
697The Journal of the Southern African Institute of Mining and Metallurgy	 VOLUME 122	 DECEMBER 2022

Simulation of production processes 
and associated costs in mining using 
the Monte Carlo method
by M. Mathey1

Synopsis
The application of the Monte Carlo technique to production planning and everyday economic decision-
making in mine production management is demonstrated. The logic is detailed using an example of 
underground production with continuous miners (CMs) and truck haulage. It is argued that availability 
of equipment and personnel are the predominant variables influencing mine output and productivity and 
that those availabilities may be well represented by binomial probability distributions. The probabilistic 
model is implemented in a standard Excel® spreadsheet with Palisade’s @Risk add-on to facilitate 
simulations. Starting from model calibration against data obtained from a mine’s annual reports, some 
general interdependencies of availability, utilization, productivity, and costs of production processes are 
outlined. Finally, several possible options and their consequences as regards production improvements 
are explored.
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Introduction
The Monte Carlo method is typically used to simulate the interaction of input variables within a problem 
logic, in order to identify possible outcomes and associated probabilities. As such it is frequently used in 
financial analysis of mining projects. Heuberger (2005) provides a general introduction to risk analysis 
with the Monte Carlo method. 

The method is just as well suited to simulating success, risk, and opportunities in technical 
production processes. For example, Brzychczy (2018) makes use of stochastic networks combined with 
Monte Carlo analysis to simulate and optimize the performance of longwall operations in coal mining. 
Jung, Baek, and Choi (2021) propose a discrete event simulation of production in an underground 
limestone mine. Upadhyay and Askari-Nasab (2018) likewise suggest a discrete event simulation for a 
shovel-truck production system in opencast mining. Common to those publications is the ‘microscopic’ 
focus on the production process itself, where uncertainty is linked to variables such as equipment travel 
times, the degree of filling of buckets, and productivity rates in general.

The modelling approach selected in the present paper is ‘macroscopic’, presuming that production 
outputs in underground mining are predominantly driven by availabilities of equipment and personnel, 
once equipment types and number of units as well as section layouts and travel distances are decided. 
Following this argument, the production process may be divided into a number of independent variables, 
such as the availability of equipment or workforce, and dependent variables, e.g. equipment staffing 
ratios and productivity. On each given production shift, those variables ‘meet’ and result into a specific 
production output with associated costs. Through simulation one may therefore predict the most likely 
production outcome for a particular business year or find ways to optimize KPIs such as specific cost of 
production.

This paper showcases an equipment and personnel availability-based Monte Carlo simulation using 
underground production with continuous miners (CMs) and truck haulage as an example. The technical 
process design, logic, and associated costs can be implemented in a standard Excel® spreadsheet 
application. The generation of random input parameters, as required by the Monte Carlo method, may 
also be accomplished using standard functions provided in Excel. However, for complex simulations, it 
is advised to use add-on software such as the commercially available software @Risk by Palisade, which 
provides extensive modelling features (e.g. random number generators, goal seek analysis by adjusting 
values of cells, and sensitivity analyses).  
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The probabilistic Monte Carlo approach demands that the 
model logic is built around probability distributions of input 
variables, which are specified by the user. A fundamental argument 
proposed in this paper is that most aspects of availabilities in 
mining production processes can be adequately represented by 
binomial probability distributions, as discussed in the following 
section.

Binomial distribution
The term ‘availability’ refers to a binary condition of equipment 
and personnel, which can be either available or unavailable for 
production on a particular operating shift. It is argued (and later 
demonstrated in a case study) that if the average availability of 
personnel and equipment units in a given business year is known 
from experience or by assumption, then the probability of having 
a given number of equipment units or personnel available on a 
random operating shift can be predicted by a binomial probability 
function. 

In its general definition, the density function of the binomial 
probability distribution is expressed as

[1]

where n is the number of trials, p is the probability of success 
for each trial, k is the number of successes, and b(k,n,p) is the 
probability of having exactly k successes out of n trials.

Translated to the context of the production logic proposed 
here, the binomial density function provides an estimate of the 
probability of having exactly k equipment units available on a 
random operating shift from a total fleet of n units with average 
fleet availability of p. 

Example: Assume a mine operating a fleet of n = 7 trucks with 
average fleet availability of p = 50%, 70%, or 90% on a shift basis. 
The probability (here expressed as relative frequency) of having 
exactly k = 0, 1, 2, 3 … 7 trucks available on a given working shift 
may then be calculated from the binomial probability function 
with corresponding curves presented in Figure 1. For example, if 
the average fleet availability is 70%, one can expect to have exactly 
five trucks available on 32% of all shifts within a business year.

More often, however, the production planner requires to know 
how much equipment from his fleet will at least be available on 
a given working shift. Assume for instance that the fleet of seven 
trucks is supposed to serve three CMs for in-section haulage. 
For the process to work most productively, each CM requires 
two trucks for haulage. Hence, if all CMs are supposed to work 
simultaneously, at least six trucks are required to be available at 
the same time. 

According to the binomial distribution for 70% truck 
availability, one easily calculates the chance of having at least six 
trucks available on a given shift at only 33% (calculated as the 
sum of the relative availability of exactly six and seven trucks in 
Figure 1). This is a very low probability. One could now surmise 
that the production process is either underequipped and requires 
additional trucks, or that average truck availability requires major 
improvement, or both. For proper economic decision-making, 
however, one must consider that the three CMs themselves will 
not be always available. The question then is: how often will 
enough trucks be available for the individual number of available 
CMs on a given shift?

The problem of group availability – or, in general, matching 
of two or more independent variables with individual probability 
distributions at a given point in time – may still be computed 
using standard spreadsheet applications. Using two separate 
columns, create equally large binomially distributed random 
numbers for available CMs in one column and trucks in the other. 
Then, row-by-row, check how often the criterion is met that at 
least two trucks are available for each available CM. 

The results may be charted as shown in Figure 2. In the given 
example, a fleet of seven trucks with average 70% availability 
and a fleet of three CMs with 70% availability can be expected to 
have 72% group availability. The production situation therefore 
is already much better than initially estimated based on the 
availability distribution of the trucks alone. Yet it might still not 
be good enough. 

Figure 2 also shows how group availability is expected to 
improve as more trucks are added to the fleet. The diagram 
highlights an important point: for all practical purposes, the group 
availability increases near-linearly in the range of investigation 
up to a level of approximately 80% group availability. Beyond this 
level, the binomial distribution curves predict that an increasingly 
disproportional effort is required to reach as high as 100% group 
availability, hence questioning the economic meaningfulness of 
this approach.   

So far, we have only considered the results of two independent 
and binomially distributed variables meeting in the production 
process. There are, of course, many others. For instance, if a 
mine requires systematic roof support in conjunction with face 
advance, the availability of roofbolting equipment may be added 
to the logic. Likewise, the availability of conveyor belts and 
processing units might become a focus of investigation as well, 
and the availability of personnel to operate the available units of 
equipment .     

All relevant factors pertaining to the logic of production with 
CMs are addressed in the following section.

Figure 1–Binomial distribution of truck availability with average 50%, 70%, 
and 90% fleet availability

Figure 2–Predicted group availability of CMs and trucks for three CMs 
with 70% average availability and various average truck fleet sizes and 
availabilities
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Production modelling
Input variables
A full probabilistic production model must consider all relevant 
factors pertaining to the production process. To stick with the 
example of a CM and in-section haulage with trucks, those factors 
are (compare with Figure 3):
➤	�� Production time: Planned production shifts per year and 

hours per shift.
➤	�� Equipment capacity: Number of relevant units of equipment 

with payload and their respective implementation in the 
process, e.g. optimum travel distance to the section conveyor 
and auxiliary (unproductive) work necessary for the process, 
such as transport from shaft to section, work break, pick 
change, fresh air extension, equipment relocation etc.

➤	�� Equipment availability for groups of equipment, e.g. the 
fleet of CMs, trucks, and (if applicable) drill rigs or 
other machines. If the simulation targets optimizing the 
maintenance strategy, the average fleet availability may 
be subdivided into further aspects such as frequency of 
breakdowns, mean time-to-repair, or the share of planned 
and unplanned maintenance that is expected.

➤	�� Boundary conditions: All external impacts on the production 
system, such as bad ground conditions, additional safety 
precautions, or limitations pertaining to mineral processing 
such as demand or availability problems. Such factors 
can also be implemented (combined with an expected 
probability of occurrence) in the process logic.

➤	�� Workforce capacity: Number of full-time equivalent (FTE) 
workers allocated to the production team and their 
distribution across the planned production shifts per day and 
per week, as well as work hours per shift (i.e. ‘hot’ or ‘cold’ 
seat change).

➤	 ��Workforce availability: The expected average sick days, share 
of annual leave, and share of time that is allocated for 
‘unproductive’ (in terms of no tonnage produced) safety 
induction, training, and the like, resulting in an effective 
workforce availability for productive work.

➤	 ��Workforce qualification is another important factor, which can 
result in higher or lower levels of productivity. For instance, 
a mine operating with well-rehearsed teams or piecework 
reimbursement contracts may see higher productivities, 

and others which operate with a large proportion of 
unskilled miners or contract workers may perhaps see lower 
productivities. All such influences, if relevant to the analysis, 
may be implemented accordingly. 

The idea of the Monte Carlo simulation is to simulate a large 
variety of probable constellations of the above-listed variables per 
shift and to process the variables using the individual production 
logic to result in tonnage output, which is then extrapolated to a 
full business year.

For each simulated shift the production logic needs to check 
the number of available units of equipment (with minimum 
staffing requirements) against the available personnel. This 
step determines if any bottlenecks exist on the technical side 
(see truck vs. CM problem) and how much equipment can be 
effectively utilized for production. 

In a more refined production logic, the key decision of 
utilization must also consider all options available to the team 
leader, such as:  is it possible to substitute a missing truck by 
using an available LHD or another load-carrying unit and by how 
much will this reduce the overall process capacity? Are there 
further boundary conditions related to the mineral processing side 
which prohibit full utilization? How do I distribute the available 
personnel most effectively across the equipment to result in 
maximum tonnage?

In fact, the problem of utilization is one of optimal resource 
allocation under varying boundary conditions and directly affects 
the productivity (i.e. the specific tonnage output) of the simulated 
shift. This fact must already be accounted for in the process design 
and workforce planning. For example, one can easily imagine that 
allocating an increasing number of employees to a CM section 
may result in an increase in tonnage output, at least up to a certain 
level. However, the specific labour productivity (tons per man-
hour) will decrease from some point. 

Figure 4 shows such a staffing-productivity relationship for a 
typical CM section. The labour productivity curve peaks at around 
3.2 workers per section (that is, three workers to operate the CM 
and two trucks plus 0.2 worker to compensate for work breaks, 
during which, if not accounted for, the process would either stop 
entirely or at least decrease in productivity). If more personnel are 
allocated to the section, auxiliary work such as a pick change or 
extension of layflats for fresh air supply may be completed more 
quickly and hence contribute to more production time per shift 

Figure 3–Schematic summary of probabilistic production model
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and tonnage output. However, the tonnage output cannot increase 
in proportion to the additional man-hours and hence labour 
productivity in terms of tons per man-hour declines. 

Such information is vital to the quality of a production 
model and, if available, the respective relationships can be easily 
tabulated and implemented in the Excel-based simulation.

More variables may be added as required as outlined above. 
For example, if there is a 20% probability that tough geological 
conditions reduce a shift’s output by, say, 10% (e.g. because a 
CM’s cutting speed is limited by the strength of rock), then 
this can be simulated accordingly. However, as the number of 
variables in the model increases, so does the level of complexity 
by a disproportional amount and care must be taken that the 
relationships and causalities of the production process are still 
programmed in the correct way. It is therefore advisable to set out 
a clear scope of analysis and include only a minimum number of 
parameters identified as truly essential to the problem.

Simplified simulation procedure
In a simplified CM-truck production system that is free from 
limiting boundary conditions (e.g. tonnage demand limitations, 
limitations from auxiliary processes, geological limitations etc.) 
the sequence of the Monte Carlo process simulation is as follows 
(see also Figure 5):
Step 1:    �For both equipment categories (trucks and CMs), define 

the total number of units nCM, nTr with respective average 
availabilities pCM and pTr to create the binomial availability 
distribution for both categories.

Step 2:   �For the workforce, define the total number of staff nSt with 
average availability pSt.

Step 3:   �Define the desired staffing ratio between available 
personnel and available CM-truck systems with 
corresponding productivities (such as suggested in Figure 
4) in a table.

Step 4:   �For a random working shift within a business year, 
generate a random number of available items of 
equipment kCM, kTr and random number of available staff 
kSt from the binomial probability distributions defined in 
steps 1 and 2.

Step 5:   �Compare CM vs truck availability from step 4 and 
calculate the technically utilizable number of CMs uT,CM 
based on process requirement, e.g. as the minimum 
number of trucks that need to be available for one CM to 
be utilizable.

Step 6:   �Calculate the number of CMs uST,CM that can possibly be 
utilized based on the number of available personnel and 
the table defined in step 3.

Step 7:   �Select the number of items of equipment to be utilized 
on shift UCM, which equals the minimum value of either 
uT,CM or uSt,CM, and the corresponding staffing ratio per 
utilized CM.

Step 8:   �Calculate tonnage output and tons per man-hour on shift 
from the table (step 3).

Step 9:   �Iterate through steps 4–7 repeatedly, preferably  
>10 000 times for full representative sample (Monte 
Carlo method).

This simulation procedure will result in a variety of 
production outputs per shift which need to be multiplied with 
the number of planned operating shifts per year to derive annual 
results.

Case study
The outlined Monte Carlo simulation logic is applied to a real 
mining situation to showcase how such a model may be calibrated, 
what the interdependencies of process parameters with effect on 
tonnage output and costs are, and how the model can be applied 
to find ways to optimize production.

The selected case study is an underground room-and-pillar 
mine in a soft rock environment, which produces about 4 Mt ROM 
per annum from both conventional drill-and-blast-sections and 
CM sections (the latter being the focus of the case study). The 
mine operates three CMs with a fleet of seven trucks for in-section 
haulage, as discussed before. A full set of data (technical data, shift 

Figure 5–Simplified example of CM-truck production model using the Monte Carlo method

Figure 4–Relationship between number of operators, productivity, and 
total output for continuous miners and truck haulage
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reports, KPI reports, and others) from a given business year is 
available for evaluation and serves as a basis for model calibration. 
The productivity diagram in Figure 4 has been derived from this 
empirical data and is implemented in the model.  

Equipment availability
The first step in applying the model is to check if the underlying 
assumption of binomial probability distributions for equipment 
availability is correct. In the particular business year, the average 
availability of the truck fleet was 70.4% and the related histogram 
of truck availability as derived from shift reports is plotted in 
Figure 6, together with a binomial model of truck availability using 
the identical input data (n = 7, p = 0.7). The same comparison 
is made for the fleet of CMs in Figure 7, where n = 3, p = 0.61 
as obtained from the mine’s reports. One observes an overall 
acceptable match between the assumed binomial distributions 
and reality.

The next step is to implement all remaining input variables 
based on the actual mine data and the process logic as described 
above, and to test the model. Some key input factors and model 
results are summarized in Table I. 

Group availability 
A group availability of 89% was established from the mine’s 
reports, compared to only 77% predicted by the model, as shown 
in Table I. The positive discrepancy of 12% is appreciable and may 
be due to two reasons. The first is on the side of theory: obviously, 
the fitted binomial distributions of truck and CM availabilities 
match the real data well, as seen in Figures 6 and 7, but there is no 
100% fit. Hence, through error propagation, a combination of the 
two distributions will produce (possibly larger) mismatches. The 
second reason is on the practical side: the mine had successfully 
prioritized its maintenance efforts to make sure that (as often 
as possible) enough trucks were available at the time they were 
required for a given number of CMs. That is, through correct 
resource allocation the mine was able to ‘beat’ the average 
statistic. Such effects do not question the principle of modelling 
but must be borne in mind when interpreting and making 
decisions based on models.

The mine’s report also revealed that if a truck was missing 
in the production chain, it could frequently be substituted by 
an LHD with only slightly smaller payload from the adjacent 
drill-and-blast sections. Consequently, this improvement was 
introduced as a general rule in the production simulation (i.e. 
every missing truck can be substituted by an LHD), so that the 
lower CM-truck group availability does not influence the predicted 
utilization, productivity, and tonnage output too much, as can be 
seen in the following section. 

Utilization, productivity and tonnage output
Next, one introduces the variable of workforce availability, 
allowing for the 33% of time that workers were evidently not 
available for utilization of available equipment due to annual 
leave, training, or sickness. The model computes an equipment 
utilization of 85% on a shift basis, which compares favourably with 
the 83% utilization in the business year. Also, the simulated annual 
tonnage and the related tons per employee stand the reality check 
very well, as shown in Table I.

Note that the results are probabilistic. Figure 8 provides a 
detailed plot of the simulated annual tonnage output from the 
mine. The bar chart features three main peaks: 

➤	�� The first peak is at zero tonnage and indicates that at around 
6% of the annual production time, there will be zero tonnage 
output. This point corresponds to the binomial model for 
CMs (Figure 7) which predicts a 6% chance that none of the 
CMs will be available during the business year. 

➤	�� The next peak occurs at around 1.3–1.5 Mt and represents the 
productivity during all those situations in which only one 
CM will be available, scaled up for a whole business year.

➤	�� Finally, a third peak at around 2.7 Mt, which is accompanied 
by a larger scatter to its left and right. This interval 
represents all those situations in which 2–3 CMs are available 
for production in a range of sub-optimal (i.e. insufficient 
number of workers or trucks available) to optimal 
combinations. Again, the productivity of those situations is 
scaled up for the whole business year.

  Table I

  �Example of input and output data from the model compared 
to the mine’s data

  Input	 Mine’s data	 Simulation

  Shifts per day	 3	 3
  Number of CMs-	 3	 3
  Availability of CMs	 61%	 61%
  Number of trucks	 7	 7
  Availability of trucks	 70%	 70%
  Number of employees (FTE)	 38	 38
  Annual leave	 20.3%	 20.3%
  Sick leave	 10.2 %	 10.2%
  Induction, training, etc.	 2.5%	 2.5%

  Results
  Group availability CM-truck	 89%	 77%	 Δ -12%
  Utilization	 83%	 85%	 Δ +2%
  Productivity (t/FTE)	 56 154	 55 789	 Δ –1%
  Annual tonnage (Mt)	 2.19	 2.12	 Δ –3%

Figure 6–Comparison of truck availability as observed at the mine and as 
predicted by the assumed binomial probability distribution

Figure 7–Comparison of CM availability as observed at the mine and as 
predicted by the assumed binomial probability distribution
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Note that, due to the scaling logic, the most probable 
production output is determined from the average simulation 
result, i.e. 2.12 Mt in this case study.  

Analysis of production and associated costs
Based on the calibrated model some fundamental relationships 
and principles of the production process can be examined. 
For instance, consider the relationship between average CM 
availability and planned utilization. In the given example, three 
CMs operating in a three-shift-per-day system allow for utilization 
of up to nine machine-shifts per day (see Figure 9). 

Evidently, there can be a straight-line relationship between 
planned-utilization and annual output only if the CM availability 
was 100%. For all availabilities < 100%, output only increases 
regressively with an increase of planned production shifts. 

Consider the curve for 60% average CM availability: the 
chance of having at least one CM available on each shift is 
relatively large (93%, calculated as the cumulative probability 
of having exactly 1, 2, and 3 CMs available using the binomial 
distribution with k = 1, 2, 3 respectively; n = 3, p = 0.6 as described 
in the section ‘Binomial distribution’), so that the gradient of 
output from the first three planned machine-shifts per day is 
relatively steep. The next 4–6 planned machine-shifts per day 
require that at least one additional CM is available, the chance of 
which is already less (65%). Finally, machine-shifts 7–9 require 
that three CMs are available simultaneously on one to three shifts 
per day, the chance of which is the lowest (22%).

At the same time, each additional planned machine-shift 
per day requires that a proportional number of workers is 
permanently employed (since one can rarely foresee when a 
machine will be available or not), whose specific output in terms 
of tonnage per employee reduces since the absolute tonnage 
output increases at a slower rate. Equipment availability and 
workforce productivity are obviously interlinked.

Next, a full set of production costs may be added to the model. 
From an accounting point of view, there will be fixed costs, such 
as annual depreciation of equipment and cost of labour for a given 
number of planned utilization shifts. Other costs are variable, i.e. 
in some ways proportional to operating hours and tonnage output, 
such as energy and consumables. Some mines may also find that 
the cost of maintenance is – at least from a long-term average 
perspective – proportional to the operating hours of equipment 
and therefore to tonnage. 

The above-named cost categories have been implemented 
in the model assuming realistic values. Figure 10 shows the 
computed relationship between annual output and expected 
specific cost of production. At first, all cost curves show the 

same regressively decreasing trend. If this trend was to continue 
for very large production outputs, the fixed part of the cost 
would become negligibly small and the overall specific costs 
would tend towards the value of the variable costs. Clearly, this 
cannot be the case in a real production process, as marginal costs 
come into effect as well: from a certain point onwards, the cost 
curves reverse, as every additional tonnage output requires a 
disproportional amount of effort. 

In the example shown in Figure 10 this marginal effect is only 
due to the inefficient low availability compared to high staffing. 
However, other factors such as extending production to overtime 
(surcharge), adding additional equipment to ensure higher output, 
or increasing the staffing ratio towards a production maximum 
such as shown in Figure 4 may work to the same effect. 

Figure 9–Relationship between availability, utilization, and tonnage 
produced

Figure 10–Costs per ton of production (in-section) versus total output at 
different equipment availabilities

Figure 8–Model output for total tonnage produced in a business year
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The relationship in Figure 10 clearly indicates that, depending 
on the level of equipment availability, there might be an optimal 
point of production in terms of minimum specific costs. However, 
there might be at least two good reasons why production should 
perhaps be extended beyond this point: 

➤	� Underground mines are typically associated with a very large 
portion of fixed costs (e.g. shafts, conveyors, processing 
units), so that a sub-optimal cost increase within the 
production sections may become irrelevantly small in overall 
terms.

➤	� Sub-optimal costs of production may be over-compensated 
by exceptionally good selling prices.  

Nevertheless, if the company’s focus is on optimizing internal 
costs of production, or at least to increase production while 
incurring minimum additional costs, the Monte Carlo simulation 
can assist in negotiating the various possible approaches. Some 
examples are provided in the following section. 

Optimization
Returning to the case study and the calibrated model, one 
may now ask several questions as to possible production 
improvements. The iterative process of querying various 
parameter combinations is greatly facilitated in @Risk by using the 
built-in simulation and optimization tool. Some examples:

➤	� How does the addition of an eighth truck to the fleet 
enhance the annual production, assuming the average 
availability of the fleet does not change? 

	 �Answer: An extra 30 000 t of production. Note that this 
result must be interpreted with care, since the model makes 
use of the simplified rule that every missing truck can be 
substituted with an LHD. If this is not the case, the benefit 
from purchasing an eighth truck is larger than 30 000 t.

➤	� Alternatively, what must the average availability of the 
seven-truck fleet be to achieve the same increase of   
30 000 t/a in perhaps a cheaper way? 

	 Answer: 79.6% (a 7.6% increase).
These two alternatives must be negotiated from a cost and 

reliability point of view. On the one hand, the purchase of an 
additional truck provides a certain reliability but comes at the 
disadvantage of additional costs. On the other hand, attempting to 
improve the availability of the existing fleet may come – through 
optimization of internal processes – at lesser cost, but may be 
more difficult to achieve. Other examples:

➤	� How does an increase of 5% in equipment availability for 
both trucks and CMs compare to a 5% improvement in the 
health of the workforce (i.e. personnel availability)? 

	� Answer: An increase of approximately 160 000 t/a versus  
73 000 t/a.

This comparison demonstrates that for the given case study, 
equipment availability is a more effectful lever than worforce 
availability. The more so as workforce health is to a large extent 
dependent on aspects outside of the employer’s realm of 
influence. Final example:

➤	� At the given average equipment and workforce availability, 
what is the optimal number of workers employed within 
a business year, in terms of maximum tons mined per 
employee? 

	� Answer: Reduce planned utilization to two CMs per shift 
at 3.2 workers per section, totalling about 65 000 t per 
employee and year (a 16% increase). Note that the mine’s 
annual output from CM sections will reduce to 1.6 Mt only 
(a drop of -26%).

The examples showcase the strength of the model in providing 
quick guidance through the economic decision-making process.

Conclusion
Successful mining is strongly dependent on the availabilities of 
equipment and workforce. Since those availabilities are highly 
variable throughout a business year, resulting in wide ranges of 
favourable to unfavourable conditions for production output 
and related productivity, a probabilistic approach to production 
modelling that makes use of the Monte Carlo method has been 
proposed. 

A fundamental finding in this paper is that availabilities 
can be modelled with binomial probability distributions and 
input parameters as obtainable from a mine’s report (or from 
estimation). It has been argued that those binomial distributions, 
together with a specific process logic, can be implemented 
into standard spreadsheet application to create a production 
model which conclusively explains technical and economical 
relationships of production, such as the occurrence of marginal 
costs.

The model has been applied to a case study of a selected 
underground mine, where it was able to accurately predict the 
mine’s performance in terms of tonnages and productivities 
in a given business year. Against that background, various 
relationships between the number of units of equipment, 
equipment availabilities, and number of staff with respective 
availabilities have been explored to improve the mine’s production 
on a system level. 

It is tempting to simulate ‘ultimate’ questions that pertain to 
production optimization, e.g. how a mine can produce a maximum 
tonnage at minimum unit cost, or at least a maximum tonnage 
with the given resources at hand. The model will indeed produce 
several outputs with suitable suggestions. 

However, it must be borne in mind that the variable nature 
of equipment and personnel availabilities, as discussed in 
this paper, is testament to the fact that it takes much effort to 
manage, allocate, and develop the resources at hand and to lead 
production towards its goals. In this context, the presented 
Monte Carlo production model is best understood as a tool which 
assists mine planners and management in negotiating different 
strategic decisions. For the strategic decision to become a success, 
continuous improvement and controlling is required.    
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