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Calibration of the limit equilibrium pillar 
failure model using physical models
R.P. Els1 and D.F. Malan1

Synopsis
The limit equilibrium model, used in displacement discontinuity codes, is a popular method 
to simulate pillar failure.  This paper investigates the use of physical modelling to calibrate this 
model. For the experiments, an artificial pillar material was prepared and cubes were poured using 
the standard 100 mm × 100 mm civil engineering concrete moulds. The friction angle between the 
cubes and the platens of the testing machine was varied by using soap and sandpaper. Different 
modes of failure were observed depending on the friction angle. Of interest is that significant load-
shedding was recorded for some specimens which visually remained mostly intact. This highlights 
the difficulty of classifying pillars as failed or intact in underground stopes where spalling is 
observed. The laboratory models enabled a more precise calibration of the limit equilibrium model 
compared to previous attempts. Guidelines to assist with calibration of the model are given in the 
paper. The limit equilibrium model appears to be a useful approximation of the pillar failure as it 
could simulate the stress-strain behaviour of the laboratory models. 
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Introduction 
Pillar design for bord-and-pillar layouts is typically done using empirical methods (see Martin and Maybee, 
2000; van der Merwe and Madden, 2010). The empirical pillar strength equations are, however, not 
applicable to all geotechnical areas and there is a risk that the equations are used in mining areas where they 
are not a good approximation of pillar strength (Malan and Napier, 2011). For example, the weak alteration 
zones occasionally found in the pillars in the Bushveld Complex reduce the pillar strength and this may lead 
to mine-wide collapses (Couto and Malan, 2023). A popular alternative is to use numerical modelling, with 
an appropriate constitutive model, to simulate the rock failure and pillar strength (Sainoki and Mitri, 2017). 
The failure criteria are typically complex with a large number of parameters to calibrate. These models may 
therefore not always provide a good prediction of pillar strength and do not always replicate the correct 
failure mechanism (Malan and Napier, 2011).

A popular approach to simulate pillar failure is to use a limit equilibrium model in a displacement 
discontinuity code (du Plessis, Malan, and Napier, 2011; Napier and Malan, 2021). This approach is useful 
as it combines the ability of the displacement discontinuity method to simulate tabular excavations on a 

Table I

Example of the parameters used in the limit equilibrium model (after Napier and Malan, 2021)
Parameter Value

Intact strength intercept, σci 73.0 MPa
Intact strength slope, mi 7.0
Residual strength intercept, σc 46.0 MPa
Residual strength slope, m 4.6
Effective seam height, H 3.0 m
Intact rock Young’s modulus, E 70 000.0 MPa
Intact rock Poisson’s ratio, ν 0.2
Fracture zone interface friction angle, φI 20°
Field stress normal to excavation plane 60.0 MPa
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mine-wide scale with the limit equilibrium model to simulate on-
reef pillar failure. It can simulate the spalling of the pillars, complete 
pillar failure and the resulting stress transfer to adjacent pillars. This 
approach is particularly attractive for simulating large-scale bord-
and-pillar layouts with irregular pillars (Wessels and Malan, 2023) 
as well as conventional layouts in the Bushveld Complex with crush 
pillars (du Plessis, Malan, and Napier, 2011).    

A drawback of the limit equilibrium model is the large number 
of parameters to calibrate. Table I illustrates the parameters 
to be calibrated when using this model. Previous attempts to 
calibrate the model typically involved running simulations 
with a range of parameter values and comparing the results to 
underground observations (Napier and Malan, 2021). An improved 
understanding of the contribution of the various parameters and a 
calibration strategy is required.    

The limit equilibrium model is based on a force equilibrium 
analysis of a slice of rock in a pillar. The pillar material is bound by 
frictional parting planes at the hangingwall and footwall contacts 
(Figure 1). The physical models described in this paper were used 
to study the effect of this friction angle on pillar strength. In the 
numerical model, the pillar material can fail and the strength of this 
material is defined by two envelopes describing the intact strength 
and the residual strength (Figure 1). These are defined by strength 
intercept parameters and slope parameters. This basic model can be 
extended to simulate time-dependent pillar spalling (Wessels and 
Malan, 2023), but this is not considered in this paper.

An unexplored method to calibrate the parameters shown in 
Table I is the use of physical models in the laboratory. The use of 
physical models in rock engineering is described  in Napier and 
Ozbay (1994) and Ozbay, Dede, and Napier (1996). These laboratory 
models are now seldom used in South Africa, probably owing to 
the availability of complex numerical modelling codes and the high 
cost of conducting laboratory experiments. The limit equilibrium 
model is, however, an excellent example where physical models may 

be of benefit to better understand the applicability of the numerical 
model and to devise an improved calibration strategy. This paper 
describes the initial laboratory experiments that were conducted on 
model pillars made of an artificial material. One of the objectives 
of the study was to investigate the effect of friction angle on the 
hangingwall and footwall ‘partings’ which delineated the pillar. 
This was of interest owing to recent modelling that highlighted the 
detrimental effect of weak layers at these contact planes (Couto and 
Malan, 2023). The main aim of the experiments was, however, an 
attempt to validate and calibrate the limit equilibrium model. 

Laboratory experiments on artificial pillars 

Sample preparation and test methodology
The work was conducted using an artificial material that could 
be cast. The strength selected for the artificial material was low to 
ensure that the tests could be easily done in the presses available in 
the laboratory.  The specimens were cast using the standard moulds 
used for preparing concrete cubes for civil engineering projects 
(Figure 2). This resulted in specimens with a side length of 100 mm. 
The casting of the artificial material had a benefit compared to using 
actual rock as a large number of samples could be cast and tested. 
The four sides of the cubes inside the moulds were also flat and 
parallel and two of these opposing sides were used as the contact 
surfaces with the testing machine. In contrast, achieving flat, parallel 
surfaces with actual rock material requires expensive and time-
consuming sample preparation. Rock samples also typically result 
in a large variability in strength when conducting laboratory testing. 
It was hoped that the artificial material would give more consistent 
results. The drawback of using the standard moulds was that all 
the ‘pillars’ tested were cubes with a width to height ratio of unity. 
The tests were conducted using the 50 kN testing machine in the 
concrete laboratory of the Engineering 4.0 facility at the University 
of Pretoria (Figure 3).     

Figure 1—The important components of the limit equilibrium model. The diagram at the top illustrates the forces acting on a thin slice of rock inside the pillar. The 
diagram at the bottom illustrates the strength failure envelopes and the associated parameters (after Wessels and Malan, 2023)
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The artificial material used by Jacobsz et al. (2018) and 
Schoeman (2020) for cave mine modelling in a centrifuge provided 
the basis for selecting the material for this project. Schoeman 
(2020) describes a material that was designed to replicate the brittle 
fracture behaviour of rock, but also to be weak enough to cave. The 
initial experiments with this material for the pillar project indicated 
that it was too weak and difficult to handle without breaking the 
samples. Cement was thus added to the mixture to improve its 
strength. No sand was added to the mixture. The final composition 
of the artificial material used by the authors is shown in Table II. 
Although the mixture contains materials typically associated with 
geopolymer cement and concrete, the material is not classified as a 
geopolymer as it contains the cement mixture. 

For the experiments, it was planned that all the specimens 
should have the same composition and dimensions. The only 
parameter varied was the boundary conditions at the platen contacts 
to study the effect of the contact friction angle. The ‘normal’ 
contact condition was with the steel platen directly applied to the 
cube. Two other frictional conditions were introduced by using a 
commercial soap material (to reduce the friction) and sandpaper 

(to increase the friction) on the contacts between the steel and the 
cube. The same boundary condition was applied on the top and 
bottom contact of the cube to simulate the symmetrical attributes 
of the limit equilibrium model.  The soap was grated material and it 
worked well, but several experiments had to be conducted to refine 
the sandpaper interface. One attempt was to fold the sandpaper in 
order to have a sandpaper contact against both the sample and the 
platen. After trial and error, it was found that glueing the two sides 
of the sandpaper together gave the most consistent results. For these 
samples, the contact condition was therefore the rough sandpaper 
against both the steel platen and the sample, which substantially 
increased the friction angle.  

It is known from the literature that the basic friction angles 
of planar rock surfaces can be determined by means of tilt tests 
(Alejano et al., 2018). To determine the friction angle of the three 
types of boundary conditions described above, a simple tilt device 
was constructed. This is illustrated in Figure 4. A screw mechanism 
was implemented to ensure that the angle can be gradually 
increased. The ISRM-suggested method for the tilt test (Alejano et 
al., 2018) requires that at least five repetitions be performed and 
the median of the result taken to give the basic friction angle ϕb = 
median βi=1,…,5. It was found that the artificial material cubes gave 
consistent friction angle values throughout and there was no need 
to determine the median of the five results. The samples against the 
steel platen gave a friction angle of 21°, the soap contact reduced 
it to 16°, and the sandpaper increased it to 38°. The set-up of the 
platen contact conditions in the testing press are depicted in Figure 5.

Test results
Figure 6 illustrates the typical failure mode of the cubes. The 
observed mode of failure was consistent for each of the three types 
of platen boundary conditions and the photographs in the figure 
are representative of the failure mode for each type. Immediately 
evident is that the low friction angle specimens underwent axial 
splitting, while the normal platen conditions with a higher friction 

Figure 2—Casting of the cubes using the concrete test molds. The completed samples are shown on the right during the curing process

Figure 3—The Lloyd EZ50 testing machine used for the testing of the cubes

Table II

Composition of the artificial material used to cast the cubes 

Constituent Relative density 
(RD)

Proportion 
(kg/m3)

Percentage 
mass (%)

Kaolin 2.70 269.62 16.40
Fly ash 2.22 787.54 43.24
Cement mixture 2.20 87.50 10.00
Water 1.00 499.04 30.36
Total - 1643.7 100.00

Figure 4—The tilt device built to measure the friction angle. The photograph 
on the left illustrates the cube sliding on the steel used for the platen. That was 
the base case and it gave a friction angle of 21°. The photograph on the right is 
for the sandpaper, giving a friction angle of 38°
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angle led to an ‘hourglass’ failure pattern. These two failure patterns 
are reminiscent of actual pillar failures observed underground 
(Malan and Napier, 2011). Further examples of the different types 
of pillar failures and the effect of a weak layer on pillar strength are 
given in Wagner (1980) and Esterhuizen and Ellenberger (2007). 
The sandpaper boundary condition typically led to the formation 
of an inclined shear between two opposing sides from a top to a 
bottom corner. These laboratory tests are therefore useful to test the 
limit equilibrium model as three distinctly different modes of failure 
are observed. It was initially not clear if the limit equilibrium model 
is a good approximation for all three cases.     

Figures 7 to 9 illustrate the load deformation behaviour of the 
specimens. The material is weak (peak strength approx. 1 MPa for 
the cubes with the normal platen conditions) and the post-peak 
behaviour could be captured by the test equipment. Surprisingly, 
there is significant variability in the test results, although the 
specimens were from the same mix. As the tests could not be 
conducted on the same day, it is not clear if different curing times 
played a role and this needs to be investigated in future. For all 
the tests, some ‘settling’ of the platen on the cube occurred at the 
beginning of the tests, resulting in the initial flat portions of the 
curves. This was particularly prominent for the soap contact as the 
relatively thick layer of soap had to be compacted first. It should be 
noted that the test conditions may have affected these initial test 
results and this needs to be explored in future. A spherical seat was 
not used during the test set-up. The edges of samples in contact with 
the testing machine were nevertheless considered parallel as two 
opposing sides of the cubes from inside the moulds were used as the 
contact surfaces. However, no flatness or parallelism measurements 
were made. The thickness of the soap layer was controlled by using 

the same volume of grated soap for each test and efforts were made 
to spread this soap uniformly across the surface of the specimens 
to give a constant thickness. This was a crude method and the 
results should therefore be considered as showing trends rather 
than providing absolute values. Consideration should be given 
to how this can be better controlled and measured in future. The 
initial compaction phase was followed by elastic compression, peak 
stress, and the post-failure part of the curve. The peak stress for the 
samples with the soap boundary condition was substantially smaller 
than for the other two types of tests.

Figure 5—Different boundary conditions used in the laboratory tests

Figure 6—Failure modes for the different boundary conditions. For the sandpaper contact, note the shear failure from the top left edge to the bottom right edge

Figure 7—Stress-strain results for the cube tests with normal platen conditions 
(21° friction)

a) Grated soap contacts (16o)          b) Normal platen contacts (21o)      c) Sandpaper contacts (38o)

a) Normal platen contacts                 b) Grated soap contacts                 c) Glued sandpaper contacts
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Figure 8—Stress-strain results for the cube tests with the soap boundary 
conditions (16° friction)

Figure 9—Stress-strain results for the cube tests with the sandpaper boundary 
conditions (38° friction)

Figure 10 —Stress-strain curve and the associated stages of failure for a cube test with soap boundary conditions (16° friction angle). Enlarged photographs are given 
below the graph
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A particular test for each boundary condition was examined 
in detail and photographs of the state of failure of the ‘pillar’ were 
included on the graphs. Figure 10 illustrates a test result with a soap 
boundary condition. The soap layer needs to be compressed during 
the early part of the test and therefore significant strain occurs for 
some samples before the stress starts increasing. In contrast to the 
test with the other boundary conditions, fracturing is observed only 
at the peak stress. The strength is also significantly lower. Note that 
the fracturing recorded for these experiments is based on visual 
observations only. It is recommended that other techniques, such 
as acoustic emission monitoring, be used in future to detect the 
possible earlier onset of fracturing.

For the normal boundary condition test shown in Figure 11, 
some fracturing is observed before the peak stress. Significant 
load-shedding occurs at 2% strain while the sample still appears 
to be mostly intact. At the end of the test, the core of the pillar still 
appears to be intact, but significant load-shedding has occurred. 
This is an important observation in terms of evaluating undergound 
pillars that are spalling and still appear to be intact. These pillars 

may in fact be already failed. Failure is evident at the end of the test 
in the form of an ‘hourglass’ shape.     

The test with the highest friction angle is shown in Figure 12. 
The fracturing again starts before the peak strength is achieved. At 
the end of the test, the inclined fracture running from  the top left 
corner to the bottom right is again visible.   

Table III gives a summary of the results with the three friction 
angles as well as the average peak strengths calculated from the 
results. Although there is significant variability, there is a trend of 
increasing peak strength with an increase in friction angle. This 
is also predicted by the limit equilibrium model modelling and 
the laboratory testing confirms this attribute of the model. The 
38° friction angle did not result in much stronger pillars than the 
21° friction angle. This is attributed to the different mechanism of 
failure (the inclined shear failure). 

In the next section we investigate the ability of the limit 
equilibrium model to simulate these results by considering an 
analytical model of a square pillar.

Figure 11— Stress-strain curve and the associated stages of failure for a cube test with normal boundary conditions (21° friction angle). Enlarged photographs are given 
below the graph
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An analytical limit equilibrium model of a square pillar
Napier and Malan (2021) derived an analytical solution for the 
failure of a square pillar, assuming a limit equilibrium model (Figure 
13). The detailed derivation of the model will not be repeated here 
and only a few key equations and additional interpretations are 
given below. The reader should consult the reference for additional 
information. 

Figure 12— Stress-strain curve and the associated stages of failure for a cube test with sandpaper boundary conditions (38° friction angle). Enlarged photographs are 
given below the graph

Table III

Summary of test results

Boundary condition Average friction 
angle (°)

Average peak strength 
(MPa)

Normal platen 21 0.91
Soap 16 0.43
Glued sandpaper 38 1.03

Figure 13—Top view of a square pillar with the intact core shown (after Napier 
and Malan, 2021). The parameter α0 defines the width of the intact core. The 
pillar is completely fractured for α0  =  0 and it is intact for α0 = a
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From Figure 13, the width of the square pillar is w=2a. It is 
assumed that for a limit equilibrium model, the scaled average pillar 
stress (APS) is expressed by a weighted combination of the average 
of the stresses in the intact core region and in the surrounding 
fractured region. Napier and Malan (2021) showed that the scaled 
APS, A, as a function of the scaled pillar strain, X, can be given by

 [1]

where the scaled fracture zone length parameter ϕ is given by

 [2]

The parameter ϕ can be considered as a pillar damage variable 
that ranges from ϕ = 0 for an intact pillar to ϕ = 1 for a pillar that is 
completely fractured. Based on Figure 13, it follows that 

 [3]

In terms of the other scaled parameters, it follows that 

 [4]

where σ–n is the average stress across the pillar (the intact core 
as well as the fractured edge zone) and  is the intact uniaxial 
strength. In terms of the scaled strain, 

 [5]

where ε0 is the average strain at the point where the pillar stress 
reaches the postulated intact uniaxial strength . The other 
parameters in Equations [1] and [2] are

 [6]

 [7]

 [8]

where mi is the slope of the intact limit equilibrium strength 
envelope, m is the slope of the residual limit equilibrium strength 
envelope,  is the intact rock uniaxial strength, and σc is the 
residual strength after failure (Figure 1 shows an example of 
these strength envelopes). The parameters w and h are the width 
and height of the pillar respectively. Furthermore, μI  = tanφI is 
the coefficient of friction at the interfaces of the pillar with the 
hangingwall and footwall and φI is the interface friction angle. These 
parameters are also given in Table I. 

From Equation [1], the scaled APS, A*, for the pillar when 
the pillar is completely fractured, ϕ = 1, is given by the simplified 
equation  (Napier and Malan, 2021): 

 [9]

A number of properties of the model are evident from the 
solution given in Equation [9], and these may be useful when 
calibrating the model using the laboratory test results. If σc = 0 (or 
Q = 0), then the residual APS when the pillar is fractured through 
will be zero. Values of σc > 0 need to be selected. Furthermore, if the 
friction angle φI tends to zero, (or β → 0), the residual APS is given 
by the following solution:

 
[10]

The APS for a friction angle of φI = 0 for a pillar completely 
fractured will therefore be Q.  

To gain insight into the effect of the friction angle, Equation 
[9] was used to plot A* as a function of friction angle φI. This is 
illustrated in Figure 14. Note that the y-intercept is the Q value. 
The graph therefore correctly predicts that  for the 
parameter values selected.

Figure 14 provides a possible method to calibrate the residual 
strength in the model, σc, from laboratory testing. If ‘pillars’ can be 
tested at different interface friction angles, a function fitted to the 
data can be extrapolated to determine the y-intercept. From this 
value and the intact strength of the material, the residual strength 
value can be computed by using Equation [8]. This methodology 
is illustrated in Figure 15. The same parameter values as Figure 14 
were used, but only seven data-points for different friction angles 
were plotted. The fitted exponential function predicted a y-intercept 
of 0.45. For the known parameter = 1 MPa, the residual 
strength can be calculated from Equation [8] as 0.45 MPa. This is a 
reasonable approximation of the correct value of 0.5 MPa.

Figure 14—Scaled APS as a function of friction angle. This is for a square 
pillar that is completely fractured through. Parameters = 1 MPa, σc  = 0.5 
MPa, m = 2, w = 0.1 m, and h = 0.1 m

Figure 15—A few selected data-points of scaled APS as a function of friction 
angle. Parameters = 1 MPa, σc = 0.5 MPa, m=2, w=0.1 m, and h = 0.1 m
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Figure 16 illustrates the actual laboratory data at the different 
friction angles. The final residual stresses in Figures 10, 11, and 12 
(normalized to the intact uniaxial strength, 0.91 MPa) were used for 
this plot and it is therefore assumed that the laboratory specimens 
are fractured throughout at these points on the graphs. The data  
in Figure 16 predicts a y-intercept of 0.067. For the known 
parameter  = 0.91 MPa (average of the specimens with a 
normal platen contact), the residual strength can be calculated 
from Equation [8] as 0.06 MPa. This was rounded to a value of 0.1 
MPa for the additional steps in the calibration process described 
below. This seems a useful method to calibrate the residual strength 
parameters, σc, but it is recommended that additional tests be done 
in future with a greater variety of friction angles to verify this 
approach.

As a first attempt to calibrate the remaining parameters (mi 
and m), an attempt was made to fit Equation [1] to the stress-strain 
data presented in Figures 10, 11, and 12. The known and calculated 
parameter values were used and mi and m fitted. The data from 
the laboratory tests was scaled similar to the method used for the 

analytical model (Equations [4] and [5]) to enable a comparison to 
be made. The origin of the laboratory data was also shifted to the 
left as the analytical model cannot consider the initial ‘compaction’ 
during the early stages of the test. This compaction was particularly 
prominent for the soap layer. The fitted data is shown in Figures 
17, 18, and 19. This was done by trial and error by modifying mi 
and m to give the best fit. Reasonably good fits between the model 
and the laboratory data for all three types of test were obtained. 
The calibrated parameter values are shown in Table IV. It was very 
encouraging that the experimental curves could be replicated. 
The only difference between the tests was the friction angle and 
surprisingly, the curves could be replicated with similar values for 
the other parameters. The only exception was that a lower value 
for m was used for the specimen with the highest friction angle 
(38°). This is not unexpected considering that different failure 
mechanisms were observed for the three groups of laboratory 
specimens and the limit equilibrium model is only a simplified 
approximation.     

Figure 16—Laboratory data for the completely failed specimens with a fitted 
exponential function. This gives a value of Q = 0.067

Figure 17—A comparison between the laboratory data (also shown in Figure 
11) and the analytical limit equilibrium model for a square pillar (blue curve). 
Normal platen boundary conditions (21° friction angle)

Figure 18—A comparison between the laboratory data (also shown in Figure 
10) and the analytical limit equilibrium model for a square pillar (blue curve). 
Soap boundary conditions (16° friction angle)

Figure 19—A comparison between the laboratory data (also shown in Figure 
12) and the analytical limit equilibrium model for a square pillar (blue curve). 
Sandpaper boundary conditions (38° friction angle)
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Also, of value for the calibration process is that the limit 
equilibrium model can predict strain softening or hardening after 
the onset of failure. According to Napier and Malan (2021), the 
condition for immediate softening at the onset of failure for a square 
pillar is

 [11]

where β, M, and Q are given in Equations [6] to [8]. Furthermore, 
the constraint that the final pillar stress (AFinal) is greater than the 
APS at the onset of failure (AInitial) is given by

 [12]

Equations [11] and [12] define whether there is initial softening 
or hardening of the APS at the onset of failure and the residual 
hardenend or softened state when the pillar is completely fractured. 
These values were calculated for the calibrated parameters in 
Table IV and correctly predict that, for all three cases, there will be 
immediate softening after failure and the final APS will be less than 
the APS at which the initial failure occurred.  The two conditions 
given in Equations [11] and [12] are valuable constraints that can 
assist during model calibration.      

Guidelines to assist with calibration of the limit equilibrium 
model
The steps followed to obtain an improved calibration of the limit 
equilibrium model can be summarized as follows.

 ➤  Laboratory testing to determine the intact rock uniaxial 
strength. For the experiments in the paper, this was 
assumed to be the strength of cubes tested using normal 
conditions on the platens. It needs to be confirmed how 
well this agrees with the standard ISRM test methodology 
to determine the uniaxial compressive strength. The effect 
of other parameters such as humidity and temperature also 
need to be studied as these may affect the rock material 
strength in the underground excavations.

 ➤  Laboratory testing to determine the shear strength of any 
weak interfaces present in the pillar. Weak alteration zones 
in the Bushveld Complex are typically thick clay layers and 
have a different friction angle in dry and wet conditions 
(Couto and Malan, 2023). These layers and the infilling 
need to be carefully tested using a shear box setup and 
appropriate test methodologies.

 ➤  Cube testing of intact pillar material at different friction 
angles may assist to estimate the residual strength of 
material when using the limit equilibrium solution for a 
square pillar as described above. Sample preparation using 
actual rock will be arduous and varying the friction angle 
between the sample and the test platens is also a difficult 
practical problem.

 ➤  The very weak material used for the experiments in this 
study made it easy to obtain the complete stress-strain 
curves. For actual rock specimens, a stiff testing machine 
with servo-control may be required.  

Table IV

Calibration of limit equilibrium model for the laboratory specimens

Parameter Soap contact Normal contact Sandpaper contact

Intact strength intercept, 0.9 MPa 0.9 MPa 0.9 MPa

Intact strength slope, mi 7.0 7.0 7.0

Residual strength intercept, σc 0.1 MPa 0.1 MPa 0.1 MPa

Residual strength slope, m 7.0 7.0 3.5

Pillar height, h 0.1 m 0.1 m 0.1 m

Pillar width, w 0.1 m 0.1 m 0.1 m

Interface friction angle, φI 16° 21° 38°

0.111 0.111 0.111

1.0 1.0 0.5

2.007 2.687 2.734

0.111 < 0.499 
Immediate softening

0.111 < 0.427 
Immediate softening

0.111 < 0.268 
Immediate softening

0.111  0.454 
AFinal < AInitial

0.111  0.328 
AFinal < AInitial

0.111  0.320  
AFinal < AInitial
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 ➤  The analytical limit equilibrium model presented in Napier 
and Malan (2021) is a valuable tool for testing cubic 
samples, and this should be studied in detail to ensure its 
correct application. 

The limit equilibrium is an elegant and relatively simple model, 
to represent pillar failure in displacement discontinuity boundary 
element codes. This enables the study of mine-wide geometries 
where pillar failure is encountered on a large scale.  If there are 
complex pillar failure mechanisms however, such as that caused 
by major inclined discontinuities traversing the pillars, the limit 
equilibrium may not be able to simulate the failure behaviour well. 
Care should also be exercised regarding the presence of weak layers. 
The limit equilibrium model is a symmetrical model, but pillars are 
frequently encountered where there is only one weak plane present, 
at for example the hangingwall contact. Further work is required to 
extend the model to cater for these asymmetrical pillar geometries. 
In summary, calibration remains a challenge and a larger number 
of back-analysis studies will have to be conducted before the model 
can be used with confidence to predict the pillar strength and layout 
stability for new mining projects.       

Conclusions
The work described in this paper illustrated that laboratory 
experiments, using an artificial rock material, is a valuable tool to 
assist with the calibration and validation of complex failure models, 
such as the limit equilibrium model. Physical experiments to assist 
with rock engineering studies has been neglected in South Africa in 
modern times and this capability needs to be rebuilt. 

The tests on the artificial pillars confirmed once again that the 
interfaces between the pillar and hangingwall, and the pillar and 
footwall, have a significant effect on the pillar strength. For these 
tests, there was approximately a 60% reduction in average pillar 
strength (Table II) when the friction angle on the interface decreases 
from 38° to 16°. 

The limit equilibrium model could simulate the reduction in 
pillar strength for a decrease in friction angle on the interfaces. It 
also successfully simulated the stress-strain behaviour of the pillars. 
This work therefore illustrates the value of the model, provided the 
parameters can be calibrated. A drawback of the current model is 
that it assumes a symmetrical geometry with weak partings at both 
the hangingwall and footwall. This could be easily replicated in the 
laboratory with the artificial pillars, but is rarely encountered in 
underground stopes where only one weak plane may be present. 
Further work therefore needs to be done to extend the model to 
account for asymmetric conditions. 

Additional laboratory work using a wider range of friction 
angles will also be useful to verify the calibration methodology 
proposed in the paper. It is not easy to find suitable materials to 
reduce or increase the friction angle on the interface in a stepwise 
fashion.  It was also disappointing that the artificial pillar material 
still resulted in significant variability in strength for the various 
samples tested.  The reasons for this need to be explored to reduce 
this variability in future experiments.        
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