure like those used in CFD simulations, 
on the other hand, sacrifices processing time for the sake of spatial 
resolution. Using an intermediate format would allow for improved 
spatial resolution without an extreme increase in processing time, 
making it better suited for real-time atmospheric monitoring. The 
mine layout must therefore be converted to a rasterized or bitmap 
image. This image can be created through a variety of methods, the 
majority of which lie outside the scope of this paper. The method we 
elected to apply for a two-dimensional air quality analysis in a US 
underground coal mine utilized AutoCAD 2023 to import a CAD 
drawing of a section of mine beltway, as shown in Figure 2.

From this imported CAD drawing, pillar, stopping, and 
excavation boundaries are extracted, yielding a set of distinct lines 
that may then be converted into points in AutoCAD, as shown 
in Figure 3. These boundaries can then be overlain with an array 
of points, creating a network of evenly spaced points within the 
excavation, not inclusive of points inside pillars or beyond the 
excavation boundaries, as in Figure 4. The array of points as overlain 
with AutoCAD represents the mine entries through which air can 
travel. 

These internal points and boundaries are then exported to .csv 
files, where they are processed in the Julia programming language 
to create a bitmap image of the mine (Bezanson et al., 2017). This 
is achieved by rounding the imported point values to the nearest 
interval. The interval elected for application here is 152 cm (5 feet).

While the goal of NeaRTIMe is to improve the spatial resolution 
of airborne contamination distribution estimations, it is impractical 
to use a small scale. Rather, it is better to scale the study area to 
minimize the number of estimations NeaRTIMe must perform 
while still providing improved spatial resolution. Scaling the study 

Figure 2—CAD drawing of the area of study in an underground coal mine
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area is beneficial for two reasons. Primarily, this yields a steep 
reduction in processing time both in pre-processing of distances 
used in spatial interpolation and processing of sensor data for 
spatial interpolation. Additionally, it reduces unnecessary artificial 
precision. Because individual sensors within an AMS have their 
own precisions (often 0.1–10 ppm for most gas detection), precision 
exceeding this threshold is unnecessary and provides a somewhat 
inaccurate picture of conditions between sensors (Afshar-Mohajer 
et al., 2017). Scaling the area seeks to minimize this creation of 
artificial precision.

The calculation of distance values for spatial interpolation 
entails a unique challenge not encountered in most spatial 
interpolation use cases. Because air quality is the topic of concern, 
interpolation must focus on distances between points where air 
flows. This means that standard distance calculations, such as 
Euclidean distance calculations, as in Equation [1], do not suffice:

[1]

where a and b are two vectors representing two n-dimensional 
points in space and ||b — a|| is the L2-norm (Euclidean norm)

Instead, the A* algorithm can be applied. The A* algorithm is a 
best-first search algorithm and operates as an extension of Dijkstra’s 
algorithm ,with the use of a heuristic to generate the shortest path 
between two points while respecting any boundaries between two 
points (Hart, Nilsson, and Raphael, 1968).

This application of the A* algorithm is especially advantageous; 
because the A* algorithm calculates a shortest path with respect to 
any boundaries, it is possible to calculate the shortest path through 
air between any two points in an underground mine. The use of the 
A* algorithm ensures that interpolation respects the natural flow 
of air in the mine, and prevents the interpolation from calculating 
distances through rock, doors, or stoppings that would otherwise 
cause an erroneous result.

The A* algorithm seks to minimize the distance between 
points within a path with the use of a cost function and a heuristic 
function. Following from Equation [1], the cost function is 

considered here as the Euclidean distance between the current 
position and the next position:

[2]

This is effectively the distance moved in one step from the 
current position to a neighbouring position. Likewise, the heuristic 
function is governed by the distance between the current position 
and the goal position:

[3]

Following Equations [2] and [3], the A* algorithm iteratively 
creates a path such that:

[4]

The length of this path can then be obtained from the number 
of members in the set of points describing the optimal path. The 
A* algorithm in this application does not generate a continuous 
distance, as Euclidean distance calculations do in Equations [1], [2], 
and [3]. Instead, it counts the number of locations visited along the 
rasterized path between two locations. This discrete value generated 
works well for spatial interpolation over the rasterized mine layout. 
It is important to note that Euclidean distances and A* distances are 
not inherently interchangeable. The underlying scales of the metrics 
are different. This means that visual inspection of values attached to 
a colour scale can show differences in values, but direct comparison 
of numbers is not a helpful means of determining differences.

As shown in Figures 5 and 6, the average A* distance values 
tend to bleed horizontally in the centre of the excavation. This 
spread of average values is noticeably different from the Euclidean 
distance, which cannot account for stoppings on either side of the 
centre drift.

While the visual difference between the two distance metrics 
is small, the use of A* distances in interpolation with NeaRTIMe 
provides a meaningful reduction in estimation error. By better 
accounting for the mine’s geometry, spatial relationships between 

Figure 3—Air-rock and air-stopping boundaries must be extracted prior to input to the pathfinding algorithm. The red line indicates the interpolation boundary 
(outermost walls) within the coal mine and the blue lines indicate the air-rock or air-stopping interfaces

Figure 4—Internal points (airways) in the study area. Note discontinuities in some regions due to stoppings
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locations within the mine’s ventilation system are more realistically 
preserved than is possible with a Euclidean distance, which may 
draw its lines through rock or stoppings. This effect is slightly 
more visible when displaying the minimum distances to sensors 
within the mine (Figures 7 and 8). The A* distances tend to have 
curving, subcircular contours, whereas the Euclidean distances 
tend to preserve horizontal and vertical contours more, due to the 
orientation of the excavation and placement of sensors.

Spatial interpolation across the underground mine is achieved 
by inverse distance weighting, which uses the distance from a set 
of known values to a target (i.e., the output of the A* algorithm) 
(Shepard, 1968). Inverse distance weighting is predicated on the 
assumption that values from a known point generally decay with 
increasing distance from that point. This decay can be generalized 
as:

[5]

where d is the distance between a known-value location xi and 
the location to be interpolated, x, and p is the power coefficient 
describing the rate of decay.

The power coefficient, p, increases the rate of decay for p>0, 
as shown by graphing the equation f(x) = 1xp with various power 
coefficients, as in Figure 9.

The value at a point then follows from Equation [5]:

[6]

where gi is the value at a known location.
Although a power coefficient of p=2 is commonplace in the 

application of inverse distance weighting for resource geostatistics, 
an optimal power coefficient can be determined and used via 
leave-one-out cross-validation (Babak and Deutsch, 2009). This is 
advantageous, as various environmental variables may cause non-
uniform rates of decay within the mine. These variables can include 
changes in air flow, changes in temperature and pressure, and 
individual differences in gas properties.

Optimization of the power coefficient is achieved by minimizing 
the absolute percentage error as calculated by leave-one-out cross-
validation. Error for the interpolated is calculated as:

                                                       
 [7]

where g(xi) is the calculated value at the known location, gi is the 
measured value at the known location, and S is the set of all sensor 
values except those removed for error calculation. This error 
function does not account for sensors reporting zero; these values 
are assumed to be at the limit of detection for the sensor, often 
0.05–1 ppm, depending on the contaminant (Afshar-Mohajer et al., 
2017). Because absolute percentage error is extremely sensitive to 
differences between true and estimated values when the true value 
is small, care must be taken to avoid dividing by zero. Using the 
limit of detection of the sensor can prevent this error. In further 
implementations, it may be more appropriate to minimize the 
mean-squared error (MSE) or root-mean standard error (RMSE) 
to optimize the power coefficient. While MSE and RMSE would be 
helpful metrics to compare interpolation models where the input 
data remains constant, comparing various models across changing 
mine conditions and input concentrations is more difficult, because 
MSE and RMSE are not directly comparable metrics when the input 
data changes over multiple successive interpolations. Because of 
this, we have elected to use absolute percentage error as the current 
error metric while continuing to compare various interpolation 
approaches with varying input data.

The error can be calculated with the optimal power coefficient 
to provide the estimated error for the entire model. This error is 
minimized to find the optimal power coefficient, as in Equation [8]:

[8]

Figure 5—Average A* distance from all sensors to all points. Horizontal and 
vertical axes represent rotated mine coordinates in metres

Figure 6—Average Euclidean distance from all sensors to all points. 
Horizontal and vertical axes represent rotated mine coordinates in metres

Figure 7—A* distances to nearest sensor for all points

Figure 8—Euclidean distances to nearest sensor for all points

Figure 9—Inverse power functions for various values of p. Distance-based 
decay increases (f(x) decreases) as the power coefficient increases
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While leave-one-out cross-validation for optimization would be 
unfit for an interpolation using two or three sensors, underground 
AMSs generally have an average of 38 sensors, providing an 
opportunity to better reduce estimated error for the model 
(Rowland, Harties, and Yuan, 2018).

Results and discussion
Considering a set of concurrent AMS alerts from a portion of an 
underground room-and-pillar coal mine in Utah, it is possible to 
use NeaRTIMe to estimate the distribution of carbon monoxide in 
a portion of the mine, especially in areas between sensors. While 
the alerts presented here are concurrent, adoption of the NeaRTIMe 
method would require a departure from the current industry 
practice of alerting at specific concentrations above the mine’s 
background carbon monoxide concentration. Instead, NeaRTIMe 
would base interpolation estimates for any sensors above the limit 
of detection. For commercially available carbon monoxide sensors, 
this is generally 0.5–1 ppm (Afshar-Mohajer et al., 2017).

Most AMSs display a a visualization output similar to that in 
Figure 1. Sensor locations are overlain on a mine plan, with popups 
displaying on the system interface when a sensor in the AMS signals 
an alert. This yields, at best, a nearest-neighbour assumption of real-
time air mixtures available to the AMS operator, most likely without 
respect to air-barrier interfaces, as in Figure 10. While nearest-
neighbour interpolation is possible based on A* distance outputs, 
this yields no appreciable difference in the resulting visualization 
and still fails to paint an in-depth picture of most probable air 
quality conditions.

Because nearest-neighbour interpolation is based on the 
nearest sensor value, lines of demarcation are strikingly apparent 
between each sensor’s radius of influence. Additionally, there is 
no input of data from other sensors when a point lies entirely 
constrained by one sensor’s radius of influence. This yields a 
visualization that assumes discrete changes in values from one 
radius of influence to another, which is naturally not the case when 
considering the constantly evolving nature of potentially hazardous 
air mixtures in an underground mine. Interpolation of the sensor 
data utilizing the A* algorithm, as in Figure 11, creates a much 
smoother visualization, with minimal demarcation between sensor 
domains in the study area. This method of interpolation can still be 
improved. The average error is relatively high, but by adjusting the 
power coefficient, the interpolation can be optimized to reduce the 
average error and create a more realistic visualization of air quality 
conditions. 

With a power coefficient of p = 2, the average percentage error 
of the interpolation is 30.2%. By increasing the power coefficient 
incrementally to reduce the percentage error, an optimized 
power coefficient of p = 5 is obtained. Because of the nature of 

optimization via error minimization, power coefficients could 
range between p = 2 and p = 100 with 0.5-step increments. 
Upon optimizing the interpolation with p = 5, average 
percentage error reduces by 9.7%. This yields an interpolation 
as in Figure 12. Demarcation between sensor domains is 
noticeable, as in a nearest-neighbour interpolation, but is 
significantly less prominent. Optimization of this interpolation 
seeks to equally constrain all sensors; sensors that are further 
away from an interpolated point have less effect on the resulting 
value at p = 5 than p = 2. This constraint offers a decrease in 
error, as well as a better-informed interpolation.

This is most prominent when considering the interpolations 
in Figures 11 and 12, where the left side of the figure is 
interpolated to be significantly lower in value in Figure 11 than 
in Figure 12. At p = 2, the lower sensor value on the right side 
of the figure has a higher influence on point values than when 
p = 5, creating artificially depressed values on the left side of 
the interpolation. Further still, error reduction is visible when 
considering a linear interpolation, as in Figure 13, compared 
to an A*-informed interpolation. With an estimated error 
of 31.5%, NeaRTIMe can achieve a total percentage error 
reduction of 13.3%. This error reduction is crucial to return a 
contamination distribution that is as close to real-time mine 
conditions as possible. As discussed in relation to Figure 9, the 

Figure 10—Interpolated carbon monoxide concentration utilizing Euclidean 
distance-informed nearest-neighbour interpolation. Air flow direction is 
indicated with black arrows, and sensor locations are denoted in grey. A 
continuous miner is located at the tip of the leftmost arrow. Axes represent 
rotated mine coordinates in metres

Figure 11—Interpolated carbon monoxide concentration utilizing 
A*-informed inverse distance weighting with p=2 and an average error 
of 30.2%. Air flow direction is indicared with black arrows, and sensor 
locations are denoted in grey. A continuous miner is located at the tip of 
the leftmost arrow. Axes represent rotated mine coordinates in metres

Figure 12—Interpolated carbon monoxide concentration utilizing 
A*-informed inverse distance weighting with p = 5 and an average error 
of 27.3%. Air flow direction is indicated with black arrows, and sensor 
locations are denoted in grey. A continuous miner is located at the tip of 
the leftmost arrow. Axes represent rotated mine coordinates in metres

Figure 13—Interpolated carbon monoxide concentration utilizing 
Euclidean-based inverse distance weighting with p = 2 and an average 
error of 31.5%. Air flow direction is indicated with black arrows, and 
sensor locations are denoted in grey. A continuous miner is located at the 
tip of the leftmost arrow
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than relying on a time-stamped record of alerts or a graph for a 
single sensor. By including the visualization aspect with improved 
combined spatial and temporal resolution, AMS operators will be 
afforded a more comprehensive understanding of contamination 
dynamics within the underground mine than is currently available 
from AMSs. 

The A* pathfinding algorithm is vital for NeaRTIMe’s ability 
to return estimates with higher confidence than other airborne 
contamination models using inverse distance weighting. While 
spatial statistical methods like those used in geostatistical resource 
estimation generally consider relationships along straight lines 
(Euclidean distances), the use of pathfinding algorithms like 
Dijkstra’s algorithm has been well-documented for cases where 
spatial relationships vary through a region (Boisvert and Deutsch, 
2008; Boisvert, Manchuk, and Deutsch, 2009). The same logic can 
be applied to the estimation of airborne contamination. Spatial 
relationships, when considering straight lines drawn through rock 
and stoppings, fail to properly capture spatial autocorrelation of 
airborne contamination, increasing the error in the interpolated 
model, as shown in Figure 13. Instead, the A* algorithm calculates 
spatial relationships with respect to open mine entries. By 
preventing the calculation of distances in media separate from 
mine air, like rock and stoppings, spatial relationships can account 
for mine geometry and better preserve the effects of air flow in the 
interpolation.

The A* search algorithm is vital for the spatial interpolation 
of airborne contamination distributions using NeaRTIMe. Inverse 
distance weighting requires some distance metric as an indicator 
of the impact that a known value at a known location has on an 
estimation location. Because of its ability to resolve paths within 
airways, rather than requiring that distances be measured through 
rock and stoppings, the A* algorithm provides an improvement in 
estimation confidence. Previous methods for spatial interpolation 
in air typically have used a Euclidean distance for interpolation 
above ground (Vicedo-Cabrera et al., 2013; Sahu and Mardia, 2005). 
However, due to the comparatively complex nature of a ventilation 
system, alternative distance metrics are required. the use of pre-
processing for A* distances is highly advantageous; processing 
of distances with a scale of 152 cm (5 feet) across a study area of 
approximately 1200 × 300 m requires 7 minutes of processing 
time when using the Julia programming language. For real-time 
reporting, this delay is too large to provide a reasonable picture of 
air quality throughout the study area. Additionally, because of the 
computational and time complexity of the A* search algorithm, 
programming languages that utilize just-in-time (JIT) compilers 
tend to see a sizeable acceleration during A* calculation. This is best 
evidenced in the use of Julia and Python (Van Rossum and Drake, 
2009). Python, being an interpreted language, required an estimated 
150 or more days to calculate the A* distances for the same data-set 
processed in Julia, which uses a JIT compiler.

With pre-processed distances, updates to the geometry only 
need to be made when the study area has changed significantly. 
This means that updates to a NeaRTIMe-based AMS would only 
need to be made as frequently as they currently are with other AMS 
systems. After the pre-processing of distances, interpolation and 
optimization, and visualization require approximately 45 seconds 
in Python to complete, allowing for almost real-time air quality 
monitoring on a 45-second delay. With optimization, interpolation, 
and visualization in Julia, we anticipate a moderate reduction in this 
delay, albeit not as dramatic as the change seen in pre-processing of 
A* distances.

power coefficient is related to the rate of decay of concentration 
from a known location to an unknown location. By optimizing 
the power coefficient, this assumed rate of decay can be more 
precisely controlled. This allows for reduced percentage error in 
the interpolated model as the model begins to reflect the spatial 
relationships between sensors more accurately. In other words, 
while a power coefficient of p = 2 may be treated as a default, 
changing the power coefficient to minimize percentage error will 
better capture the physical conditions within the mine and return a 
model with lower error and higher confidence.

Figures 11, 12, and 13 provide views of different interpolation 
methods based on a set of concurrent AMS alerts from an active 
underground coal mine. By extension, the preferred model should 
return the lowest percentage error as calculated by leave-one-
out cross-validation. The optimized interpolated model (Figure 
12) is the model that most closely matches the experimental 
conditions experienced in the mine during the AMS alert period. 
Obviously, different mines with different equipment operations, 
mine geometries, and ventilation systems would return different 
distributions stemming from different input data, with different 
optimized power coefficients. Further development and verification 
of the NeaRTIMe method and related approaches is under way to 
improve model resolution and certainty. Based on inverse distance 
weighting, NeaRTIMe presumes that the main factor influencing 
the distribution of airborne contamination is the interaction 
between a ventilation system and mine geometry in the form of a 
distance metric. While normal inverse distance weighting typically 
uses a Euclidean or linear distance, accounting for mine geometry 
can reduce error in the model. Furthermore, by optimizing the 
power coefficient, the spatial relationships between input data and 
estimated values can be more faithfully utilized in interpolation.  

An additional aspect of this optimization method is that it 
permits a greater understanding of the effects of dilution and 
exhausting. While the figures presented consider a single point in 
time, air mixtures in underground mines are extremely dynamic. 
As fresh air enters the excavation at the active face, the resulting 
contaminated air is exhausted along the beltway. The effects 
of dilution and exhausting are visible in the right side of both 
figures, where carbon monoxide remains high as the bulk of the 
contaminant is exhausted further down the beltway. An additional 
region of relatively high carbon monoxide is visible on the left side 
of the figures, which will eventually undergo the same dilution and 
exhausting processes as the previous bulk of contamination. This 
raises the point that dilution as a mechanism is only responsible 
for the location-specific reduction of contaminant concentration. 
This mechanism does not govern the removal of contamination, but 
instead describes how contamination in a single area will reduce 
as fresh air is added. This fresh air does not remain in the same 
location, so the bulk of the contamination still requires exhausting 
to physically remove it from the working area. More succinctly, 
concentration values are reduced at the sensor via dilution (the 
inclusion of fresh air) but exhausting (the entire or almost-entire 
replacement of contaminated air with fresh air) remains the physical 
means of removal of contaminants across the whole excavation. 

As a method designed to operate with higher combined 
spatial and temporal resolution than currently available methods, 
NeaRTIMe is well suited to visualize the kinematic behaviour of 
airborne contamination in underground mines. Minute-over-
minute, estimations of contamination distribution can be calculated 
using NeaRTIMe. These estimations can then be plotted and made 
available for replay by AMS operators. The operator is able to 
review critical alarm events in a holistic, spatial-visual way rather 
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Current mine ventilation system design programs offer methods 
for the theoretical modelling of contamination but have limited 
capabilities for real-time monitoring across the mine footprint 
(Shriwas and Pritchard, 2020). This is due in part to several factors. 
One of the largest barriers to real-time analysis is the method used 
for calculation of these systems. Because MVN software prioritizes 
calculations for the movement of air, a graph-network approach 
is used. This is evidenced in the work flow of such programs: 
discrete sections of the mine are initialized and then connected 
to other discrete sections to form an (effectively) closed system. 
These discrete sections are assumed to have uniform properties, 
such as excavation dimensions, surface roughness, temperature, 
and humidity. This is an inherent feature of the MVN approach 
to ventilation system design and monitoring. Because MVN 
approaches require a one-dimensional representation of the space, 
there is no means to increase spatial resolution of gas distributions 
beyond current capabilities. While the one-dimensional approach 
permits faster simulation, the assumptions of constant conditions 
within a mine entry limits its ability to provide the clearest possible 
picture of mine ventilation conditions. 

These assumptions create an environment not optimized for the 
use of experimental or real-time data, because such conditions are 
constantly changing throughout the discrete sections. For similar 
reasons, the use of an adjacency matrix to represent the space will 
not improve the spatial resolution of any model. Because adjacency 
matrices are one-dimensional directed or indirect graphs mapped 
to a matrix, the same assumptions must be made – that ventilation 
conditions within the mine entry remain constant across the 
entry (Ponstein, 1996; Sereshki, Saffari, and Elahi, 2016). With a 
rasterized approach like that used by NeaRTIMe, large volumes 
of discrete points can be individually interpolated, rather than 
interpolating values at the intersections of the mine excavation 
and within mine entries. Crucially, this interpolation can provide 
higher spatial resolution than that available using MVN approaches 
for contamination monitoring and control, without the extreme 
processing times required to converge on a solution provided by 
a CDF simulation. Instead, NeaRTIMe provides an intermediate 
method for estimation between MVN and CDF methods, while 
still operating with a time resolution that permits quick action from 
the AMS operator in the case of a hazardous change in the mine 
atmosphere.

NeaRTIMe is currently limited by a number of factors. Because 
NeaRTIMe only considers the location of the value to be estimated 
and the input sensing data, the resulting interpolation cannot 
account for additional transport variables, such as temperature and 
humidity. While NeaRTIMe does not currently consider exogeneous 
data, expanded sensing capabilities across the mine or additional 
methods for interpolation may be utilized to create a sound, 
well-informed modelling method. The application of a multiple 
input, single output model may positively contribute to a reduction 
in estimated error for NeaRTIMe or its derivative methods, 
providing a stable understanding of typical variances encountered 
in the measurement of additional input variables. Additionally, 
NeaRTIMe is fundamentally incapable of true real-time sensing. 
This is limited by the sensing frequency of installed sensors as well 
as the processing delay time. This delay time can be highly variable 
from computer to computer, although advances in multithreading 
may help to reduce this delay at increasing mine scales and higher 
resolutions.

Conclusion
Real-time carbon monoxide monitoring is rapidly becoming a 

standard in underground coal mining, and underground metal 
mines are beginning to adapt this technology for the detection of 
other contaminants, such as respirable silica. Despite the volume of 
data available to create meaningful understandings of real-time air 
mixtures, this data has largely been neglected. Spatial interpolation 
methods, such as nearest-neighbour interpolation and inverse 
distance weighting, are powerful tools for creating well-informed 
snapshots of air quality, with minimal processing delays. Further 
optimization of the power coefficient used in inverse distance 
weighting allows AMSs to display more usable data with more 
confidence than is currently available.

Although required by law, these sensor networks are extremely 
expensive to operate and maintain. This cost is not only financial 
– the sensors require scheduled calibration and maintenance that 
quickly becomes time-intensive with respect to the total number 
of sensors in the mine requiring servicing. Thus, it is imperative 
to obtain a comprehensive understanding of air quality conditions 
within the mine with the fewest sensors possible. Current AMSs 
cannot achieve this without the incorporation of additional sensors, 
as the methods used to visualize air quality display only the data 
at the sensor location. Spatial interpolation seeks to improve data 
visualization, as well as provide an estimate of values with low error 
across the mine.

Further work is warranted in the modelling of air quality 
in underground mines. Most notably, steps should be taken to 
reduce the estimated error in these models. Likewise, the inclusion 
of other validation metrics like RMSE and MSE will provide 
valuable insights into interpolation performance. Inverse distance 
weighting, by nature, cannot identify minima and maxima that 
lie outside of the input data. This means that all modelled values 
within the interpolation are constrained between the minimum 
and maximum values reported by sensors. In its current state, 
NeaRTIMe is limited by its interpolation method. With the use of 
stochastic methods such as ordinary kriging and cokriging, rather 
than deterministic methods like nearest-neighbour and inverse 
distance weighting, NeaRTIMe would permit the inclusion of 
exogenous factors like air velocity, humidity, and temperature (Pan 
et al., 1993). The combination of these variables in an interpolation 
model would most likely have a significant impact on estimation 
error while also returning a distribution of the estimate rather 
than a point estimate.Ordinary kriging has shown promise for the 
real-time monitoring of underground gas distributions, with the 
added benefit of improved quantification of uncertainty for each 
estimate rather than the estimated distribution as a whole. Work is 
ongoing to develop a pathfinding algorithm that will account for 
the flow of air within the mine, which should improve the quality 
of estimates with NeaRTIMe. The addition of other exogeneous 
factors will be vital to improved monitoring because of their impact 
on the fate and transport behaviours of airborne contaminants. 
Additionally, further work is required to reduce the total delay 
from data collection to visualization. Methods for error and delay 
reduction would also provide opportunities for the analysis of 
fate and transport mechanisms within the mine, allowing AMS 
operators and ventilation-on-demand systems to detect and mitigate 
potentially harmful conditions.

The NeaRTIMe algorithm seeks to lay a framework for air 
quality monitoring and modelling utilizing interpolative methods 
to create a realistic representation of real-time air quality across 
an entire mine. Leave-one-out cross-validation allows for the 
optimization of the power coefficient for interpolation, minimizing 
the percentage error of the interpolation. With the use of the 
A* pathfinding algorithm to inform inverse distance weighting, 
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air-rock boundaries can be respected while performing spatial 
interpolation. Although this pathfinding process is computationally 
intensive, the use of the Julia programming language in conjunction 
with pre-processing of distances prior to data collection, 
interpolation and optimization, and visualization reduces delays to 
below one minute from data collection to visualization. NeaRTIMe 
provides a simple numerical approach to the modelling of air 
quality data with few inputs. While this method cannot account 
for minima or maxima in the data between sensors, the use of 
optimization as a means of error reduction stands to provide a 
more reliable estimate of local airborne contamination distribution 
based on location-specific air quality monitoring data. As air 
quality continues to be a major concern in underground mines, 
the methods used for daily and real-time monitoring should be 
mathematically and computationally feasible to increase the amount 
of actionable data available to AMS operators.
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