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A semi-empirical solution for estimating 
the elastic stresses around inclined 
mine stopes for the Mathews-Potvin 
stability analysis
P. Pagé1, P. Yang1, L. Li1, and R. Simon1

Synopsis
The Mathews-Potvin stability method is widely used in the Canadian mining industry as a starting point 
to determine the maximum dimensions of mine stopes. However, it cannot be applied to inclined (more 
frequently encountered) mine stopes without conducting numerical modelling to obtain the stress factor 
A, defined as a function of the ratio of unconfined compressive strength of intact rock to the induced 
principal stress on the exposed stope walls. The need to conduct numerical modelling significantly 
limits the application of the Mathews-Potvin method. In addition, given its empirical nature and main 
application for preliminary design, it is deemed undesirable to conduct numerical modelling, especially 
elaborate modelling. Alternatively, theoretical methods can provide a much simpler and quicker way to 
estimate stresses around stopes and the corresponding stress factors. Over the years, a large number 
of studies have been conducted to estimate stresses around openings excavated with various cross-
sections. However, theoretical or graphical solutions remain unavailable for mine stopes that typically 
consist of horizontal floor and roof, and two parallel inclined walls (hangingwall and footwall). To 
remedy this situation, a series of numerical simulations is first performed for openings with vertical 
and inclined walls, including typical stopes commonly encountered in underground mines. A group of 
empirical solutions is then formulated to estimate the induced principal stresses at the roof centre and 
mid-height of the stope walls. The validity and predictability of the proposed solution have been verified 
using additional numerical simulations. The proposed solution can thus be used to calculate stresses and 
the resultant stress factors A around typical mine stopes with any inclination angle and height to width 
ratio, under any in-situ stress state, without conducting numerical modelling.
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Introduction
Ground stability is a challenging issue frequently faced by rock engineers. The trend towards larger 
and more powerful equipment to improve productivity requires larger underground openings. However, 
the dimensions of stable underground excavations are finite, limited by field stresses and rock mass 
conditions. The correct design of underground openings is thus of paramount importance.

The Mathews-Potvin method is a simple and useful tool for mining engineers. It is commonly used 
as a starting point to determine the dimensions of stopes or design the required support (e.g., Mathews 
et al. 1981; Potvin 1988; Hutchinson and Diederichs 1996; Li and Ouellet 2009). The Mathews-Potvin 
method is also used to estimate the unplanned dilution due to the slough that can take place around the 
hangingwall and footwall during blasting or muck-out of blasted ore (Scoble and Moss 1994; Clark and 
Pakalnis 1997; Kaiser et al. 1997; Diederichs and Kaiser 1999, Diederichs, Kaiser, and Eberhardt, 2004; 
Papaioanou and Suorineni 2016). Another application of the Mathews-Potvin method is to estimate 
the minimum span exposures to ensure the cavability (self-collapse) of ore in caving mining methods 
(Sunwoo, Jung, and Karanam, 2006). 

Over the years, the Mathews-Potvin method has received extensive modifications (e.g., Mathews 
et al., 1981; Potvin, Hudyma, and Miller, 1989; Potvin and Milne 1992; Nickson 1992; Hadjigeorgiou, 
Leclair, and Potvin, 1995; Stewart and Forsyth 1995; Milne, Pakalnis, and Felderer, 1996; Clark 
and Pakalnis 1997; Germain and Hadjigeorgiou 1998; Suorineni 1998; Diederichs and Kaiser 1999; 
Trueman, Mikula, and Mawdesley, 2000; Mawdesley, Trueman, and Whiten, 2001; Suorineni, 1998; 
Suorineni, Tannant, and Kaiser,  1999a, 1999b; Stewart and Trueman, 2001; Suorineni, Henning, and 
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Kaiser, 2001, Suorineni, Tannant, and Kaiser, 2001; Suorineni et 
al., 2001; Trueman and Mawdesley, 2003; Wang, 2004; Bewick 
and Kaiser, 2009; Capes, 2009; Li and Ouellet, 2009; Zhang, 
Hughes, and Mitri, 2011; Suorineni, 2012; Papaioanou and 
Suorineni, 2016; Madenova and Suorineni, 2020). An extensive 
review of various versions of this method was reported by 
Suorineni (2010). 

For mine stope design, a major limitation associated with 
the Mathews-Potvin method is the need to conduct numerical 
simulations to obtain a key parameter, called the stress factor 
(A), which depends on the ratio of the unconfined compressive 
strength of intact rock to the induced principal stress (s1) on 
the walls of the opening. When the geometry of the openings is 
simple, such as a circular cross-section, analytical solutions exist 
for estimating the stress around such openings (Kirsch, 1898; 
Hiramatsu, 1962; Logie and van, Tonder 1967; Hiramatsu and 
Oka, 1968; Li, 1997). More sophisticated analytical solutions 
are equally available for estimating the elastic stresses around 
tunnels with a vertical axis of symmetry, including openings with 
elliptical, rectangular, and arched walls (Logie and van Tonder 
1967; Hoek and Brown 1980; Gerçek 1997; Exadaktylos and 
Stavropoulou 2002; Brady and Brown 2013). 

For vertical mine stopes, graphical solutions used to estimate 
the induced stresses have been elaborated in two dimensions (2D 
plane strain; Potvin 1988; Stewart and Forsythe 1995) and three 
dimensions (Mawdesley, Trueman, and Whiten, 2001; Vallejos, 
Delonca, and Perez,  2017). In practice, however, orebodies are 
always inclined to a greater or lesser degree. Few theoretical or 
graphical solutions are available to assess the induced stresses 
around inclined stopes with one horizontal floor, one horizontal 
roof, and two parallel and inclined walls (hangingwall and 
footwall). Numerical modelling has to be performed to obtain 
the induced stresses for each specific mining project (Li and 
Ouellet, 2009). This requires not only the availability of pertinent 
software and hardware, but also qualified numerical modellers 
who have a good understanding of field conditions and the 
behaviour of the rock mass, and know in particular how to 
obtain reliable numerical outcomes. It is thus desirable to have 
theoretical solutions that can be used to estimate the stresses 
around inclined stopes.

In this paper, the Mathews-Potvin method is first briefly 
recalled for the sake of completeness. Numerical simulation 
results are then presented by considering inclined mine stopes 
surrounded by a homogenous, isotropic and linearly elastic 
rock mass. A large range of wall inclination angles, height to 
width ratios, and in-situ stresses are considered. Semi-empirical 
solutions are proposed to estimate the induced principal stresses 
on stope walls by applying the principle of superposition of 
linearly elasticity theory through a curve-fitting technique applied 
to the numerical results. The prediction capability of the proposed 
semi-empirical solutions is verified with additional numerical 
simulations. A typical example is also given to illustrate the 
application of the proposed solution.

The Mathews-Potvin method
The Mathews-Potvin method is an empirical method based on 
numerous field observations. This method relates the stability of 
an exposed wall to two factors – the hydraulic radius (HR) and 
the stability number (N’). The former is defined as (Potvin 1988): 

[1]

The stability number (N’) of the exposed wall is defined by 
the following equation:

                                                   
[2]

where Q’ is a modified rock tunnelling quality index, A is the rock 
stress factor, B is the joint orientation adjustment factor, and C is 
the gravity adjustment factor. 

The parameter Q’ resulted from a modification on the Rock 
Tunnelling Index (Q) of Barton, Lien, and Lunde (1974), is 
defined as follows:

[3]

where RQD is the rock quality designation, Jn is the joint set 
number, Jr is the joint roughness number, and Ja is the joint 
alteration number.

The rock stress factor A is a function of the ratio between 
the unconfined compressive strength of the intact rock (sc) and 
the induced major principal stress (s1) on the exposed walls of 
a stope. The stress factor A can be expressed as follows (Potvin, 
1988), which is further illustrated in Figure 1a:

[4]

Factor B considers the influence of joints on the stability 
of the studied exposed wall (Potvin 1988). It represents the 
effect of the angle between the most critical joints and the wall, 
as shown in Figure 1b. The gravity factor C depends on the 
individual influence of the inclination of the exposed wall and the 
inclination of the critical joints, as illustrated in Figure 1c. Once 
the stability number N’ and hydraulic radius HR are determined, 
the stability of the exposed wall can be evaluated using the chart 
of Mathews-Potvin, as shown in Figure 1d.

From Equation [4], one notes that the rock stress factor 
A proposed by Potvin (1988) has some limitations when the 
rock is submitted to a tensional stress. In this case, the induced 
principal stress s1 is zero (for a 2D model) or non-zero in the 
third dimension (for a 3D model). Factor A can thus reach its 
maximum value of 1.0 independent of the tensile stress and 
tensile strength of the rock, which is unrealistic. Therefore, 
Equation [4] is not entirely adequate to describe the stability or 
failure of rock by tension. To overcome this limitation, Li and 
Ouellet (2009) proposed two approaches. The first is to neglect 
the tensile strength of the rock, and to fix A = 0.1 for s3 ≤ 0 
(where s3 is the induced tensile stress around the excavation). 
The second approach is to compare the tensile stress with the 
tensile strength of the rock, so that A = 0.1125|st⁄s3 |-0.125 
(same form as Equation [4]; where st is the tensile strength of 
the intact rock). Zhang, Hughes, and Mitri (2011) adopted a 
similar approach to that of Li and Ouellet (2009) when the rock is 
submitted to tension. Suorineni (2012) concluded that the stress 
factor for tension (and other factors) needs to be calibrated. 
Further discussion on the definition of this factor is beyond the 
scope of the paper, but it is seen that the determination of factor 
A depends on knowledge of the induced principal stresses on the 
exposed stope walls.

Numerical modelling of the elastic stresses around  
inclined stope walls
Figure 2 shows a typical mine stope consisting of a horizontal 
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roof, a horizontal base and two parallel and inclined walls. 
In the figure, W and H are the width and height of the stope, 
respectively; b is the inclination angle of the stope walls; sv 
and sh on the stress block represent the vertical and horizontal 
natural in-situ principal stresses, respectively; the out-of-plane 
stress is another in-situ principal stress. The mid-points have 
been denoted as U and V on the surfaces of roof and sidewall 
respectively. 

The numerical code Plaxis 2D (Brinkgreve and Vermeer 
1999), based on the finite element method and commonly 
adapted for rock mechanics and geotechnical engineering, is 
used here to evaluate the stresses around mine stopes. The sign 
convention used by Plaxis 2D considers compression negative 
(–) and tension positive (+). However, the results presented in 
this study follow the sign convention commonly used in rock 
mechanics analysis, where compression is positive (+) and 
tension is negative (–).

The linearly elastic model of Plaxis 2D was first validated by 
comparing the simulated stresses against the analytical solutions 

for a circular opening (Kirsch, 1898; Hiramatsu, 1962; Hiramatsu 
and Oka, 1968; Li, 1997). Additional validations were made 
against the graphical and analytical solutions of Hoek and Brown 
(1980) in the cases of elliptical and square openings. More details 
are presented in Pagé (2018).

Table I presents the program of numerical simulations. 
Forty-eight stope geometries were considered by combining the 
stope width (W), height (H), and wall inclination angle (b). Two 
regimes of natural in-situ stresses were considered: Case 1 with 
sv = 30 MPa and sh = 0; Case 2 with sv = 0 and sh = 30 MPa. It 
should be noted that the consideration of a zero horizontal in-
situ stress sh in Case 1 and a zero vertical in-situ stress sv in Case 
2 is necessary for applying the principle of superposition. This 
does not mean that the numerical models only correspond to zero 
vertical or horizontal in-situ stress, although the models remain 
valid for such extreme cases. The principal stresses tangential to 
the exposed faces at points U and V (on the wall surfaces) are 
calculated (see Figure 2).

Figure 3 shows a numerical model constructed with Plaxis 
2D. An enlarged view of the stope with refined meshes around 
the stope before excavation is presented. The natural in-situ 
stresses were first initiated over the entire model. The four 
outer boundaries were then fixed in all directions. Finally, the 
excavation of the stope was simulated. For each numerical model 
with a new stope geometry, domain and meshes sensitivity 
analyses have been done to ensure that the outer boundaries are 
far enough from the stope and the meshes around the stope are 
fine enough. A sufficiently large domain is necessary to avoid the 
boundary effect, while finer meshes around the stope are required 
to ensure stable numerical results (see more details presented in 
Pagé, 2018).

Figure 4 presents the minor (s3, Figure 4a) and major (s1, 
Figure 4b) principal stresses contours around a stope with H/W 
= 2 and b = 75°, obtained from numerical modelling using an in-
situ stress state of sv = 30 MPa and sh = 0 MPa (with sv =  
–30 MPa and sh = 0 MPa as inputs to Plaxis 2D). Note that the 
major and minor in-plane principal stresses in Plaxis 2D are 
represented by s1 and s3 respectively, while the out-of-plane 

Figure 1—Mathews-Potvin method: (a) determination of the rock stress factor, A (after Potvin 1988); (b) determination of the orientation factor, B (after Potvin 1988); 
(c) determination of the gravity factor, C (after Potvin and Hadjigeorgiou 2001); and (d) standard stability graph (after Suorineni 2010)

Figure 2—Schematic representation of a typical mine stope; points U and V 
indicate the mid-points of the roof and sidewall respectively
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principal stress is denoted by s2. Figure 4a shows that the critical 
tangential stresses on the roof are under tension (positive in 
Plaxis 2D), while Figure 4b indicates that the critical tangential 
stresses on the walls undergo compression (negative in Plaxis 
2D). The minor principal stress at the roof centre is –26.8 MPa (in 
tension), while the major principal stress at the mid-height of the 
hangingwall and footwall is 37.4 MPa (in compression). 

Figure 5 shows the major (s1, Figure 5a) and minor (s3, 
Figure 5b) principal stress contours around the stope with H/W 
= 2 and b = 75°, obtained by numerical modelling with a natural  
in-situ stress state of sv = 0 MPa and sh = 30 MPa (with sv = 
0 MPa and sh = –30 MPa as inputs to Plaxis 2D). In this case, 
the critical tangential stress on the roof is under compression 
(negative in Plaxis 2D) based on the major principal stress (s1, 
Figure 5a), while the critical tangential stresses on the walls 
are under tension (positive in Plaxis 2D) based on the minor 
principal stress (s3, Figure 5b). The major principal (compressive) 
stress at the roof centre is 61.1 MPa, while the minor principal 
(tensile) stress at the mid-height of the hangingwall and footwall 
is –23.6 MPa.

   Table I 

  �Program of numerical simulations conducted to 
calculate critical tangential stresses around mine 
stopes

   In-situ stress	 Stope inclination β	 W x H (m)	 H/W

   Case 1:
   sv = 30 MPa		  120x12	 0.1
   sh = 0		  48x12	 0.25
			   36x12	 0.33
			   24x12	 0.5
			   16x12	 0.75
		  90°, 75°, 60° and 45°	 12x12	 1
			   12x24	 2
   Case 2:		
   sv = 0		  12x36	 3
   sh = 30 MPa		  12x48	 4
			   12x72	 6
			   12x96	 8
			   12x120	 10

Figure 3—(a) A numerical model constructed with Plaxis 2D for a typical mine stope; and (b) an enlarged view of the stope with finer meshes

Figure 4—Iso-contours of the (a) minor (σ3) and (b) major (σ1) principal stresses around a stope with H/W = 2 and β = 75°, calculated by applying a natural in-situ 
stress state of σv = 30 MPa and σh = 0 MPa in Plaxis 2D (with σv = –30 MPa and σh = 0 MPa as inputs to Plaxis 2D)
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Proposed semi-empirical solution

Formulation
To formulate a semi-empirical solution for evaluating the 
elastic stresses around mine stopes, one uses the principle of 
superposition valid in elasticity theory for homogenous, isotropic, 
and linearly elastic material. For a given stope geometry, the 
stresses around the opening are investigated by applying a 
horizontal natural in-situ stress. The induced stresses at the point 
of interest on the stope wall are then normalized by the applied 
horizontal natural in-situ stress. By changing the stope height to 
width ratio (H/W) and wall inclination angle (b), a relationship 
based on curve fitting can then be established between the 
studied stresses at the point of interest on the stope wall and the 
horizontal natural in-situ stress, stope width to height ratio, and 
stope wall inclination angle. 

The same process is repeated for the vertical natural in-situ 
stress with different stope width to height ratios and stope wall 
inclination angles. Applying the curve-fitting technique leads to 
another equation, which describes the induced stress around the 
stope opening as a function of the vertical natural in-situ stress, 
stope width to height ratio, and stope wall inclination angle. 

By adding the two equations, one obtains an equation that 
describes the studied stresses at the point of interest on the wall 
or roof as a function of the horizontal and vertical natural in-situ 
stresses, stope geometry, and wall inclination. The procedure can 
be summarized as follows:

[5]

[6]

where f1 and f2 are the geometric functions on the critical 
tangential stress at the roof centre, associated with the vertical 
and horizontal natural in-situ stresses, respectively; g1 and g2 

are the geometric functions on the critical tangential stress at the 
mid-height of the hangingwall and footwall, associated with the 
vertical and horizontal natural in-situ stresses, respectively.

To obtain the four geometric functions f1, f2, g1, and g2, a 
second-degree polynomial regression fit (for both f1 and f2), and 
a combination of a power regression fit and a second-degree 
polynomial regression fit (for g1 and g2 respectively) were applied 
to the numerical results of the critical induced stresses at the roof 
centre and at the mid-height of the wall as a function of the H/W 
ratio, separately for b = 90°, 75°, 60°, and 45°. Figure 6 shows 
the four geometric functions (tendency curves in dotted lines) as 
a function of H/W for b = 90° (Figure 6a), 75° (Figure 6b), 60° 
(Figure 6c), and 45° (Figure 6d). 

A second calibration of these four geometric functions by 
considering the wall inclination angle leads to the following 
equations: Equations [5] to [10] constitute the proposed solution 
for estimating the elastic stresses at the roof centre and mid-
height of the hangingwall and footwall around typical mine 
stopes. These equations are independent of the stope depth and 
rock mass strength. 

[7]

 

                   [8]

[9]

Figure 5—Isocontours of σ1 (a) and σ3 (b) principal stresses around the stope with H/W = 2 and β = 75°, calculated by applying a natural in-situ stress state of σv = 0 
MPa and σh = 30 MPa in Plaxis 2D (with σv = 0 MPa and σh = –30 MPa as inputs tp Plaxis 2D)
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[10]

When the natural in-situ stress state is sv > 0 (in 
compression) and sh = 0, the solution predicts tension (sroof < 

0) acting on the roof and compression (swall > 0) on the mid-
height of the walls. Conversely, when the natural in-situ stress 
state is sv = 0 and sh > 0 (in compression), the solution leads to 
compression (sroof > 0) on the roof and tension (swall < 0) on the 
mid-height of the walls.

Figure 6 shows that the critical induced stresses at the roof 
centre and at the mid-height of the hangingwall and footwall 

Figure 6—Variation of the critical induced tangential stresses at the roof centre and mid-height of wall, respectively normalized by the applied horizontal (σh) and 
vertical (σv) in-situ stresses as a function of the H/W ratio for stope inclination angles (β) of (a) 90°; (b) 75°; (c) 60°; and (d) 45°
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calculated by the proposed solution (Equations [5] to [10]), and 
represented by the full lines, correspond well to those obtained 
by the numerical modelling. This type of comparison between a 
proposed solution and numerical (or experimental) results, which 
is used in the calibration or curve fitting to obtain the required 
parameters, is usually considered as validation or prediction. 
This is, however, not true. The validity and predictability of 
the calibrated model (obtained by calibration or curve filling) 
should be tested against additional and different numerical (or 
experimental) results.

Validation and predictability
To test the validity and predictability of the proposed solution, 

additional numerical simulations were performed by considering 
more stope geometries and virgin in-situ stress states.

Figure 7 shows the variation of the induced tangential 
stresses, obtained by numerical modelling and predicted by the 
proposed semi-empirical solution, at the roof centre and at mid-
height of the walls, for an isotropic natural in-situ stress state 
of 30 MPa (compression) and stopes having wall inclination 
angles b = 90°, 75°, 60°, and 45° and H/W ratio varying from 0.1 
to 10. It is seen that the agreement between these two different 
approaches is excellent.

Figure 8 presents another validation and test of predictability 
of the proposed semi-empirical solution using additional 
numerical simulations conducted with anisotropic in-situ stresses 

Figure 7—Variation of the induced tangential stresses, obtained by numerical modelling with Plaxis 2D and predicted by the proposed semi-empirical solution 
(Equations [5] to [10]) around the stopes as a function of the H/W ratio, submitted to an isotropic natural in-situ stress of 30 MPa (compression) with stope wall 
inclination angles (β) of (a) 90°; (b) 75°; (c) 60°; and (d) 45°

Figure 8—Variation of the induced tangential stresses around the stopes opening as a function of the stope wall inclination angle β, obtained by numerical  
modelling and predicted by the proposed semi-empirical solution by considering: (a) σv = 25 MPa (compression), σh = 40 MPa (compression), H/W = 0.85;  
(b) σv = 25 MPa, σh = 40 MPa, H/W = 2.5; (c) σv = 10 MPa, σh = 60 MPa, H/W = 0.85; (d) σv = 10 MPa, σh = 60 MPa, H/W = 2.5; (e) σv = 25 MPa, σh = 40 MPa,  
H/W = 5; and (f) σv = 30 MPa, σh = 60 MPa, H/W = 5
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as the stope wall inclination angle b varies from 90° to 45°. Once 
again, good agreement is obtained between the numerical and 
theoretical results for the case of sv = 25 MPa (compression), sh 
= 40 MPa (compression), H/W = 0.85 (Figure 8a), sv = 25 MPa, 
sh = 40 MPa, H/W = 2.5 (Figure 8b), sv = 10 MPa, sh = 60 MPa, 
H/W = 0.85 (Figure 8c), sv = 10 MPa, sh = 60 MPa, H/W = 2.5 
(Figure 8d), sv = 25 MPa, sh = 40 MPa, H/W = 5 (Figure 8e), and 
sv = 30 MPa, sh = 60 MPa, H/W = 5 (Figure 8f).

The proposed solution can thus be considered as validated. It 
can then be used to calculate the stresses and the stress factor A 
for the case of typical mine stopes with any inclination angle and 
height to width ratio under any in-situ stress state.

Sample application
In the following, a sample calculation is presented to further 
illustrate the application of the proposed solution (Equations [5] 
to [10]). 

It is planned to mine out a 6 m (W) wide ore vein inclined 
at 67° (β), with a 30 m (H) high stope located 500 m below the 
ground surface. The vertical in-situ stress can be estimated based 
on the overburden depth, while the horizontal in-situ stress is 
1.67 times the vertical in-situ stress. These parameters give the 
following in-situ stress state and stope geometry:

�σv = 500 m × 0.027 MN/m3 = 13.5 MPa, σh = 1.67σv =  
22.5 MPa, β = 67°, H/W = 30 m/6 m = 5. 
Applying Equations [7] to [10] leads to:

�f1 (H–W, sinβ)= –1.34 × 51.01 + (–0.92sin2 67° + 1.74sin67° + 
0.52) × 5 + 4.02sin2 67°–6.32sin67° + 1.52= –0.9894
�f2 (H–W, sinβ) = –8.9 ×51.016 + (1.17sin2 67° – 1.9sin67° + 10.28) 
× 5 – 4.09sin2 67°+ 6.43sin67° – 1.47 = 2.9345 

�g1 (H–W, sinβ) =(4.64sin67° –2.9) × 5(–3.46sin2 67° + 6.83sin67°–3.7) = 
0.7873 
�g2 (H–W, sinβ) = (0.051sin2 67° –0.094sin67° + 0.042) ×52 – 
(0.41sin2 67°– 0.89sin67° + 0.44) × 5 –3.47sin67°+2.49 = 
–0.5778 

By applying Equations [5] and [6], the principal stresses 
induced on the roof and wall of the stope can be obtained as 
follows:

�σroof = 13.5 MPa × (–0.9894) + 22.5 MPa × 2.9345 =  
52.7 MPa

�σwall = 13.5 MPa × 0.7873 + 22.5 MPa × (–0.5778) =  
–2.4 MPa 

Discussion
Numerical modelling requires the availability of pertinent 
software and hardware and qualified modellers who know how to 
correctly conduct numerical modelling. Currently, the availability 
of computation resources in terms of hardware and software is no 
longer an issue, and numerical modelling has become a common 
practice for various research and design projects. However, 
knowing how to use a numerical code is often considered 
equivalent of knowing how to correctly perform numerical 
modelling. This can partly explain the crisis of confidence in 
numerical modelling and why many modellers do not believe in 
even their own numerical results. In fact, knowing how to use a 
numerical code is totally different from knowing how to conduct 
numerical modelling. The former needs only short training (a 
couple of hours) while the latter requires much more advanced 
training and rich experience in order to obtain stable and reliable 
numerical outcomes (Chapuis et al., 2001; Barbour and Krahn 

2004; Cheng, Lansivaara, and Wei, 2007; Diederichs et al., 2007; 
Krahn 2007; Chapuis, 2012a, 2012b; Duncan 2013).

This work is partly motivated by a perception that the 
Mathews-Potvin method was considered useless for stope 
analysis, and that the stability and the maximum dimensions 
of the stopes can be directly analysed using numerical models, 
instead of determining the stress factor A and applying the 
Mathews-Potvin method. It should be recalled that the empirical 
Mathews-Potvin method was based on many case study 
observations. The numerical models performed to determine 
the stress factor A are very simple, considering only an isolated 
opening around a homogenous, isotropic, and linearly elastic 
rock. The effectiveness of the method has been proven, especially 
when it is used as a starting point for the determination of stope 
dimensions in the preliminary stage of mining projects. When 
numerical modelling is conducted for stope stability analysis, 
the models are usually much more complex in terms of stope 
geometry, mining sequence, and material parameters. Calibrations 
using field data/observations can be necessary to find the 
required (but unknown) parameters. In the preliminary stage of 
a mining project, little field data and information are available 
to allow the construction and calibration of such sophisticated 
numerical models. 

All of these considerations indicate that the Mathews-Potvin 
method is very useful at the beginning of a mining project, 
where it can provide a quick and preliminary estimation of the 
dimensions of stopes. The necessity for more sophisticated 
numerical modelling at the advanced stage of a mining project 
does not invalidate  the Mathews-Potvin method. Rather, the 
Mathews-Potvin method can be more appealing if theoretical 
or graphical solutions are available for estimating the induced 
stresses around inclined mine stopes. To this end, a semi-
empirical solution has been proposed in which curve-fitting 
techniques are applied against numerical modelling and the 
principle of superposition of linearly elasticity theory. The results 
show that the proposed semi-empirical solution can be used to 
evaluate the induced principal stresses at the roof centre and 
mid-height of the wall around typical mine stopes. However, one 
should keep in mind that the numerical models presented in this 
study contain several assumptions. 

First, a limitation of the numerical models is associated with 
the 2D plane strain conditions. The numerical results and the 
proposed semi-empirical solution are valid only when the stope 
is very long in one horizontal direction. In an actual mine, this 
is not always the case. Graphical solutions have been presented 
by Mawdesley, Treman, and Whiten (2001) and Vallejos, 
Delonca, and Perex (2017) for 3D vertical stopes. Further work is 
necessary to consider three-dimensional inclined stopes. 

The assumption of a linearly elastic rock mass can be 
held true at relatively shallow depths. At greater depths (deep 
mines), the behaviour of rocks and rock masses may change to a 
nonlinear and non-elastic behaviour. Consequently, the validity 
of the empirical relationships proposed here may be limited to a 
certain depth. Additional studies could be conducted to formulate 
similar empirical relationships in nonlinear rock masses. 

Another limitation of the proposed semi-empirical 
relationships is related to the stope geometry. The stopes 
considered here have a parallel hangingwall and footwall as well 
as parallel roof and floor. In practice, stopes with nonparallel 
walls are commonly encountered. More work is needed to 
propose solutions for estimating the stresses around stopes with 
nonparallel walls.
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In this study, the vertical and horizontal in-situ stresses were 
considered to be two principal stresses, implicitly assuming that 
the out-plane in-situ stress is another principal stress. In practice, 
the vertical in-situ stress and the two horizontal in-situ stresses 
could form three normal stresses. Further work is thus necessary 
to develop a more general solution.

Finally, it is very important to point out that the stress 
factor A defined in the Mathews-Potvin method corresponds 
to the maximum induced principal stresses on the exposed 
faces. However, as shown in Figures 4 and 5, the maximum 
compressive stresses are close to the four corners rather than 
at the roof centre. We believe that an accurate estimation of 
the maximum principal compressive stress at stope corners is 
difficult and unnecessary due to stress concentration – therefore 
the critical locations in terms of compression should be at the 
centre, not the stope corners. For tension, as Figure 5b shows, 
the largest tensile stresses are located near (but somehow distant 
from) the stope corners, which correspond to the critical locations 
(rather than the roof or wall centre). In this study, the maximum 
tensile stress is not considered as its location varies when the 
stope geometry or natural in-situ stresses change. This renders 
the formulation very difficult. More work is needed on this aspect. 
Nonetheless, given the empirical nature of the Mathews-Potvin 
method and the still limited considerations of the tensile stresses 
in applying the method, the proposed solutions can provide 
useful estimation of stresses for application of the Mathews-
Potvin method.

Conclusions
The well-known Mathews-Potvin method is an important design 
tool for mining engineers. However, the application of this 
method requires the determination of the induced stresses (and 
stress factor A) around inclined mine stopes using numerical 
modelling, as few graphical or theoretical solutions are available 
for such purposes. To overcome this limitation, a semi-empirical 
solution has been proposed to estimate the induced principal 
stresses at the roof centre and mid-height of the walls around 
mine stopes, by applying the superposition principle of linearly 
elasticity theory and curve-fitting techniques to numerical results. 
The validity and the predictive capability of the proposed solution 
have been verified by additional numerical simulations. The 
proposed semi-empirical solution can thus be used to evaluate 
the induced tangential stresses at the roof centre and mid-height 
of the walls around mine stopes with any inclination angles, 
height to width ratios, and in-situ stress states, as long as the 
values of H/W are in the range from 0.1 to 10 and β in the range 
from 45° to 90°. With these empirical expressions, the stress 
factor A, a key parameter used in the Mathews-Potvin method, 
can be determined without conducting numerical modelling. 
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