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Defining optimal drill-hole spacing: 
A novel integrated analysis from 
exploration to ore control 
by B.C. Afonseca1 and V. Miguel-Silva2

Synopsis
Drill-hole spacing analysis (DHSA) and optimization are becoming commonplace for uncertainty 
assessment and management in the mining industry. However, there is no standardized DHSA workflow, 
and the outputs of certain methodologies are not interchangeable. We group available simulation-based 
DHSA methods according to their accounted uncertainty into (i) raw uncertainty, assessed by drawing 
realizations from synthetic data-sets with the drilling spacings to be tested; and (ii) model uncertainty, 
in which these synthetic data-sets are used to assess the variation between the estimated model and 
the (unknown) actual value. DHSA workflows available in the literature ignore the differences between 
both types of uncertainty. Commonly, the DHSA algorithm is chosen without a detailed analysis of its 
uncertainty output, which may lead to misleading results and suboptimal decisions. While available 
solutions are based only on assessing raw or model uncertainty, the proposed approach simultaneously 
analyses both and their relationship for models at different stages of the mine. The integrated analysis 
results deliver more information to support decision-making than available methods. Principles, 
practical considerations, and discussions of the advantages of the proposed integrated analysis are 
presented. The approach is applied to a real gold deposit to illustrate its use. 

Keywords
drill-hole spacing analysis, conditional simulation, ordinary kriging, uniform conditioning, estimation 
error.

Introduction
Drill-hole spacing analysis (DHSA) is a set of geostatistical techniques applied to assess the associations 
among the uncertainty of the estimates, drilling spacing, and data availability. In this sense, the Joint Ore 
Reserves Committee (JORC, 2012) states that the reporting of Mineral Resources should be supported 
by significant geological information for all classifications of Inferred, Indicated, and Measured Mineral 
Resources. The reports must include evidence of the sampling methods and the appropriateness of data 
spacing to the mineral deposit’s geological, physical, chemical, and mineralogical features. DHSA may 
provide important decision drivers from initial exploration to production models. Its outcomes may 
also be analysed from an optimization perspective, where we look for the optimal drill-hole spacing (the 
decision variable) to define an objective function to be optimized, such as a minimum misclassification, 
maximization of resource conversion, or the best balance between the sampling costs and operational 
losses caused by under-sampling (Li et al., 2004; Boucher, Dimitrakopoulos, and Vargas-Guzman, 2005; 
Koppe et al., 2011; Martínez-Vargas, 2017). DHSA tends to be understood as applicable exclusively for 
diamond or rotary drill-holes. However, these geostatistical techniques may be used to assess the spacing 
of any type of samples, such as production blast-holes or underground channel sampling. Hereafter, 
we use drilling and sampling spacing interchangeably to refer to the spacing of the type of data under 
analysis.

There is no standardized workflow for DHSA, but we may generalize the state-of-the-art and most 
widely used solutions into kriging- and simulation-based methods. Compared to kriging methods, the 
simulation-based algorithms demand considerably more computational and technical resources for 
running, processing, and checking all drawn realizations (Verly, Postolski, and Parker, 2014). DHSA, based 
on simulation algorithms, provides access to the probability distribution and properly considers the local 
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variability, proportional, and support effects. We consider that the 
additional effort required by simulation algorithms is justified due 
to the risk of losses from suboptimal sampling strategies. Verly, 
Postolski, and Parker (2014) state that when the risk assessment 
requirements are not so complex or when the time to complete a 
simulation is lacking, DSHA involving kriging variance calculations 
can be useful. 

We distinguish the simulated-based methods available in 
the literature into model uncertainty and raw uncertainty. This 
distinction is based on the workflow employed to measure the 
uncertainty in each case. In both algorithms, a set of synthetic 
data-sets corresponding to the drilling spacings to be tested 
is drawn by geostatistical simulation. However, on the model-
uncertainty workflows (Figure 1a), these synthetic data-sets 
are input to a chosen kriging estimator. The local accuracy is 
assessed through the variation between the estimated model and 
the (unknown) actual value. In the second workflow (Figure 1b), 
named raw uncertainty, realizations are drawn from each synthetic 
data-set. The assessment of global accuracy of properties, such as 
tonnage versus grade relationship, is prioritized at the expense of 
local accuracy. 

Both workflows presented in Figure 1 are widely discussed 
in the literature. However, the implications, distinctions, 
and relationship of their output uncertainty is an overlooked 
subject. The difference between the introduced raw and model 
uncertainties is directly connected to global and local accuracy 
concepts. The method in Figure 1a is affected by the fact that 
kriging methods, by definition, cannot be simultaneously 
conditionally unbiased and globally accurate. If a resource 
model accurately predicts the tonnages and grades available for 
selection at the time of mining, then the block grade estimates are 
conditionally biased. This is the kriging oxymoron discussed by 
Isaaks (2005). Based on this concept, DHSA should not be applied 
without considering the objective function to be optimized, 

the geostatistical methods, and an adequate definition of its 
parameters.

The novelty of the presented workflow lies in the fact that 
DHSA studies should always consider the interdependence 
between the function being minimized, the method employed 
for modelling the uncertainty, and the purpose of the models 
from which decisions are made, from the required accuracy of 
global grade-tonnage relationship at exploration stages to the 
local accuracy required to classify mineable blocks of production 
models. This is especially true when global and local accuracies 
are compared (Journel and Huijbregts, 1978; Isaaks, 2005). We 
propose a novel solution in which raw and model uncertainty 
support an integrated analysis where each type of uncertainty 
complements the other. Their relationship is fundamental for 
supporting decision-making. The available algorithms are adapted 
to generate comparable and interchangeable outputs (Figure 1). 

We address this subject as follows. We first distinguish the 
objective functions for short- or long-term models and their 
purposes. We analyse the singularities of both reviewed groups 
of DHSA methods and the objective function optimization, and 
discuss specifics. Next, we establish a distinction between the 
raw and model uncertainties. The approach formulated herein 
is then outlined. We argue that their results are not equivalent, 
directly comparable, or conceptually similar in some instances. 
Subsequently, the proposed approach is tested for a real gold 
deposit, where the raw and model uncertainties are merged for 
a unique risk assessment. This is followed by a discussion and 
conclusions.

Literature review: Raw and model uncertainty approaches
Various authors have presented optimization methods for 
drilling spacing to reduce the uncertainty of the transfer 
functions of interest. Geostatistical simulation methods are 
increasingly applied for DHSA because these stochastic methods 

Figure 1—Flow charts for two DHSA workflows. In (a), the ‘n’ simulated synthetic data-sets are used to compare estimates obtained using these data-sets with 
the ‘actual value’ obtained by averaging the simulated nodes into block support. In (b), each synthetic data-set is used as input to the drawn realizations to 
compute the variability among realizations in each block 
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are recognized tools for quantifying the spatial distribution of 
uncertainty. The scope of this literature review is not to present 
details for geostatistical simulation (Deutsch and Journel, 1998; 
Goovaerts, 1997) but to discuss the differences between the most 
popular DHSA approaches based on simulation.

We may separate these methods into two groups based on 
their output uncertainties.

 ➤   The raw uncertainty approach (Figure 1b) accurately 
assesses the global risk attached to a random 
function (RF) spatial distribution. Synthetic data-sets 
representing the drilling spacings to be tested are 
simulated. Realizations are drawn from each data-set. 
The probability distribution of transfer functions, 
such as operational costs, net present value, or other 
economic and engineering parameters can, therefore, be 
calculated. It is generally assessed by Gaussian methods, 
maximum entropy methods that provide the most 
‘disorganized’ spatial arrangement possible for a given 
RF. The reproduction of the RF parameters is prioritized 
at the expense of local accuracy (Goovaerts, 1997). 
Here, equiprobable realizations are simply a means to 
represent the uncertainty, and thus it is recommended 
to submit all realizations through the transfer function 
to achieve a full distribution of responses.

 ➤   The model uncertainty approach (Figure 1a) uses 
synthetic data-sets to assess the local accuracy. It better 
predicts the local uncertainty found in short-term and 
production models, such as the variation between the 
estimated model and the (unknown) actual value, or the 
expectation to classify a block as ore or waste correctly.

Kriging is a linear algorithm based on the minimization of 
the error variance to provide accurate local estimates (Matheron, 

1963). Therefore, the actual deviation between model estimates 
and the true value is expected to be lower than the dispersion 
assessed by simulation algorithms, here classified as raw 
uncertainty. The model uncertainty also considers the unavoidable 
smoothing effect and its related conditional bias. The expected 
value of the true grade based on the estimates is not equal to the 
estimated value, and generally underestimates high values and 
overestimates low values (Journel and Huijbregts, 1978).

Table I summarizes references in the literature for the 
approaches defined herein.

One concern associated with both simulation-based groups 
is their excessive computational requirements. Some authors 
have suggested the use of scenario reduction, where the objective 
function would be analysed from a subset m' sampled from m 
based on similarity or dissimilarity conditions (Armstrong et al., 
2013; Okada et al., 2019; Usero, Misk, and Saldanha, 2019). The 
use of scenario reduction, however, is a disputed subject. The 
problem to be optimized is key for correctly managing multiple 
realizations. In general, the full set of realizations should be 
used for objective functions, such as plan optimization, ultimate 
pit limits, net present value, or expected profit (Deutsch, 2017). 
There is no right or wrong realization, as it is impossible to state 
that one represents the reality better than the others. Incorrect 
or suboptimal decisions could be made if too few realizations 
are considered. However, optimization of the drilling spacing for 
linear objective functions, such as the average estimation error or 
misclassification rate, can be conducted with fewer realizations. 
The specific location of high or low variability areas within 
the simulated domain is not critical. The variability at specific 
locations averages out globally over multiple realizations, and 
any of these realizations reflect the overall variability required by 
DHSA studies.

   Table I

   Scheme of the available studies about drill-hole distancing optimization

   Author Optimized function Uncertainty index4

   Englund and Heravi, 1993¹ Costs associated with misclassification Misclassification rate

   Li et al., 2004¹ Drilling patterns to match the desired risk level Relative absolute error between estimate 
 within a required confidence level and ‘actual’ grade

   Boucher. Dimitrakopoulos,  Drilling pattern that maximizes the gross profit Profit per ton processed 
   and Vargas-Guzman, 2005¹ 

   Bertoli et al., 2010¹ Global ordinary kriging estimation variance 95% confidence interval versus a drilling  
  spacing for the corresponding area

   Koppe et al., 2011² Uncertainty related to the NPV Std. dev. of the distribution from all simulated NPV scenarios

   Koppe, Rubio, and Costa, 2017² n.a.  

   Martínez-Vargas, 2017¹ Drill-hole spacing defined as that where cost 
Misclassification rate   equals the cost of misclassifying ore and waste in  

 selection mining units (SMU)

   Usero et al. 20193 Dispersion of different simulated attributes  
 within a confidence interval

   
Drumond et al., 2019² n.a. 

¹ Model uncertainty methods.
² Raw uncertainty methods.
³ Variation of the raw uncertainty methods. A subset n’ represents the entire set of realizations n.
4 Where: Q15; Q95; E-type are respectively the quantiles 5th, 95th, and the average of the set of realizations.
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It is worth emphasizing that the methods discussed here 
are exclusive for grade uncertainty. No information involving 
the uncertainty of the geological boundaries of each geological 
domain is provided by the methods. However, adaptations can 
capture the joint uncertainty of grade and geological features.

Define the variables and outline the optimization problem
No sampling spacing is optimal by itself. When performing DHSA 
studies, the drilling spacing is tested against the variable to be 
optimized, such as the miscalculation rate, resource conversion, 
or expected profit. The best spacings differ for those different 
variables. Typical applications for DHSA are as follows.

 ➤  Mineral Resource: The DHSA is applied to find the 
most efficient spacing that supports the resource 
categories according to confidence levels of the 
estimates over a large production area. A very frequent 
practice in the mining industry states that the available 
information should be enough to support the grade 
and tonnage prediction within a ±15% accuracy at a 
90% confidence interval over a quarterly or monthly 
production increment for a measured class. The annual 
production accuracy should be within ±15% at a 90% 
confidence interval for Indicated Resources. Thus, the 
DHSA quantifies the investment required for resource 
conversion or categorization.

 ➤  Grade control/production models: The main purpose 
of grade control models is to provide local precision for 
the selection of ore and waste. These models provide 
the last opportunity during mining operations to ensure 
that the material is correctly assigned to the stockpile or 
waste dump, which reduces the number of misclassified 
blocks. The DHSA for grade control is commonly used to 
evaluate whether a denser drill-hole campaign reduces 
the block misclassification, the cost of which is, on 
average, higher than the cost of acquiring new data.

Next, we discuss relevant elements to be considered when 
performing optimization studies.

The scale of the decisions to be made
Fitting the model scale to the function to be optimized is 
particularly relevant for DHSA studies. The ‘scale of the decision’ 
term addresses the appropriate volume or area relevant for a 
decision to be made. For instance, in the early project stages, the 
global grade-tonnage relationship may be much more valuable 

information for decision-making than the grade accuracy at the 
mining support. In contrast, assessing the local accuracy, such as 
the local uncertainty of each estimated block, becomes especially 
relevant for mining selectivity decisions. 

From a geostatistical perspective, the estimation must 
consider the average distancing of the available data. A widely 
used rule of thumb states that the block size should vary between  
1/4  and 1/2 of the data spacing. This proposition arises from the 
relationship between the block support, estimation error, and 
internal block variance. Considering a stationary domain G, the 
‘smoothing relation’ (Equation [1]) explains how the average 
kriging variance (σkv

2 ) and dispersion of the estimated block (v) 
distribution (Dk

2*) are negatively related (Journel and Huijbregts 
1978):

[1]

We observe that large blocks are likely to be close to the 
actual true grade, while very small blocks result in over-smoothed 
estimates due to the higher estimation variances. Figure 2 shows 
the influence of the block dimension on the maximum estimated 
error. Note that the 24 × 24 × 4 m block model using 12 × 12 × 1 m 
spaced drill-holes shows uncertainties similar to the 50 × 50 × 4 m 
block model using 24 × 24 × 1 m spaced data.

The geostatistical criterion for defining the block size to be 
used during DHSA leads to a problem in which the block size 
impacts the drill-hole spacing definition, and vice-versa. Therefore, 
this paper considers the smallest scale for a decision in mining. 
It is called a selective mining unit (SMU) size, and production 
volumes as constant parameters are defined by operational 
constraints and not as variables to be optimized. An SMU is 
defined as the minimum volume that allows ore-waste selectivity, 
which is a function of the mining method and technological 
conditions.

While local accuracy is commonly measured block by block, 
the global accuracy for resource classification is generally 
computed for a panel representing a given monthly, quarterly, 
or annual production increment (Figure 3a). An uncomplicated 
scheme is often used when a mining plan is not available. Grids 
commonly employed by commercial mining software packages are 
sorted out by their x, y, and z coordinates, and then their masses 
are summed until a desired production increment volume is 
reached (Figure 3b). Constraints may be applied to mimic realistic 
operational shapes. 

Figure 2—The relative maximum estimation error (MEE) as a function of the sampling grid for different block dimensions (modified from Koppe, Rubio, and 
Costa, 2017). Details of the error calculation are presented in Table I
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The following section discusses the applicability of raw and 
model uncertainties from the perspective of different uncertainty 
indicators, functions to be minimized, and methodologies 
available in the literature.

Proposed methodology
The reviewed DHSA methods focus on setting the relationship 
between the drill-hole spacing and a specific uncertainty index 
considering a single model purpose, such as the required local 
accuracy of production models, or the global accuracy for a 
resource model. Therefore, DHSA does not connect the optimal 
drill-hole spacing for an exploratory model with the infill 
campaign to be drilled in the future. This relationship is not fully 
captured by the methods available in the literature and no optimal 
decision can be made without considering an integrated DHSA. 
In consequence of this limitation, the proposed methodology 

defines an integrated analysis of raw and model uncertainty, which 
provides uncertainty information considering the different model 
purposes throughout the life of the mine. 

The proposed methodology is an adaptation of the reviewed 
and widely used methods. Its novelty is the integrated DHSA to 
support a complete drilling plan from exploration to production 
models, their limits, and the best geostatistical method for 
each step. Available DHSA methods and concepts were kept, 
but algorithms were revised to reduce the computational effort 
required to run both simultaneously and assure interchangeable 
results. The integrated DHSA workflow (Figure 4) benefits from 
the best of both uncertainty workflows that account for local and 
global uncertainty. The gains arise from the complementarity 
between raw and model uncertainty, which leads to an increased 
information level of assessed uncertainties and fewer arbitrary 
decisions among different methods, scales of decisions, drill-hole 
spacings, and resource classes.

Figure 3—(a) 400 estimated blocks are combined into four volumes corresponding to a given production increment, and (b) plan cross-section view illustrating 
the grid definition used in GSLIB, DM Studio (adapted from Deutsch and Journel, 1998)

Figure 4—Proposed workflow for integrated DHSA. The same synthetic data-sets are input for drawing realizations and measuring the raw uncertainty and 
input for estimating blocks and measuring the model uncertainty
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Computational performance and the results are directly 
associated with the use of one or all realizations in the DHSA 
workflow. A guideline is provided by Armstrong et al. (2013) and 
(Deustch, 2018):

0  The optimal drill-hole spacing and its impact on 
local parameters, such as the block-by-block error or 
misclassification rate, may be assessed by a single set or 
subset of realizations because the variability at specific 
locations averages out over multiple realizations.

0  In the case of nonlinear relationships or more complex 
functions, such as a profit expectation or definition of 
the pit limits, it is recommended to pass all realizations 
through the transfer function to assess the whole response 
distribution.

The ideal number of realizations should be defined for each 
study. Different mineral deposits may require a different number 
of realizations to model the uncertainty, depending on their grade 
variability and the scale under analysis. A widely used solution is 
to measure the convergence of statistics of interest, such as the 
mean and standard deviations, for increasing values of ‘m’ and 
‘n’. This and other approaches may be found in Rossi (1994) and 
Deutsch and Journel (1998).

Applications
Realizing how the practitioner’s DHSA premises impact the whole 
perception of uncertainty is important. Even so, it is not unusual 
to see drill-hole spacing studies limited to standard strategies 
for modelling the uncertainty, which may not be suitable for the 
problems being solved. DHSA should not be exclusively sampling-
dependent but should also integrate the geostatistical method 
used and model purpose into the uncertainty modelling. For 
example, projects at very early exploration stages support viability 
studies and technological decisions over the global predictions 
of grade and metal content. This means that the global grade-
tonnage proportion is more relevant than the grade uncertainty 
and selectivity at a mining scale. However, prior exploration 
drilling may be combined with infill data for estimating 
production models. During the mining process, local accuracy is 
fundamental for the final selection. At this stage, minimizing the 
misclassification of ore and waste blocks is the primary concern. A 
real optimal sampling plan only may be assessed by an integrated 
DHSA. Operational conditions usually constrain the sampling 

programmes in real-world problems. The optimal spacing should 
consider technical limitations such as the mining scheduling, 
the grid of blast-hole drilling, or the separation between two 
consecutive stopes in underground mines. Next, we present some 
practical considerations on how to apply the proposed solution to 
fit a unique uncertainty assessment to different DHSA problems.

Example
In this hypothetical case, drill-hole spacing analysis is carried 
out to define (i) the broadest sample spacing that supports an 
acceptable misclassification error in production models, and 
(ii) the sample spacing suitable for classifying the model areas 
as Measured, Indicated, or Inferred. It is an example applicable 
to many mining operations, where an integrated study supports 
the correct geostatistical workflows and drill-hole spacing for 
each model, as well as defining if the exploration or production 
team is accountable for the drilling campaign. As discussed, the 
uncertainties to be modelled in each case come from different 
sources and it is advisable to treat them with an integrated 
approach.

Figure 5 shows a schematic plot for local and global 
uncertainties as a function of the drill-hole spacing. The plot is 
an example of how the results of the integrated DHSA should 
be analysed after following the workflow in Figure 4. The mod1, 
mod2, and mod3 may represent three different geostatistical 
methods, e.g., ordinary kriging (OK; Matheron, 1963), sequential 
Gaussian simulation (SGS; Isaaks, 1990; Deutsch and Journel, 
1998), and LUC (Abzalov, 2006), or even a single method adjusted 
for three different parameters.

When considering a 20% misclassification rate as an 
acceptable tolerance in Figure 5, mod3 should be selected for 
grade control. In this case, we see that 25 × 25 m would be the 
wider grid that supports the accuracy required for short-term 
models. For resource categories, i.e., Measured/Indicated/Inferred, 
as a function of the expected profit uncertainty, the long-term 
models should be estimated with grids between 25 × 25 m and 
150 × 150 m. In such cases, mod1 should be selected because it 
has lower values for the global uncertainty. Models using a grid 
beyond 150 × 150 m are of little use from a resource perspective 
because of their high uncertainty. From this conceptual case, it is 
quite clear that model uncertainty, if taken from a local or global 
perspective, changes depending on the evaluation strategy. The 
essence of the integrated approach is to capture these disparities. 

Figure 5—Schematic integrated DHSA. The mod1, mod2, and mod3 represent models of different estimation methods
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Integrated DHSA applied to a real gold deposit
The studied orebody is part of a world-class gold deposit in 
the Rio das Velhas greenstone belt located on the north border 
of the Iron Quadrangle (QF) district, Minas Gerais, Brazil. 
Geologically, it is classified as a typical association of mafic 
volcanic rocks, banded iron formation (BIF), carbonaceous 
phyllite, and micaceous phyllite metamorphosed at greenschist 
facies conditions (Lobato, 1998). Considering the host rock and 
the mineral assemblage, Vieira (1987) recognized three main gold 
mineralization types in the Iron Quadrangle district: (i) rich-
pyrrhotite hosted in BIF, (ii) related to pyrite and arsenopyrite 
replacing the iron layers of banded formations, and (iii) 
disseminated arsenopyrite in mafic schists.

The case study is developed in an underground mine currently 
in operation. Long-term models are gradually replaced by detailed 
grade-control ones as the production and drilling campaign 
progresses. Depending on how dynamic the operation is, 
additional interim models may be necessary to support strategic 
and operational decisions. As the estimates are designed to fit the 
model purpose, the uncertainty modelling and the DHSA to define 
the optimal drill-hole spacing are recommended to be likewise.

Simulating the reference scenarios
The original data-set came from a depleted area extensively 
sampled by diamond drill-holes (DDH) and face channels. Figure 
6 shows the declustered distribution of the data-set, where the 
variogram models were fitted to original and normal-score units 
(Table II).

The original data was used as SGS input to produce 30 
equiprobable realizations in the deposit discretized in a dense 1 
× 1 × 1 m grid. The sectorized SGS search ellipse was adjusted to 

fit the ore anisotropy and variogram ranges. The simple kriging 
was conditioned to 12-64 original samples and up to 36 previously 
simulated nodes. The 30 resulting realizations satisfactorily 
reproduced the declustered average grade, distribution, variogram 
model, and directional anisotropy (Figure 7).

The simulated realizations at the 1 × 1 × 1 m grid were used to 
generate 30 new synthetic data-sets for seven drill-hole spacings 
to mimic exploration and infill drilling: 5 × 30 × 1 m (representing 
the actual grade control spacing), 10 × 15 × 1 m, 20 × 30 × 1 m, 30 
× 45 × 1 m, 40 × 60 × 1, 60 × 90 × 1 m, and 80 × 120 × 1 m along 
the strike, plunge, and width, respectively (Figure 8). The listed 
sample spacings are possible considering the technical and 
operational conditions.

Accounting for the local and global uncertainties
To compute the uncertainty, the integrated workflow (Figure 4) 
was applied as follows.

 ➤  The 30 ‘true’ realizations were sampled at seven drilling 
spacings, resulting in 210 synthetic data-sets (Figure 9a). 

 ➤  Thirty realizations were drawn by the SGS method from 
the 210 data-sets. The raw uncertainty of each drill-hole 
spacing was measured as the difference among 1 × 1 ×  
1 m realizations averaged into 10 × 10 × 10 m blocks. 
The synthetic data from SGS was used for the normal 
score variogram of the original data. The search ellipse 
orientation and ranges considered the variogram 
parameters defined in Table II. A sectorized search 
was conditioned for 12-64 actual samples and up to 36 
simulated nodes.

 ➤  Ordinary kriging was applied to the 10 × 10 × 10 m blocks 
(Figure 9b). The OK used the original units variogram 

   Table II

   Variogram model parameters for original and normal-scored data

   Variable c0   Structure 1     Structure 2 
  Type c1 North East Vert. Type c2 North East Vert.

   Au 60 Sph 75 15 9 8 Sph 19 250 112 19
   Au-Nscore 0.49 Sph 0.36 9 10 18 Sph 0.15 120 78 20

Figure 6—Original declustered distribution of data
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(Table II), a search ellipse range equal and parallel to 
this variogram. The sectorized ellipse was conditioned 
for 16-64 samples, and each block was discretized into 5 
× 5 × 5 points.

 ➤  LUC was applied to the 40 × 40 × 40 m panels before 10 
× 10 × 10 m localization (Figure 9b). The LUC used the 
original unit variograms (Table II) and search ellipse 

range equal and parallel to the modeled continuity. The 
sectorized ellipse was conditioned for 16-64 samples, 
and each block was discretized into 5 × 5 × 5 points.

Considering 5 g/t as a theoretical cut-off grade for the 
reference models, the local accuracy was measured by the 
misclassification rate of blocks and the average estimation error. 
The local errors, i.e., the variations between the estimated and 

Figure 7—(a) Proportion versus grade of the original data (red) and SGS realizations (dashed grey). (b) Directional Gaussian variograms of SGS realizations 
(black) and data variograms for the east (left), north (centre), and vertical (right) directions

Figure 8—(a) Location map of the original samples of the deposit (database is composed of diamond drilling and channel samples). (b) Location map of four 
synthetic drilling grids established by sampling the SGS results. Each point contains 30 Au values sampled from the 1 × 1 × 1 m realizations



Defining optimal drill-hole spacing: A novel integrated analysis from exploration to ore control 

313The Journal of the Southern African Institute of Mining and Metallurgy VOLUME 122 JUNE 2022

the ‘actual’ values, were quantified by the root mean square error 
(RMSE). The same was applied to account for global accuracy. We 
measured the uncertainty of the overall metal-grade relationship 
for different drill-hole spacings at a range of cut-offs.

Figure 10 presents the DHSA results for local accuracy. 
The drill-hole spacing (x-axis) was plotted versus the average 
estimation error and the block’s misclassification rate (y-axis). 
The estimated block was compared to its ’actual’ reference value 
resulting from averaging all simulated nodes inside each block in 
both cases.

From a global perspective, Figures 11a and 11b show the 
RMSE for the metal content at 5 and 15 g/t for different drill-hole 
spacings. Additionally, the overall performance may be tested 
by comparing the estimated grade-cut-off and grade-tonnage 
relationships to the ’true’ reference model (Figure 11c-d) 

This case study highlighted that the errors were not 
exclusively due to the sample spacing. In contrast, the total model 

uncertainty arose from different sources, such as the estimation 
method, parameters, time-frame analysed, support dimension, and 
data availability. 

Discussion
The results presented in this case study are consistent with the 
reviewed literature. While OK provides local estimates with 
minimum error, the same is not valid from a global perspective. 
SGS and LUC proved to be better solutions for representing the 
actual grade-tonnage relationhip and total metal content (Figure 
11c-d). LUC incorporates the volume-variance effect into the 
estimated model. It makes uniform conditioning very effective in 
reproducing the global grade-tonnage distribution as it reduces 
smoothing impacts. In this sense, to assess the risks in the metal 
prediction in cases of sparsely distributed data or over-smoothed 
kriging, DHSA performed on LUC estimates would provide better 
uncertainty models.

Figure 9—(a) Proportion of records above the cut-off for the seven drilling grids extracted from 30 realizations, and (b) proportion of 10 × 10 × 10 m blocks 
above the cut-off for the OK and LUC estimates (drilling spacing 20 × 30× 1 m and 60 × 90 × 1 m)

Figure 10—Average error (a) and misclassification rate (b) as a function of drilling spacing and estimation method
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The metal prediction errors (RSME) from the LUC and SGS 
methods were smaller than the error associated with the OK 
estimates (Figure 11a-b). Locally, OK estimates using a 20 × 30 m 
drilling grid equal the uncertainty for the SGS simulation with a 
10 × 15 m grid (Figure 10). The metrics for quantifying the local 
uncertainty are constant, but varying the estimation method 
leads to different error values. The localization step of the LUC 
workflow provides SMU estimates from the panel histogram. 
However, this process may be highly inaccurate from a local 
perspective (Figure 10a-b). Thus, it is not advisable to perform 
DHSA studies for measuring the mining selectivity risk without 
considering the method´s characteristics.

The proposed DHSA approach may define limits among 
the different models and support the selection of geostatistical 
methods for each application. For grade control models, a 
higher block-by-block accuracy and lower misclassification rate 
is required for production and, thus, should be based on OK 
estimates that support a drilling spacing of 10 × 15 m or 5 × 30 m. 
Considering the maximum uncertainty over the mass analysed at 
different production scales, a resource model should be defined.

Moreover, one point arising in this study that may be revisited 
in future studies arises from Figure 10. This figure shows a 
reasonable linear relationship between the averaged error 
and the drill-hole spacing. This linearity seems to be a general 
feature observed in other studies (Koppe, 2017; Usero, Misk, and 
Saldanha, 2019; Li et al., 2004). If DHSA studies are conducted 
accordingly, the computational demand could be decreased 
without overall quality losses. However, that experimental 
observation must be checked for specific cases or mathematically 
proved in future studies.

Conclusion
The drilling programme, strategy, and their use for supporting 
grade and geological modelling are some of the most critical 
activities in any mine. The model uncertainty results from a 
complex combination of data availability, estimation method, 
geological features, and the objective function of interest. 
Therefore, in most cases, DSHA studies require an integrated 
analysis that considers the problem being addressed under the 
different applications of the drill-hole data. DHSA workflows 
available in the literature lead to different results that may not 
be interchangeable for many problems. Ignoring their differences 
and choosing any of them without a detailed analysis may result 
in misleading analysis or suboptimal decisions. We grouped 
simulation-based DHSA methods as a function of their resulting 
raw or model uncertainties.

 ➤  Raw uncertainty methods provide a means for objective 
functions, such as the expected profit of a given mine 
plan, operational dilution, and other engineering 
or economic parameters. In these global cases, it is 
recommended to consider the raw uncertainty, where 
the entire set of realizations is directly passed through 
the analysed transfer functions.

 ➤  Raw uncertainty, however, is not suitable for assessing 
the risks of estimating the block grade or its expected 
misclassification rate. Raw uncertainty workflows 
ignore method-related outcomes, such as minimum 
variance optimization, information effects, smoothing 
effects, and conditional biases. In those cases, the 
model uncertainty approach better predicts the local 
uncertainty found in short-term and production models.

Figure 11—Global uncertainty analysis for the three evaluation methods. Metal content error at 5 g/t (a) and 15 g/t (b) cut-offs. (c) Overall grade × tonnage rela-
tion for the estimation method and ’true’ reference distribution. (d) Average grade versus cut-off for the tested methods and ’true’ reference distribution 
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The proposed integrated DHSA allows a complete 
understanding of how the drill-hole spacing responds to the 
geostatistical method and its limitations, the model purpose, and 
transfer functions. The proposed method is especially relevant 
if we consider that resource and grade-control models have 
different purposes. It offers a wider overview of the uncertainty 
throughout the life of mine by integrating the short- and long-
term perspectives.

The last point to be discussed is the sensitivity of the results 
to the short-scale behaviour of the modelled variogram, in 
particular to the nugget effect. This parameter must be carefully 
defined as it plays a relevant role in DHSA. No optimization study 
will lead to accurate outputs if the nugget effect is poorly defined. 
The larger the nugget effect, the larger the point of diminishing 
returns where the model accuracy is no longer reduced by 
decreasing the sample spacing. Moreover, a second factor to be 
considered is the sampling protocol used, how it changes the 
nugget effect, and the optimal grid. Any optimal sampling strategy 
needs to consider an optimal and cost-effective ratio between 
drill-hole spacing and sampling protocol (Abzalov, 2014; Silva 
and Costa., 2016). Computationally, a higher nugget effect also 
increases the number of required realizations.
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