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A new grade-capping approach based 
on coarse duplicate data correlation
R.V. Dutaut1 and D. Marcotte1

Synopsis
In most exploration or mining grade data-sets, the presence of outliers or extreme values represents a 
significant challenge to mineral resource estimators. The most common practice is to cap the extreme 
values at a predefined level. A new capping approach is presented that uses QA/QC coarse duplicate 
data correlation to predict the real data coefficient of variation (i.e., error-free CV). The cap grade is 
determined such that the capped data has a CV equal to the predicted CV. The robustness of the approach 
with regard to original core assay length decisions, departure from lognormality, and capping before or 
after compositing is assessed using simulated data-sets. Real case studies of gold and nickel deposits are 
used to compare the proposed approach to the methods most widely used in industry. The new approach 
is simple and objective. It provides a cap grade that is determined automatically, based on predicted CV, 
and takes into account the quality of the assay procedure as determined by coarse duplicates correlation.
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Introduction
Outliers or extreme values are present in most mining grade data-sets. They can reflect true small-scale 
spatial variability and/or sampling and analytical errors introduced by procedures. Extreme values are 
deemed undesirable in kriging as they could propagate assay errors over significant ore tonnages. It is 
common practice in the mining industry to reduce these grade values to (or cap them at) a lower top-
cut value (Leuangthong and Nowak, 2015). Cap value determination is not straightforward and often 
remains subjective, especially for highly skewed distributions found in precious metal deposits. 

Numerous methods have been proposed to address cap value determination, including the following: 

	 ➤	�� Top percentile (Rossi and Deutsch, 2013): Most likely the simplest method, where the cap value is 
a high percentile of the distribution, generally between the 99th and 99.9th percentile. Sometimes 
the cap value is based on historical practices, such as capping at 1 ounce of gold per ton (this 
practice was common in northern Quebec, Canada). Although simple, the choice of cap percentile 
is arbitrary and subjective, and it does not take into account the quality of the assays.

	 ➤	�� Parrish capping (Parrish, 1997): The cap grade is selected such that the post-cap metal content 
of the assays above the 90th percentile represents less than 40% of the total metal and/or that of 
the assays above the 99th percentile represents less than 10% of the total. Although this method 
is repeatable, it can define overly conservative (i.e., very low) cap grades, especially for highly 
skewed deposits. In addition, the percentiles and the proportions used are arbitrary, and the 
method does not take into account the quality of the assay procedure.

	 ➤	�� Log probability (Rossi and Deutsch, 2013): A cumulative log probability plot, or more simply 
a data histogram, is used to identify a change in slope or a gap in the tail of the distribution. 
This is one of the most commonly used methods in the industry. It is relatively easy to interpret, 
but there are often multiple breaks/gaps in the distribution that make the choice of cap value 
subjective. In addition, the method is sensitive to the amount of data. For small data-sets, the cap 
value tends to be fairly low. When more data is available, the gap generally appears at a much 
higher value. The method also does not take into account the quality of the assay procedure.

	 ➤	�� Cutting curves (Roscoe, 1996): The average grade for different cap values is plotted and an 
inflection point is visually selected by the practitioner. This method is fairly arbitrary, and the 
choice of inflection point is subjective.
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	 ➤	�� Central variation error from the cross-validation of 
simulated local average (Babakhani, 2014): A local cap 
value is selected from a volume of influence (determined 
based on data spacing and kriging parameters) such that 
the interpolated block average within the volume is equal to 
the simulated median. A given high grade can be capped at 
different values depending on the neighbouring data. The 
method is complex as it requires kriging and conditional 
simulation, both of which need a variogram, on raw data 
for kriging and on Gaussian grades for simulation. The raw 
data variogram is itself sensitive to extreme values. The 
Gaussian transform required for simulation is also sensitive 
to extreme values. Furthermore, the results are likely to be 
sensitive to the choice of neighbourhood for both kriging 
and conditional simulation. In addition, this method 
requires coordinates, so it can't be used for conveyor, truck, 
or grab samples, for example.

	 ➤	�� Metal risk analysis using simulations (Parker, reported 
in Rossi and Deutsch, 2013): Monte Carlo simulations 
are used to simulate the high-grade distribution. This 
method makes it possible to generate a confidence level 
for a predefined (e.g., yearly) metal production volume. 
This simulation method suffers from basically the same 
shortcomings as the method of Babakhani (2014). 

It is worth noting that some authors have proposed 
alternative methods to avoid capping (David, 1977; Parker, 1991; 
Rivoirard, 2013; Maleki, Madani, and Emery, 2014). Although 
these methods are interesting from a theoretical point of view, 
they are rarely used in mining applications, where the capping of 
extreme values is still perceived as a best practice.

In this research, we propose the use of the correlation of 
the coarse duplicates to determine the cap value. The use of 
duplicates is now mandatory according to QA/QC guidelines and 
routine in the mining industry. Although Abzalov (2011) and 
Rossi and Deutsch (2013) describe various uses for duplicate 
samples, helping the determination of the cap level is not one 
of them. A rarely documented and supplementary question in 
resource assessments is whether capping should be performed 
before or after compositing. 

Using a multiplicative lognormal error model, it is possible 
to determine the coefficient of variation of the true (unobserved) 
grades from the correlation between original and duplicate values 
(see later). We propose to determine the cap grade such that the 
newly capped population has the same CV as the CV determined 
from correlation between original and duplicate pairs.

After describing the multiplicative lognormal error model, the 
link between the lognormal parameters of the true grades, those 
of the errors, and the theoretical correlation between duplicates 
is derived. From this correlation, the predicted theoretical 
coefficient of variation of the grades is obtained and established 
as the target to be reached when determining the cap grade. The 
robustness to the sample length and the lognormal assumption 
is then assessed and the effects of capping before or after 
compositing is also analysed. Finally, case studies of a gold and 
a nickel deposit are presented, and cap grades obtained using the 
proposed approach are compared to those obtained using some 
traditional methods.

Methods
This section presents the multiplicative lognormal error model 
and the main results that are derived from it. Synthetic case 
studies are used to assess the method's robustness with regard to 

some assumptions and to measure the effects of capping before 
or after compositing.

Theoretical background
Assuming the following model (Marcotte and Dutaut, 2020) is 
valid:

[1]

where Zo is the observed value at the x position, Zv is the true 
value, and t is the multiplicative error of the analysis (in this 
study both Zv and t are assumed to be lognormal, a reasonable 
assumption for most precious and base metal deposits). Equation 
[1] can be written:

[2]

[3]

            [4]

where α and β are the logarithmic mean and standard deviation 
of Zv respectively, and μ and σ are the logarithmic mean and 
standard deviation of t respectively. Note that in the multiplicative 
lognormal error model, σ2 is related to the variance of the 
duplicates' log-ratio:

[5]

where Zo and Zo' are the observed original and duplicate assays 
(in short, duplicates values). Hence, σ2 can be estimated directly 
from the duplicates independently of the other parameters (α, 
β, μ). This result is not used hereinafter but is presented for the 
sake of completeness. 

If quality assurance and quality control (QA/QC) is performed 
and sampling theory guidelines are followed, there should be no 
or limited bias on mean grade. From Equation [4] this implies:

[6]

Correlation between duplicates 
The theoretical correlation between duplicates in the 
multiplicative model is given by:

[7]

The first equality comes from  =

 for the denominator and =  

in the numerator. The last equality in Equation [7] comes 
directly from the definition of coefficient of variation and 
Equations [3] and [4] for the denominator and the same 
equations with σ2= 0, for the numerator. With σ2 estimated from 
Equation [5] and correlation between duplicates, it is possible 
to estimate β using Equation [7] and then α using Equation 
[3]. Better yet, from Equation [7], the squared coefficients of 
variation of true and observed values are directly related to the 
duplicates' coefficient of correlation by: 

                                                          [8]

where CVv is the (unobserved) coefficient of variation of Zv and 
CVo is the (observed) coefficient of variation of Zo. Hence, it is 
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possible to estimate the coefficient of variation of the true grades 
using only the correlation between duplicates and CVo computed 
with all available samples. 

Figure 1a shows the curve defined by Equation [8], with β = 
1, and simulated results. Figure 1b illustrates Equation [8] for 
different β values.

Figure 2 compares the theoretical error-free coefficient of 
variation CVtheo = √(exp(β)2–1) defined by β to CVpred predicted 
using duplicates correlation ρdup and CVdup in Equation [8]. 
Each point represents a different lognormal distribution with 
parameters uniformly drawn in intervals described in Table I. 
As the number of duplicates increases, the spread of the points 
and the skewness of the conditional distribution of CVpred | CVtheo 
diminish. The number of duplicates required to estimate CVtheo 
to a given precision increases with CV value. Note that in Table 
I, the minimum and maximum theoretical CV are √(exp(0.5)2–1) 
= 0.53  and √(exp(1.5)2–1) = 2.91, which cover most practical 
cases. Also, σ ≤ β and using Equation [8], the minimum and 
maximum theoretical ρdup are 0.42 and 0.957 respectively. Using 
Equations [3] and [4], the minimum and maximum theoretical 
CVo are 0.54 and 4.51 respectively, which cover most practical 
cases.

Capping based on correlation between duplicates
Equation [8] indicates that the coefficient of variation of the 

observed duplicate grades is inflated by sampling errors. This 
suggests the following capping criterion: choose the threshold 
providing CVcap = CVpred determined experimentally from the 
correlation between duplicates and the coefficient of variation 
computed using all available samples (original and duplicates) 
using Equation [8]. This criterion, although arbitrary, has 
the advantage of being objective, repeatable, and simple to 
compute. It takes into account the quality of the assay procedure 
in determining the cap value, contrary to existing methods. 
Moreover, it does not require localization of the samples, contrary 
to the methods of Babakhani (2014) and Parker (1991).

Figure 3 shows the cap percentile applied to the distribution 
of Zo that provides CVcap = CVpred as a function of ρdup for different 
values of β. All curves are computed by numerical integration 

Figure 1—(a) Theoretical (red line, Equation [7]) and simulated (n = 1 000 000 duplicates with 200 blue dots) ρdup against σ for β = 1. (b) Theoretical ρdup against σ for 
various β values

Figure 2 – Theoretical and predicted CV using Equation [8] for different lognormal parameters and an increasing number of duplicates (n = 100, 200, 1 000, 10 000)

   Table I

  �Sampled intervals and definitions for parameters of the 
lognormal distributions of Zv and t

   Parameter	 Interval or definition

   α	 [–0.5, 0.5]
   β	 [0.5, 1.5]
   f	 [0.2, 0.6]
   σ	 βf
   μ	 – σ2/2
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of the truncated lognormal distribution. As expected, the cap 
percentile for each curve increases with the duplicates correlation, 
indicating that large error variances (lower duplicates correlation) 
require a lower cap value to obtain the desired coefficient 
of variation. Also, for a given correlation, the cap threshold 
increases with β, indicating a lower cap value is required for 
less skewed distributions of Zv. Note that parameter α has no 
influence on determining the cap percentile.

Effects of variable assay supports
The results obtained so far assume the duplicate assays were 
on samples with identical supports. However, this might be not 
the case in practice for a variety of reasons (geological contacts, 
different sampling campaigns, technical drilling difficulties, etc.). 
It is therefore important to assess the effects of support variations 
on the statistics ρdup and β used to determine the cap percentile. 
Note that σ is the standard deviation of the error due to sample 
preparation and analysis; hence, it is not related to the support. 
Only β varies with the support. 

If the point variogram is available, it is possible to compute 
the variance of the regularized support for any support. 
Assuming that distribution remains lognormal with the same 
mean, it is possible to compute βs, the logarithmic standard 
deviation associated with support s. The beta corresponding to 
a given support can be computed using classical geostatistical 
relations as:

[9]

where τs
2 = τ0

2 – γ– (s,s), m = exp (α + 2

β0
2

), τ0
2  = m2 (exp (β0

2)–1), 
β0

2 is the logarithmic variance at point support, and γ– (s,s) is the 
average variogram value within support s.

Example
Consider a typical gold deposit case with a = 0, β0 = 1, the 
mean m = exp(0.5) = 1.65 ppm, the point true grade variance 
τ0 = m2 (exp (1)–1) = 4.67 ppm2 and a spherical variogram 
with correlation range 20 m. The assay supports are half cores 
of lengths varying between 1 m and 5 m. The corresponding 
variances of core grades are 4.5 ppm2 and 4.1 ppm2 for 1 m and 
5 m lengths respectively, corresponding to β1m = 0.99 and β5m = 
0.96. Further computing duplicates correlation using Equation 
[7] and σ = 0.5 for the two supports gives values of 0.69 and 
0.68 respectively. Other values of σ provide similar differences 
in correlation and α has no impact on determining β and ρdup. As 
seen in this example, the effects of the support on β and ρdup are 
negligible when compared to the precision of the estimates of 
duplicates correlation and coefficient of variation.

Effects of departing from the lognormal assumption

Figure 3 indicates that realistic cap percentiles should be obtained 
for the lognormal case when the distributions are skewed (large β 
and CV) and the correlation between duplicates is high. When the 
skewness is low, the cap percentile tends to decrease, meaning 
that a significant percentage of the samples will be capped 
unless this is compensated for by a higher duplicates correlation 
corresponding to a better sampling preparation procedure in real 
deposits.

The lognormal assumption is realistic for many low-
grade skewed distributions, which are typically encountered 
in precious- and base metal deposits. To get an idea of 
the sensitivity of the proposed approach to the lognormal 
assumptions, five different cases were simulated with a large 
quantity of data (1 million). Table II describes the five simulated 
cases. Figure 4 shows the duplicates' scattergrams and the 
histograms of the error-free simulated Zv and the observed Zo. 
Despite the strong departure from lognormality and small CVv 
of each case, the five cap values determined by our approach 
appear reasonable in terms of percentile of the observed grades. 
Moreover, the CV of the capped values matches very well in each 
case with the CV of the error-free Zv, indicating that Equation [8] 
also approximates the true CV in the non-lognormal case well.

Capping after or before compositing?
Some practitioners favour capping before compositing, others 
advocate doing so after. The argument of the ‘before' camp is that 
possible outliers are averaged in the compositing process and can 
thus pass undetected, especially when the assay length is related 
to the presence or absence of visible mineralization. On the other 
hand, the ‘after' camp maintains that assays over longer supports 
are already diluted, so it seems reasonable to dilute the outliers 
obtained on shorter supports to treat them like all other segments 
of the boreholes. But in fact, does it really matter?

Figure 3—Percentile threshold against ρdup to have CVcap
2 = CVv

2 for various β 
values

   Table II

  Cases considered to evaluate the robustness of the approach
	 Case 1	 Case 2	 Case 3	 Case 4	 Case 5

   Description	 Zv lognormal, t normal	 Zv normal, t t normal	 Zv normal, t lognormal	 Zv two lognormal, t lognormal	 Zv two lognormal, t normal, contamination
   ρdup	 0.87	 0.78	 0.67	 0.75	 0.77 
  Cap grade	 49.4	 5.0	 8.7	 5.3	 4.9
   Perc. cap	 0.9996	 0.946	 0.935	 0.940	 0.940 
   Error-free CV	 1.31	 0.69	 0.73	 0.63	 0.89 
   Capped CV	 1.31	 0.69	 0.74	 0.63	 0.87
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Figure 4—Duplicates' scattergrams (left column), error-free histograms (middle), and observed values histograms (right column) for cases 1 (top) to 5 (bottom) 
described in Table II
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A simple experiment
A series of synthetic boreholes totalling 300 000 m are simulated 
at every 10 cm. The variogram model is spherical with range  
20 m. The distribution is lognormal with α = 0 and β = 1. 
Synthetic grades on variable lengths are computed according to 
the grade of the first 10 cm. The length is set to 0.5 m when Z(x) 
> Q90 (where Q90 is the quantile 0.9 of the simulated distribution), 
3 m when v(x) > Q75, and 1.5 m otherwise. This scenario 
mimics preferential sampling of visible mineralization. The ‘true' 
assays Zv are obtained on the specified lengths by averaging the 
simulated values. Then a multiplicative error t (drawn from a 
lognormal distribution with σ = 0.8) is applied to each assay to 
form the set of observed assays Zo.

In the ‘before' case, a series of potential cap values is applied 
to observed assay grades. Then regular 3 m composites are 
formed using the capped assays. In the ‘after' case, the  
3 m composites are formed using the raw assays and then  
the cap values are applied to the composites. The target CVv for 
both cases is computed using the simulated Zv at each  
10 cm regularized over the variable length (in the ‘before’ case) 
or the composite length (in the ‘after’ case). Compositing is 
done on capped values for the ‘before’ case. The bias on mean 
in % (relative to simulated uncapped data) after capping the 
composites is computed. Results are shown in Figure 5. The 
‘after’ case presents slightly less bias on the mean for any given 
CVcap than the ‘before’ case. Similar results (not shown) were 
obtained for different cases by varying the composite lengths, the 
variogram range, and parameters α, β and σ.

Work flow
To summarize, we propose to apply the following work flow to 
objectively determine the cap value based on duplicates:

	 ➤	�� Compute correlation between coarse duplicates
	 ➤	�� Compute the observed coefficient of variation (CVo) using 

all data available
	 ➤	�� Estimate CVv, the target coefficient of variation of the error-

free composites' grades, using Equation [8]

	 ➤	�� Experimentally determine the cap value to apply to the 
composites to obtain CVcap = CVv.

Case studies
In the following section, two real duplicate data-sets were used to 
compare the proposed capping strategy to some of the industry's 
most widely used methods.

Gold case
The first case study is on gold duplicates. Duplicate samples 
were obtained from 5 m blast-holes (diameter 96 mm) using 
sampling of the cuttings in the cone around the drill string. 
Sample preparation consisted of pre-crushing 5 kg of cuttings 
to 2 mm and then pulverizing 250 g to 75 μm. Fire assaying 
was done on 30 g aliquots with an atomic absorption (FA-AA) 
finish. The data-set contains 1 786 samples for a total of 3 572 
duplicate assays. The gold duplicates' scattergram (Figure 6) 
shows ρ = 0.27 indicates an important overall sampling error. 
The artifact below 10-2 for both duplicate assays reflects the limits 
of detection used by the assay laboratory. It is also seen in the 
spike at low levels in the probability plot. This low correlation is 

Figure 5—Effect of capping before or after compositing. Bias on the mean 
against CV for 3 m composites using assays on 0.5 m, 1.5 m, and 3 m; α = 0, 
β = 1 and σ = 0.8 ; Target CV obtained from error-free composites

Figure 6—Gold duplicates' scattergram (left) and log probability plot for duplicates 1 and 2 (right)
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undesirable but sadly common in practice, especially in blast-hole 
samples. The log probability plot shows a gap in the upper tail 
around the 0.995 percentile value, which was retained as the log 
probability plot capping level.

Table III presents the cap results obtained using the different 
methods tested. The cap grades vary from 1.91 g/t to 4.49 g/t. 
The proposed method shows the second highest cap value at  
3.69 g/t. The theoretical CV based on Equation [8] is 1.76. 
By design, the proposed method returns the same CV. The 
99th percentile method returns the next closest one. The 
log probability plot and Parrish methods suggest cap values 
that result in a strong overestimation and underestimation, 
respectively, of the target CV value.

Nickel case
Drilling was done using the air core (AC) technique and 6 kg 

duplicates were created from the chips using a riffle splitter. 
Then 500 g of material were crushed to 2 mm and 250 g were 
pulverized to 75 μm. Fire assaying was done on 20 g aliquots 
with an XRF finish. The data-set contains 698 samples. Each 
sample provided two coarse duplicates for a total of 1396 
duplicate assays.

The nickel duplicates present similar basic statistics (Figure 
7), with a much lower kurtosis value than for the gold data-set. 
The high duplicates correlation coefficient (ρ = 0.94) indicates 
good reproducibility of the assays, as expected for a base metal 
deposit. 

Table IV shows the cap results obtained using the 
different methods. The proposed method presents the highest 
recommended cap value as a result of strong duplicates 
correlation. All other methods underestimate the target CV 
(0.783), a consequence of selecting an overly low cap value.

   Table III

  Gold case cap results - The target CV (Equation [8]) is 1.76
   Capping method	 Percentile	 Capped level	 Capped CV value	 Capped mean	 Capped STD

   Uncap data	 n/a	 n/a	 3.38	 0.32	 1.08
   99th percentile	 0.990	 3.11	 1.67	 0.27	 0.45
   Parrish	 0.981	 1.91	 1.43	 0.25	 0.36
   Log probability plot	 0.995	 4.49	 1.92	 0.28	 0.53
   Duplicates	 0.992	 3.69	 1.76	 0.28	 0.49

Figure 7—Nickel duplicates' scattergram (left) and log probability plot for duplicates 1 and 2 (right)

   Table IV

  �Nickel case cap results - The target CV (Equation [8]) is 0.783
   Capping method	 Percentile	 Capped level	 Capped CV value	 Capped mean	 Capped STD

   Uncap data	 n/a	 n/a	 0.81	 1.080	 0.87
   99th percentile	 0.990	 3.56	 0.76	 1.07	 0.82
   Parrish	 0.90	 2.32	 0.70	 1.02	 0.72
   Log probability plot	 0.99	 3.60	 0.76	 1.07	 0.82
   Duplicates	 0.996	 4.59	 0.78	 1.08	 0.84
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Discussion
In mining applications, extreme values can often be encountered 
and must be controlled to avoid spreading high grade to large 
areas. The capping strategy can significantly impact the results 
of geostatistical and economic studies. In the exploration phase, 
an unduly low cap value can lead to an overly conservative 
resource estimate, possibly resulting in project rejection. On 
the other hand, too high a cap value may lead to an overly 
optimistic economic valuation and serious losses for mining 
companies. Various methods have been proposed in the past and 
are routinely used in the industry to determine cap values. Most 
are based on rather arbitrary empirical rules or on a subjective 
graphical interpretation of the cumulative distribution function. 
None use the important and mandatory coarse duplicate data to 
help determine a reasonable cap value that takes into account the 
quality of the assay procedure. 

The proposed approach fills this gap. An unbiased 
multiplicative lognormal error model was used to derive the 
relationship between the observed and true grade CVs. The 
two CVs are simply linked through the duplicates correlation 
coefficient (see Equation [8]). One can predict the unobserved 
true CV from the observed CV with an estimate of the duplicates 
correlation. The proposed capping strategy is simple: select the 
cap value such that the CV of the capped samples is equal to the 
predicted true CV value. 

Simulated data-sets showed that Equation [8] is unbiased 
for the true CV, even with a relatively small amount of duplicate 
data (Figure 2). They also showed that the analysed length has 
a limited impact on the proposed method, as both ρ and CVo 
are relatively robust in response to this factor. Finally, Figure 4 
illustrates the good stability of the method relative to different 
departures from the lognormal assumption. 

The question of capping before or after compositing was also 
examined. Simulated data-sets with a preferential re-sampling 
approach (i.e., the intersections of high grade are analysed on 
shorter lengths than low grade) were used. The differences 
between the ‘before’ and ‘after’ cases are rather small but 
systematic. The ‘before’ case leads to more bias on the mean than 
the ‘after’ case for all CVs. We therefore recommend capping after 
compositing to minimize the bias on the mean. 

The proposed approach was compared to some of the methods 
most widely used in the industry using two real data-sets, 
one for gold and the other for nickel, where coarse duplicates 
were available. With the proposed approach, the CV computed 
using capped data was equal to the predicted true CV by design. 
Interestingly, the proposed approach had the highest cap value 
of all the methods tested when reproducible duplicate data was 
available (nickel case, ρ = 0.94) but not for duplicate data with 
low correlation (gold case, ρ = 0.27). This illustrates that the 
capping strategy of the proposed method, contrary to other 
methods, takes into account the quality and reliability of assay 
data measured by duplicates correlation. Other advantages of 
the proposed approach are its simplicity and objectivity, as it can 
easily be computed automatically from assays and duplicate data-
sets without requiring variogram modelling, kriging, simulation, 
or cdf plotting and gap/break interpretation like some of the other 
methods. 

When following QA/QC recommendations, thousands of 
duplicates are typically obtained even before the prefeasibility 

study. Hence, enough data is available to reliably estimate the 
correlation coefficient between duplicates. In earlier stages, 
when only a smaller quantity of duplicates is available, it might 
be interesting to consider a robust estimator of duplicates 
correlation. Many such robust estimators are described in the 
statistical literature. Further study is required to assess the 
influence of using different correlation robust estimators on 
the proposed method. Robust estimators of CVo could also be 
considered but this appears less necessary as much more data is 
available for CVo estimation.

Conclusions
A new capping strategy based on the correlation coefficient 
between coarse duplicates is proposed. It incorporates the idea 
that the higher the correlation coefficient between duplicates, the 
greater the confidence level of the assay value, and accordingly 
the higher the cap value should be. The method proved to be 
robust to variations in sample support (assay length), departure 
from lognormality, and capping before or after compositing. 
When applied to gold and nickel deposit data, the proposed 
approach provided cap grades that reflected the reliability of the 
assays and were generally higher than those obtained with the 
other methods tested. The proposed approach is simple, objective, 
and repeatable. It makes it possible to automatically determine 
the cap grade from duplicate data.
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