

Reduction rates of MnO and SiO₂ in SiMn slags between 1500 and 1650°C

considered rate models for MnO and SiO₂ reduction were able to describe the changing amounts of MnO and SiO₂ in SiMn slags. The results are applicable for estimating the production rate during SiMn smelting.

Acknowledgments

This publication has been partly funded by the SFI Metal Production (Centre for Research-based Innovation, 237738). The authors gratefully acknowledge the financial support from the Research Council of Norway and the partners of the SFI Metal Production.

References

CRCT: Canada, GTT: Germany. FactSage 7.0
<http://www.FACTSAGE.COM>

HOLTAN, J. 2015. Phase composition in Comilog charges during heating and reduction. Internal report: TMT 4500 Materials Technology, Specialization Project, Norwegian University of Science and Technology.

INTERNATIONAL MANGANESE INSTITUTE. 2014.
<http://www.manganese.org>

KAWAMOTO, R. 2016. Effect of sulfur addition on reduction mechanism of synthetic ore. Internal report: TMT 4500 Materials Technology, Specialization Project, Norwegian University of Science and Technology.

KIM P., HOLTAN J., and TANGSTAD M. 2016. Reduction behavior of Assmang and Comilog ore in the SiMn process. *Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts (MOLLEN 16)*, Seattle, Washington, 22–25 May 2016. Wiley. pp. 1285–1292.

KIM P., LARRSEN T., TANGSTAD M., and KAWAMOTO R. 2017. Empirical activation energies of MnO and SiO₂ reduction in SiMn slags between 1500 and 1650°C. *Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies*. Wang, S., Free, M., Alam, S., Zhang, M., and Taylor, P. (eds). The Minerals, Metals & Materials Series. Springer. pp. 475–483.

KIM P. and TANGSTAD M. 2018a. The effect of sulfur content on the reduction rate in SiMn slags. *Metallurgical Transactions. B* (in press).

KIM P. and Tangstad M. 2018b. The effect of sulfur for MnO and SiO₂ reduction in synthetic SiMn slag. *Metallurgical Transactions. B* (in press).

KIM P. and TANGSTAD M. 2018c. Melting behavior of Assmang ore and quartz in the SiMn process. *Metallurgical Transactions. B* (in press).

LARRSEN T. 2016. Reduction of MnO and SiO₂ from Comilog-based charges. Internal report: TMT 4500 Materials Technology, Specialization Project, Norwegian University of Science and Technology (NTNU).

MAROUFI S., CIEZKI G., JAHANSHAHI S., SHOUIYI S., and OSTROVSKI O. 2015. Dissolution of silica in slag in SiMn production. *Infacón XIV - Proceedings of the Fourteenth International Ferro-Alloys Congress*, Kyiv, Ukraine, 1–4 June 2015. pp. 479–487. <https://www.pyrometallurgy.co.za/InfacónXIV/479-Maroufi.pdf>

OLSEN, H. 2016. A theoretical study on the reaction rates in the SiMn production process. Master's thesis, Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU).

OLSEN, S.E., TANGSTAD, M. and LINDSTAD, T. 2007. Production of manganese ferroalloys. Tapir Academic Press, Trondheim, Norway.

OSTROVSKI. O., OLSEN, S.E., TANGSTAD, M., and YASTREBOFF, M. 2002. Kinetic modelling of MnO reduction from manganese ore. *Canadian Metallurgical Quarterly*, vol. 41, no. 3. pp. 309–318.

OUTOTEC. Not dated. HSC Chemistry 7. www.hsc-chemistry.com

SKJERVHEIM, T. 1994. Kinetics and mechanisms for transfer of manganese and silicon from molten oxides to liquid manganese metal. PhD thesis, Department of Metallurgy, Norwegian Institute of Technology (NTNU).

STØLEN, S. and GRANDE, T. 2004. Chemical thermodynamics of materials. Wiley, Chichester, UK.

SUBRAMANYAM, D K., SWANSIGER, A.E., and AVERY, H.S. 1990. Austenitic manganese steels. *ASM Handbook Volume 1, Properties and Selection: Irons, Steels, and High-Performance Alloys*. ASM International. Materials Park, OH.

TOMOTA, Y., STRUM, M., and MORRIS, JR. J. 1987. The relationship between toughness and microstructure in Fe-high Mn binary alloys. *Metallurgical Transactions A*, vol. 18A. pp. 1073–1081.

TRANELL, G., GAAL, S., LU, D., TANGSTAD, M., and SAFARIAN, J. 2007. Reduction kinetics of manganese oxide from HCFeMn slags. *Infacón 11, Proceedings of the Eleventh International Ferro-Alloys Congress*. New Delhi, India, 18–21 February 2007. Indian Ferro Alloy Producers Association. pp. 231–240. <https://www.pyrometallurgy.co.za/InfacónXI/231-Tranell.pdf> ◆

Erratum - June 2018

It has come to our attention that some text in the Summary and Conclusions and the Acknowledgment in the paper entitled: 'Reduction of Kemi chromite with methane', by M. Leikola*, P. Taskinen*, and R.H. Eric*† was omitted. The paper was published in the SAIMM Journal vol. 118, no. 6, pp. 575–580.

The complete wording for paragraph 4 should read as follows:

'Metallization was observed to start immediately after the chromite was exposed to CH₄-H₂ mixtures, as chromite reduction to metal was observable after only 10 minutes of reduction time. At temperatures of 1300°C and 1350°C, metallization was completed within the duration of the experiments, as only very small amounts of iron and chromium remained in the unreacted zones. Therefore, reduction of Kemi chromite with a CH₄-H₂ mixture can be regarded as highly efficient compared to reduction with only solid carbon as the reductant. Similar levels of almost complete reduction of chromite spinels by ordinary carbothermic reduction require temperatures over 1500°C. This can be attributed to the high thermodynamic activity of carbon when it is provided by cracking of methane into carbon and hydrogen'.

Acknowledgements

The authors are grateful to Tekes and Finland Academy for providing the part-time Finland Distinguished Professor position to R.H. Eric and funds for this research project. The CMEco project and the Technology Industries of Finland Centennial Foundation are acknowledged for their collaboration and support.

The appropriate correction has been made to the copy of the June 2018 *Journal* on the SAIMM website.