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Modelling and optimization of zinc 
recovery from Enyigba sphalerite in a 
binary solution of hydrochloric acid and 
hydrogen peroxide
I.A. Nnanwube1 and O.D. Onukwuli2

Synopsis
This work focused on the prediction of optimal conditions for zinc recovery from sphalerite in a binary 
solution of hydrochloric acid and hydrogen peroxide. The sphalerite sample was characterized with 
X-ray fluorescence spectrometry (XRF), X-ray diffractometry, and Fourier transform infrared analysis 
(FTIR). The central composite design of response surface methodology (RSM) developed in Design 
Expert software and the genetic algorithm (GA) tool in matlab, were deployed for the optimization 
exercise. The leaching temperature, acid concentration, stirring rate, leaching time, and hydrogen 
peroxide concentration were defined as input variables, while zinc yield was the response. An ideal zinc 
yield of 90.89% could be obtained with a leaching temperature of 84.17°C, HCl concentration of 3.14 M, 
stirring rate of 453.08 r/min, leaching time of 107.55 minutes, and hydrogen peroxide concentration of 
3.93 M using RSM; while a yield of 87.73% was obtained using GA. Analysis of the post-leaching residue 
revealed the presence of sulphur, zircon, fluorite, gahnite, anatase, and sylvite. 
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Introduction
Sphalerite (ZnS), also known as zinc blende, is the primary mineral of zinc. It is usually found with 
other sulphide minerals such as galena (PbS), pyrite (FeS2), chalcopyrite (CuFeS2), and barite (BaSO4). 
Zinc has been recovered from sphalerite concentrate for decades via the roast-leach-electrowinning 
(RLE) process (Souza, Pina, and Leao, 2007). However, the RLE process has a major shortcoming 
arising from the roasting stage, as it emits SO2 which causes pollution. To avert this problem, two 
similar routes were proposed in the 1970s as alternatives to the RLE procedure. The first involves 
direct leaching with oxidative reagents such as acids, ferric salts, hydrogen peroxide, or magnesium 
oxide (Guler, 2016); while the second process involves pressure leaching carried outs in autoclaves at 
14–15 atm. oxygen pressure (Souza, Pina, and Leao, 2007; Baldwin and Demapolis, 1995). Zinc and 
its compounds have found application as anti-corrosion agent, in paint production, in the manufacture 
of rubber, in photocopying products, in organic synthesis, among others (Marks, Pearse, and Walker, 
1985).      

The leaching of sphalerite in a non-oxidizing but complexing medium like HCl would form zinc 
chloride and hydrogen sulphide according to Equation [1] (Baba and Adekola, 2010), while sphalerite 
leaching in a binary solution of hydrochloric acid and hydrogen peroxide leads to the formation of zinc 
chloride, water, hydrogen sulphide, and elemental sulphur as illustrated in Equation [2].

ZnS(s) + 2HCl(aq) → ZnCl2 (aq) + H2S(g)� [1]

2ZnS(s) + 4HCl(aq) + H2O2(aq) → 2ZnCl2(aq) + 2H2O(l) + H2S(g) + S(s)
o                                                        [2]

The well-known method for optimizing a process by changing one parameter at a time while 
maintaining the others at a constant but unspecified level does not reveal the overall impact of all the 
parameters involved (Nnanwube and Onukwuli, 2020). This ‘one factor at a time’ approach is tedious 
and requires a vast number of experiments, which can be misleading. These limitations can be avoided 
by optimizing all the parameters together by statistical experimental design such as the response 
surface methodology (RSM) (Ko, Porter, and Mckay, 2000). RSM is based on polynomial surface 
analysis and is a collection of mathematical and statistical techniques that are helpful for the modelling 
and analysis of problems in which a response of interest is affected by a number of factors. The major 
goal of RSM is to establish the optimum operational conditions for a process. The most generally applied 
of RSM designs is the central composite design (CCD) (Box, Hunter, and Hunter, 1978).
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Genetic algorithms (GAs), on the other hand, are a group of 
computational models inspired by evolution. These algorithms 
encode a potential solution to a particular problem on a basic 
chromosome-like data structure and apply recombination 
operators to these structures in order to preserve critical 
information. They are frequently viewed as function optimizers, 
although the scope of problems to which GAs have been 
applied is very wide (Nix and Vose, 1992). GAs, as opposed to 
conventional methods, work concurrently with a population of 
individuals, exploring a number of new areas in the search space 
in parallel, thus reducing the probability of being trapped in a 
local minimum. As in nature, individuals in a population compete 
with each other for survival so that fitter individuals tend to 
advance into new generations, while the poor ones usually die 
out (Matous et al., 2000). The GA technique has been found to 
be an efficient optimization tool. It has been applied in analysing 
leaching data for low-grade manganese ore (Pettersson et al., 
2009), software testing (Sharma, Patani, and Aggarwal, 2016), 
wireless sensor networks (Liu and Ravishankar, 2011), as well 
as predicting recovery during column leaching of copper oxide ore 
(Hoseinian et al., 2020), among others.  

Although some work had been reported on the dissolution 
of sphalerite in acids and oxidative reagents (Souza, Pina, and 
Leao, 2007; Baba and Adekola, 2010; Nnanwube, Udeaja, and 
Onukwuli, 2020), studies on the application of soft computing 
techniques in modelling the process are scant. Hence there is 
need for more research in this area. It was the purpose of this 
research to assess the efficiency of RSM and GAs in predicting 
the recovery of zinc from sphalerite in a binary solution of 
hydrochloric acid and hydrogen peroxide. This work will serve as 
a good reference material on the modelling of zinc recovery from 
sphalerite.

Materials and methods
The sphalerite used for this investigation was sourced from 
Enyigba in southeastern Nigeria. The sample was finely 
pulverized and sieved to <75 µm. Solutions of HCl and H2O2 were 
prepared with analytical grade reagents and deionized water.

Elemental analyses were carried out by X-ray fluorescence 
spectrometry (XRF) using an X-supreme 600 from Oxford 
instruments. Mineralogical examination was carried out with an 
ARL X’TRA X-beam diffractometer from Thermoscientific (serial 
number 197492086). The FTIR analysis was carried out using 
a Shimadzu 8400S FTIR spectrophotometer, while the Varian 
AA240 model was used to conduct the AAS analysis. 

Experimental procedure
Leaching experiments were performed in a 500 mL glass 
glass reactor fitted with a condenser to avoid losses through 

evaporation. A magnetically-stirred hot plate (model 78HW 1) 
was used for the experiments. For every leaching experiment, 
the solution was prepared by dissolving 20 g/L of the sample 
in hydrochloric acid/hydrogen peroxide binary solution at the 
required temperature and stirring rate, as determined by the 
experimental design. At the end of the reaction, the undissolved 
material in the suspension was allowed to settle and separated 
by filtration. The solutions obtained were diluted and analysed 
for zinc using atomic absorption spectrophotometer (AAS) 
(Nnanwube, Udeaja, and Onukwuli, 2020). 

Experimental design and RSM model development
The effects of leaching temperature, acid concentration, stirring 
rate, leaching time, and hydrogen peroxide concentration on the 
recovery of zinc from sphalerite were assessed using RSM. A 
central composite rotatable design (CCRD) with five levels and 
five factors was deployed for the modelling and optimization 
studies. Table I gives the variables and their levels while the 
coded CCRD for the 32 experimental runs is presented in Table II. 
The experimental runs were randomized to minimize the impacts 
of unexpected variability in the observed responses. The method 
employed generates a second-order polynomial that describes the 
process. To connect the response to the independent variables, 
multiple regressions were used to fit the coefficient of the second-
order polynomial model of the response. The quality of the fit of 
the model was assessed using a test of significance and analysis 
of variance. In RSM, the most generally utilized second-order 
polynomial equation created to fit the experimental data and 
classify the applicable model terms is presented in Equation [3].

[3]

where 
Y 	� is the predicted response variable, which is the percentage 

yield of zinc in this investigation
β0 	 is the constant coefficient
βi 	 is the ith linear coefficient of the input variable xi

βii 	 is the ith quadratic coefficient of the input variable xi 
βij 	� is the different interaction coefficients between the input 

factors xi and xj

ε 	 is the error of the model. 

Design Expert software package version 10.0 (Stat-Ease Inc., 
Minneapolis, MN, USA) was deployed for regression analysis and 
analysis of variance.

Optimization using genetic algorithms (GAs)
A GA is a search heuristic premised on biological evolution 
principles to explore the solution space to locate the global 
minimum of a function (Yaghoobi et al., 2016). GAs are mostly 

   Table I

  Levels of independent variables for CCD experimental design
   Independent variable	 Unit	 Symbol			   Coded variable levels 
	 	 	  –α	 –1	 0	 +1	 +α

   Leaching temp.	 °C	 A	 45	 60	 75	 90	 105
   Acid concn.	 M	 B	 0.25	 1.5	 2.75	 4.0	 5.25
   Stirring rate	 r/min	 C	 100  	 250	 400	 550	 700
   Leaching time	 min	 D	 30	 60	 90	 120	 150
   Hydrogen peroxide 	 M	 E	 0.25	 1.5	 2.75	 4.0	 5.25



Modelling and optimization of zinc recovery from Enyigba sphalerite in a binary solution

611  ◀The Journal of the Southern African Institute of Mining and Metallurgy	 VOLUME 120	 NOVEMBER 2020

used for optimization purposes. GAs emulate Charles Darwin’s 
theory of ‘survival of the fittest’, and are employed to resolve 
complex optimization problems (Goldberg and Holland, 1988). 
GAs have gained popularity over conventional optimization 
methods since they can resolve irregular or nondifferentiable 
fitness functions proficiently (Singh et al., 2009; Gupta and 
Sexton, 1999; Shen, Wang, and Li,  2007). Pillay and Banzhaf 
(2009) applied an informed GA for the examination of a 
timetabling problem. Alba, Luque, and Araujo (2006) studied 
natural language tagging with genetic algorithms. Tseng et 
al. (2008) applied GA rule-based methodology for land-cover 
classification. The GA often changes the group for the individual 
solutions of the problem, and these changes are known as 
evolution. In each step of this evolution, two individuals from 
the group are chosen arbitrarily as the parent and child, and they 
are considered for the next generation. In this fashion the group 
advances toward an optimal solution. 

To optimize the problem in the present investigation, an 
objective function for optimizing zinc recovery was established 
by experimental tests (Fayyazi et al., 2015). By performing a 
number of trials, a suitable choice for the initial range, fitness 
scaling, selection, elite count, crossover fraction, mutation 
function, crossover function, migration, and stopping criteria 
was made, and lastly, the optimized solution was assessed (Ou, 
2012). 

Results and discussion

Characterization 
The results of the XRF analysis of the sphalerite sample were 

reported earlier (Nnanwube, Udeaja, and Onukwuli, 2020). The 
results, shown in Figure 1, revealed that ZnO, SO3, Na2O, and 
Fe2O3 were the major oxides present in the ore; oxides such 
as SiO2, CaO, Al2O3, Mn2O3, and MgO were present in minor 
quantities, while the other constituents occurred in traces.

The XRD results revealed that sphalerite (ZnS) was the 
dominant mineral with three major peaks at 28.56, 47.50, and 
56.37° 2θ. The results also revealed the presence of cerium 
germanium sulphide (Ce2GeS2) with three major peaks at 
30.15, 43.16, and 26.03° 2θ, respectively, as shown in Figure 2 
(Nnanwube, Udeaja, and Onukwuli, 2020).  

The FTIR spectrum of Enyigba sphalerite is shown in Figure 
3. The spectrum show the functional groups present in the ore. 
The band at 504.10 cm–1 is ascribed to C-N-C and C-O-C bending. 
The band at 839.08 cm–1 is attributed to C-Cl and Si-C stretches, 
while the band at 1066.67 cm–1 is ascribed to SO3 symmetrical 
stretch as well as Si-O-Si antisymmetrical stretch. The band at 

   Table II

  Coded fractional central composite design for sphalerite dissolution in HCl/H2O2 binary solution
   Run	 Temperature (°C)	 Acid conc. (M)	 Stirring rate (r/min)	 Leaching time (min)	 Hydrogen peroxide conc. (M)

   1	 +1	 –1	 –1	 +1	 +1
   2	 +1	 +1	 +1	 –1	 –1
   3	 –1	 +1	 –1	 –1	 –1
   4	 0	 0	 –2	 0	 0
   5	 +1	 +1	 +1 	 +1	 +1
   6	 –1	 –1	 –1	 +1	 –1
   7	 0	 –2	 0	 0	 0
   8	 0	 0	 0	 0	 0
   9	 –2	 0	 0	 0	 0
   10	 +1	 +1	 –1	 +1	 –1
   11	 –1	 –1	 +1	 +1	 +1
   12	 0	 +2	 0	 0	 0
   13	 0	 0	 0	 0	 0
   14	 0	 0	 0	 –2	 0
   15	 –1	 +1	 +1	 +1	 –1
   16	 0	 0	 0	 +2	 0
   17	 –1	 +1	 –1	 +1	 +1
   18	 +2	 0	 0	 0	 0
   19	 0	 0	 0	 0	 0
   20	 –1	 –1	 –1	 –1	 +1
   21	 0	 0	 0	 0	 0
   22	 +1	 –1	 +1	 –1	 +1
   23	 0	 0	 +2	 0	 0
   24	 –1	 +1	 +1	 –1	 +1
   25	 +1	 –1	 –1	 –1	 –1
   26	 +1	 +1	 –1	 –1	 +1
   27	 0	 0	 0	 0	 –2
   28	 –1	 –1	 +1	 –1	 –1
   29	 0	 0	 0	 0	 0
   30	 +1	 –1	 +1	 +1	 –1
   31	 0	 0	 0	 0	 0
   32	 0	 0	 0	 0	 +2

Figure 1—XRF analysis of Enyigba sphalerite
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1141.90 cm–1 is ascribed to C-C-N bending and C-O-C stretch, 
while the band at 1413.87 cm–1 is ascribed to C-N stretch and 
OH bending. The band at 1639.55 cm–1 is ascribed to C=O and 
C=C stretches, while the band at 3396.70 cm–1 is ascribed to OH 
stretch. 

RSM modelling and statistical analysis
The central composite design for the leaching of zinc from 
sphalerite with a binary solution of hydrochloric acid and 
hydrogen peroxide is shown in Table II. The five experimental 
factors gave a sum of 32 experimental runs with 6 centre points, 
10 star points, and 16 fractional factorial design points. The 
responses established from different experimental runs were very 
distinctive, showing that all the factors had appreciable impact on 
the response. 

Models analysed include the linear, quadratic, 2FI (two 
factors interaction), and cubic model. The quality of the models 
can be compared based their R2 values and other parameters 
such as standard deviation (SD), R2 adjusted, R2 predicted, 
prediction error sum of squares (PRESS), and F- and P-values. 
The closer the R2 value to unity, the better the model’s fit (Ameer 
et al., 2017). From the model analyses presented as model 

summary statistics in Table III the quadratic model, with the 
highest regression coefficient (R2 value of 0.9934) and standard 
deviation of 1.07, shows better correlation between the observed 
and model- predicted data.

The results were further analysed using the analysis of 
variance (ANOVA) appropriate for the experimental design used 
and presented in Table IV. The model F-value of 83.27 suggested 
the model to be significant and there is just 0.01% chance that 
an F-value this large could occur due to noise. The F-value for 
a term is the test for comparing the change associated with that 
term with the residual variance. The F-values of the independent 
variables A, B, C, D, and E were 272.65, 260.16, 263.87, 237.23, 
and 265.12 respectively, demonstrating that the effects of every 
single independent variable on the response were considerably 
high.

The model P-value (Prob. > F) is low, which also 
demonstrates that the model is significant. The P-values were 
used as a means of verifying the significance of each one of the 
model coefficients. The smaller the P-value, the more significant 
the corresponding coefficient. Estimations of P < 0.05 confirm 
the model expressions to be significant. The estimations of 
P for the coefficients reveal that among the tested variables 
used in the design, A, B, C, D, E. A2, B2, C2, D2, E2 (where A = 
leaching temperature, B = acid concentration, C = stirring rate, D 
= leaching time, and E = hydrogen peroxide concentration) are 
significant model terms. 

Figure 2—X-ray diffraction pattern of Enyigba sphalerite

Figure 3—FTIR spectrum of Enyigba sphalerite

   Table III

  Model summary statistics
   Source	 Std. dev.	 R2	 Adjusted R2	 Predicted R2	 PRESS

   Linear	 4.06	 0.7748	 0.7315	 0.7172	 539.53
   2FI	 5.10	 0.7821	 0.5778	 -2.1464	 6003.78
   Quadratic	 1.07	 0.9934	 0.9815	 0.8823	 224.59
   Cubic	 0.93	 0.9973	 0.9858	 0.4220	 1102.90
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The ‘lack of fit F-value’ of 1.64 infers that the lack of fit is 
not significant with respect to the pure error. There is a 30.21% 
chance that a lack of fit F-value this large could occur due 
to noise. A non-significant lack of fit demonstrates that the 
model is well fitted. Since many insignificant model terms have 
been eliminated, the improved model can be used to predict 
successfully the responses of the percentage recovery of zinc from 
sphalerite. The model with the significant coefficient is presented 
in Equation [4].  

�Yield   = 85.29 + 3.60A + 3.51B + 3.54C + 3.35D +              
[4] 3.55E – 1.86A2 – 1.78B2 – 2.10C2 – 1.85D2 – 1.96E2

In terms of the actual factors, the model equation is shown in 
Equation [5]: 

�Yield = –86.65 + 1.66 x Leaching temperature + 11.14 x  
Acid concentration + 0.13 x Stirring rate + 0.55 x  
leaching time + 12.40 x Hydrogen peroxide concn.             

[5]  – 8.28 x 10–3 x Leaching temperature2 – 1.14 x  
Acid concentration2 – 9.33 x 10–5 x Stirring rate2  
– 2.06 x 10–3 x Leaching time2 – 1.26 x 
Hydrogen peroxide concn.2

The summary of regression values is presented in Table 
V. The CV estimation of 1.37% shows that the model can be 
considered reasonably reproducible (Chen et al., 2010). The 
signal-to-noise ratio, which is given as the adequate precision, 
is 31.308 (Table V). This shows that an adequate relationship 
of signal-to-noise ratio exists. The result demonstrates that the 
model can be used to explore the design space.

The results were also analysed to check the correlation 
between the experimental and predicted zinc yields, as presented 
in Figure 4. The result shows a good correlation between 
the experimental and predicted values of the response. This 
demonstrates that the model selected is appropriate and that the 

central composite rotatable design (CCRD) can be deployed for 
the optimization exercise.

Response surface plots
The combined effects of adjusting the process variables within 
the design space were observed by constructing 3D surface plots 
(Figure 5). Figure 5a shows the effect of acid concentration 
and leaching temperature on zinc yield. From Figure 5a, as 

   Table IV

  ANOVA for response surface quadratic model
   Source	 Coefficient estimate	 Sum of squares	 Df	 F-value	 P-value (Prob > F)

   Model	 85.29	 1895.62	 20	 83.27	 < 0.0001
   A	 3.60	 310.32	 1	 272.65	 < 0.0001
   B	 3.51	 296.10	 1	 260.16	 < 0.0001
   C	 3.54	 300.33	 1	 263.87	 < 0.0001
   D	 3.35	 270.01	 1	 237.23	 < 0.0001
   E	 3.55	 301.75	 1	 265.12	 < 0.0001
   AB	 –0.31	 1.50	 1	 1.32	 0.2752
   AC	 –0.42	 2.81	 1	 2.47	 0.1447
   AD	 –0.12	 0.23	 1	 0.20	 0.6648
   AE	 –0.24	 0.95	 1	 0.84	 0.3804
   BC	 –0.23	 0.86	 1	 0.75	 0.4044
   BD	 –0.056	 0.051	 1	 0.044	 0.8368
   BE	 –0.13	 0.28	 1	 0.24	 0.6323
   CD	 –0.37	 2.18	 1	 1.91	 0.1942
   CE	 –0.54	 4.73	 1	 4.16	 0.0663
   DE	 –0.12	 0.23	 1	 0.20	 0.6648
   A2	 –1.86	 101.75	 1	 89.40	 < 0.0001
   B2	 –1.78	 92.42	 1	 81.20	 < 0.0001
   C2	 –2.10	 129.36	 1	 113.65	 < 0.0001
   D2	 –1.85	 100.39	 1	 88.21	 < 0.0001
   E2	 –1.96	 112.97	 1	 99.26	 < 0.0001
   Residual		  12.52	 11
   Lack of fit		  8.30	 6	 1.64	 0.3021
   Pure error		  4.22	 5
   Cor. Total		  1908.14	 31

   Table V

  Summary of regression values
   Std. dev.	 Mean	 CV (%)	 PRESS	 Adequate precision

   1.07	 78.12	 1.37	 224.59	 31.308

Figure 4—Plot of predicted values versus experimental values
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the leaching temperature was increased from 60 to 90°C, the 
percentage recovery of zinc increased from 82 to 88.5 %, while 
as the acid concentration was increased from 1.5 to 4 M, the 
recovery increased from 82.3 to 88.5%. The effect of stirring 
rate and leaching temperature on the percentage yield of zinc is 
shown in Figure 5b. As the stirring rate was increased from 250 
to 490 r/min, the recovery increased from 81.9 to 88%, while 
as the leaching temperature was increased from 60 to 90°C, the 
recovery increased from 81.8 to 88%. The effect of leaching 
temperature and leaching time on the percentage zinc yield is 
shown in Figure 5c. As the leaching temperature was increased 
from 60 to 90°C, the recovery of zinc increased from 81.4 to 
88.6%, while as the leaching time was increased from 60 to 120 
minutes, the recovery increased from 81.9 to 88.6%. Figure 5d 
shows the effect of hydrogen peroxide concentration and leaching 
temperature on the zinc recovery. As the hydrogen peroxide 
concentration was increased from 1.5 to 4 M, the zinc recovery 
increased from 81.7 to 88.5%, while as the leaching temperature 
was increased from 60 to 90°C, the recovery increased from 
81.8 to 88.5%.  The 3D plots are helpful in understanding the 
interactive effects of the process parameters within the leaching 
system.

Optimization of the leaching process using response sur-
face methodology (RSM) and genetic algorithm (GA)
The genetic algorithm tool of Matlab and the optimization tool 

of Design Expert were employed for the optimization study. 
Equation [5] was solved for the best solutions to ensure that the 
responses are maximized within the design space. A conventional 
method, which involves selecting the most economically viable 
option, was adopted. In choosing the objective for each of the 
factors for the numerical optimization, various considerations 
were taken into account. The significance of each of the variables 
in terms of the final response was the most vital consideration. 
The response was set at maximum value; and every other 
single factor was kept in range except the reaction time, which 
was set to a minimum target. In view of these considerations, 
the software predicted optimum reaction conditions with a 
desirability of 1.00. The ideal conditions for zinc recovery were a 
temperature of 84.17°C, HCl concentration of 3.14 M, stirring rate 
of 453.08 r/min, leaching time of 107.55 minutes, and hydrogen 
peroxide concentration of 3.93 M. The yield of zinc at these 
optimum conditions was 90.89%, which was validated as 89.65% 
by conducting three independent experimental replicates. 

The GA optimization parameters were obtained by carrying 
out a number of trials. The best condition was established in 
which the initial range was [1,100], the selection function 
was stochastic uniform, the values of the elite count and 
crossover fraction were respectively equal to 2 and 0.8, while 
the mutation and crossover function were selected as well as the 
migration, stopping criteria, output function, and level of display 
respectively.

Figure 5—3D response surface plots on effect of process variables on zinc yield
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Figure 6—The charts for the points obtained by GA. (a) Average distance between the individuals in each generation, (b) the best value for the fitness function, and 
(c) the optimal values obtained for the fitness function’s independent variables

Figure 7—X-ray diffractogram of the post-leach residue 

Figure 6a shows the average distance between the individuals 
for each generation. It can be observed that for this case, the 
group has good array. Figure 6b shows the best estimation of the 
fitness function of generation 200, which is 87.73%. The optimal 

values of the independent variables for the leaching temperature, 
acid concentration, stirring rate, leaching time, and hydrogen 
peroxide concentration were equivalent to 69°C, 2.55 M, 260 
r/min, 72 minutes, and 2.3 M respectively (Figure 6c). The 
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zinc yield estimated was validated in triplicate with an average 
value of 86.70%. This shows that GA is very effective for the 
optimization exercise.

Analysis of the residue
The residue from sphalerite leached with 3.14 M HCl/3.93 M 
H2O2 at 84.17°C was analysed by XRD. The X-ray diffractogram 
(Figure 7) showed three principal peaks at 23.24, 27.84, and 
26.89° 2θ. The XRD data revealed the presence of sulphur, zircon, 
fluorite, gahnite, anatase, and sylvite. It is important to note the 
absence of sphalerite in the residue, which shows that the bulk of 
the sphalerite must have dissolved.

Conclusion
The optimum conditions for the recovery of zinc from sphalerite 
with a binary solution of hydrochloric acid and hydrogen 
peroxide were investigated. Response surface methodology 
(RSM) and genetic algorithms (GAs) were deployed for the 
modelling and optimization of process parameters. Analysis of 
experimental results revealed that the quadratic model gave a 
good description of the experimental data. The process input 
variables for the leaching process were optimized by GA and RSM 
for best zinc yield. The results indicated that GA predicted a zinc 
yield of 87.73%, while RSM predicted a yield of 90.89%.
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