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Synopsis
Geometallurgy aims to improve mining project value by predicting the impact that ore and waste 
characteristics will have on mining and metallurgical processes. This requires integration of rich spatial 
models of orebody characteristics with validated process response models. These models have, until recently, 
been constrained by the spatial coverage and representativity of relevant data and the ability to validate 
predictions made. 

The revolution in the diversity and volume of data and computational power that is now becoming 
available for integrated geoscientific modelling of orebodies, and stochastic simulation of mining and mineral 
processes is accelerating. By embracing emergent integrated data analysis and simulation techniques, 
geoscientists and engineers can lead a transformation in the way the mining value chain, from orebody to 
recovery, can be conceived, evaluated, and operated by using the geometallurgical paradigm.

This paper describes a methodology that is applied to an existing diamond operation. Analysis of spatial 
and process data is used to build an integrated geometallurgical value chain model (IGVCM). This IGVCM is 
used to generate geometallurgical options and evaluate their potential outcomes. The model facilitates the 
use of flexible, highly configurable, and potentially automated intelligent approaches to evaluate mining and 
mineral process configuration, and results in more robust design outcomes. The approach described here, 
and its successful implementation has potential to deliver step-changes in value.
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Introduction
Geometallurgy aims to identify treatability risks – and opportunities – that arise from the interaction 
of orebody characteristics with mining and treatment. Improved understanding of the rock/process 
relationships allows project planners and production teams to predict performance, identify potential 
shortfalls, and thus enable the proactive creation and evaluation of strategies to mitigate these risks. These 
advanced insights also create opportunities for continually improving operational performance through 
dynamically adapting and improving the process response to the changing properties of the ore (Figure 1). 

The geometallurgical approach to mine optimization aims to improve the operations through a 
better understanding of the interaction of orebody characteristics with process responses. The value-
add from a strategic perspective is the use of this understanding to test and select the most robust mine 
configuration and improve understanding of the outcomes of high-value irreversible decisions (e.g. plant 
expansion, downsizing, changing mine design, overall design, and operational policy). Strategic use of 
a geometallurgical framework will increase the probability of making better design and configuration 
decisions and should result in robust returns, i.e. improving stability of financial return in the face of 
increasingly uncertain futures.

There is also material value-add in the implementation and use of the geometallurgical approach in 
a tactical framework, for both risk mitigation and operational execution improvement (Wambeke and 
Benndorf, 2017). This requires the development of several capabilities within the mining organization. 
These capabilities include the ability to spatially sample and then model the rock characteristics that drive 
process responses, development of suitable interfaces so that mine planning processes can use these in 
mine design, and process simulations that respond to the mining inputs to generate predictions of process 
performance and ore treatability. It is also important to develop a motivated and skilled team that will 
persistently drive the principles until they become embedded as a way of doing business in the operations. 
This is a critical success factor. 
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The traditional approach to development of geometallurgical 
models requires sufficient spatial sampling for ore characteristics 
that drive process behaviour. These characteristics can be 
spatially estimated or simulated into a block model. The 
estimated (or simulated) characteristics of the blocks that 
are to be mined in each period are used in a dynamic process 
model (process in the broad sense, including both mining and 
metallurgical processes) in which the process parameters can be 
varied in accordance with operational policies and procedures. 
The virtual models of the process and simulated outcomes can 
be used to quantify perceived risks, proactively test mitigation 
strategies, and design plans to benefit from opportunities that 
are identified or created (e.g. choose the best process parameters, 
reiterate the mine plan, deploy more efficient technology, sample 
optimization).

Developing the primary response framework for geomet-
allurgy
In an ideal scenario (Ackoff, 1978), the geometallurgical team 
would be able to readily answer the following questions:

    Which response variables in the mining and treatment 
processes do we want to model and predict? 

   What primary variables drive the response variables, and 
how must these be measured in the orebody, and at what 
scale?

   Once we have sampled and measured these variables, 
how do we estimate their values at unsampled locations? 

   Once we have these spatial estimates, how do we build 
models and simulations that can be used to predict the 
response variables we want to improve?

Selection of response variables and their geological 
drivers
The search for the answers to these questions requires an 
iterative approach to dynamically explore what is desired and 
what is practically possible. This requires ongoing engagement 
in a process that requires input from geoscientists and engineers 
across the structured disciplines that typically characterize 
the configuration of mining projects and operations. A useful 
structured approach to the implementation of geometallurgy is 

provided in Vann et al. (2011). This paper addresses what would 
be considered the transition of geometallurgical capabilities 
from testing and building models into the use of these models in 
operational and strategic work flows.

For existing operations, the identification and selection of 
response variables precedes the design of sampling. This allows 
the operation to engage in the process and drive the gathering of 
operating data. Through analysis of performance it is possible to 
identify which rock characteristics are associated with selected 
process over- or underperformance. Once the associations have 
been identified, more experimentation is required to demonstrate 
causality. This investigation requires analysis of historical 
data on rock mixes and associated process performance.  The 
characteristics of rock types that shift process performance away 
from a perceived stable state are tagged and the characteristics of 
each lithotype are then investigated (e.g., hard or soft ore).

In this process, the analytical geometallurgists will use 
systems analysis approaches as described by Demming (1986). 
The availability and use of advanced statistical process control 
tools in this type of analysis is becoming far more prevalent and 
hence allows for more meaningful use of historical data. 

Design and execution of rock characteristics sampling
Tools and methods used in the descriptive and interpretative 
process of geological modelling have improved because of the 
ongoing focus on geometallurgy. The underlying concept of 
optimizing the sample layout by using a few high-cost samples 
and then building a calibrated framework to lower cost methods 
that can increase spatial coverage has been explored by several 
authors (Esbensen, 1987; Keeney, 2010). The classification, 
description, and characterization of kimberlite rocks have also 
improved. 

These conceptual frameworks have resulted in improved 
sample experiment design and increased the number of samples 
and the metadata that are collected for geometallurgical 
modelling. The typology is relatively simple and provides a useful 
framework for interdisciplinary communication. It can be used 
to develop a programme that aims to achieve a balance between 
the high cost per sample and low coverage of level 4 data with 
the lower cost per sample and higher coverage that is associated 
with collection of level 1 data (Figure 2). This type of trade-off 
is required for each deposit as the best combinations of number 
of samples, sample support, and tests carried out. The resulting 
design will differ between mines, deposits, and lithologies and 
will require adapting to the level of maturity of the project.

Building spatial models of rock characteristics
To build rich multivariate models of the orebody, optimal use 
of data generated from a range of samples to predict process 
responses is required. These models can be used to drive an 
integrated value-chain model.  Linear spatial interpolation 
estimation techniques, such as linear kriging, can be used to 
generate minimum error variance, unbiased spatial models of 
orebody characteristics (Armstrong, 1998). These methods yield 
estimated values that have less variability than the corresponding 
actual values. Spatial simulation techniques, such as sequential 
Gaussian simulation (Dowd and Dare-Bryan, 2007), multivariate 
co-simulation (Verly, 1993; Boucher and Dimitrakopoulos, 
2009; Rondon 2012), and multi-point geostatistics (Ortiz and 
Deutsch, 2004) can be used to generate spatial models of rock 
characteristic variables that have a more realistic block-to-block 
variability.

 
et al., 2009)
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The primary response framework suggests that primary 
variables may in some cases exhibit easy-to-model 
characteristics, whereas response variables often do not. The 
response variables are often nonlinear functions of a variety of 
process inputs and may therefore have non-additive properties. 
Defining domains for these variables can at times be difficult, 
though recent research has developed ways to address this 
concern (Sepulveda et al., 2017).

Developing an integrated value chain model 
When an operation has access to an estimated block model of 
both ore and waste it is possible to overlay a mining plan and 
generate a rock stream that can be fed to a process simulator 
to predict process performance. Each of the key processes is 
modelled using a simplified transfer function to determine the 
impact that the range of rock characteristics will have on the unit 
process (Wolf, 2012).

The integrated approach, previously described by Jackson et 
al. (2014), uses block-scale models of the orebody containing 
both estimated and simulated characteristics. These models are 
linked to a mining and treatment model. The outputs from the 
production model are tied to a financial model that facilitates the 
translation of production outcomes in financial terms. 

The benefits of the integrated model are that it can be used 
to link seemingly different areas of the businesses value chain 
in a way that reflects the true system constraints and the way in 
which they interact with variability that originates in the orebody. 
This approach facilitates an understanding of the system and 
provides a quantitative evaluation of the impact of variances on 
the system by explicitly modelling their interaction with real-
world constraints (Deming, 1986).

Central to this approach is the integration of complex 
empirical processing models for e.g. crushing (Whitten, 1972), 
and hydrocyclone separation (Plitt, 1976) with observed process 
responses.  The collection of data over a long period, in the order 
of five to ten years, enables valid correlations to be identified. 
These can be evaluated and with additional work, various 
hypotheses of causation can be tested and rejected or assumed to 
hold.

Implementation on an operating mine

Setting and methodology 
The case review is based on a mine that treats kimberlite sourced 
from four different pipe-like bodies. The kimberlite comprises 
several different rock types, as kimberlite is characterized as 
being a heterogenous rock with a low diamond concentration. 

The process plant employs a conventional diamond-
winning process that includes crushing, scrubbing, dense media 
separation, and final recovery using a combination of magnetic 
and X-ray separation to produce a diamond-rich concentrate.  

Although the mine has kept very good records of process 
performance and mine depletion, there is a complex stockpiling 
and blending circuit between the mine and the process plant, and 
the surge capacity both before and inside the processing plant is 
substantial. This meant that it was not possible to directly relate 
processed material properties back to in situ properties. This 
required the development of a method to understand the impact 
of various rock mixes on process performance, and then using 
this understanding to identify the primary in situ properties that 
were required to be spatially sampled and estimated.

Selection of response variables
The process was usefully divided into seven metallurgical 
response areas:

1. Mining, blasting, hauling
2. Stockpiling and blending
3. Comminution
4. Dense media separation
5. Undersize, materials handling. and water recovery
6. Magnetic separation
7. X-ray recovery

In consultation with the operation, the objectives of the 
operational areas were clarified and the rock properties that either 
hindered or assisted with production were recorded. Detailed 
monthly data for a period of 10 years was obtained to determine 
the range and variability of the performance of each of the 
sections. 

Identifying rock characteristics that drive response 
behaviour
As described above, approximately 60% of treated material is 
fed to the plant via a stockpile and blending system. It is thus 
not possible to tie individual process responses back to a single 
domain or rock type. For each of the seven process response 
areas, periods where the performance was in the highest or 
lowest 5th percentile were identified. This was augmented with 
the use of various statistical process-control techniques (recursive 
partitioning, cumulative summation charts, v-charts, Manhattan 
plots etc.). The rock mixes that were fed during these periods 
were identified. The results of 30 rock mixes were then combined 
and analysed using multidimensional scaling to determine the 
main groups of rock characteristics that were driving process 
response. The impact of each of these was then tested by 
applying the rock mix characteristics in a simple linear model and 
identifying how well the model predicted actual performance.

Sampling and estimating rock characteristics
As this is a mature operation, several phases of sampling for 
so-called ‘ore dressing studies’ (ODS) have been carried out. 
This sampling has typically been aimed at defining long-term 
average characteristics, reminiscent of level 4 data. Recently, 
however, this sampling has been substantially augmented with 
various proxy measures.  This data made it possible to identify 
approximately 15 rock characteristics that had been measured 
with sufficient spatial coverage to enable the use of geostatistical 
estimation. Several of these measured variables had indirect 
proxies that could be used to expand coverage in the estimate.
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An example of this is the estimation of dense media 
separation yield. Level four sampling typically requires large 
(approx. 50 kg) samples for a full set of densimetric testing to 
determine the yield that is expected in the DMS for a given set of 
operating parameters. It was, however, found that the ore bulk 
density measures could be used with the full densimetric analysis 
to expand spatial coverage (Lechuti-Tlhalerwa, 2018).

An important addition to the estimated model was the 
inclusion of a ‘quality indicator index’ for each estimated 
variable. The index was based on several geostatistical estimation 
quality indicators (e.g. kriging variance, distance to nearest 
sample) and is similar to the processes used for informing the 
classification of resources and reserves. This index was used 
in the value chain model to give an indication of the quality of 
performance forecasts.

The process simulation model
The process model included the mining process, six main 
stockpiles, and a simplified main treatment plant flow. The 
distribution of types of material treated during the period under 
review is depicted in Figure 3.

The data from the mine planning and reconciliation system 
made it possible to track the material that is delivered to and 
removed from each stockpile. The properties in each stockpile 
were averaged every quarter, but the model can be configured 
in several ways to represent different blending and storage 
mechanisms (Robinson, 2011). The estimated block-scale rock 
characteristics delivered to the plant are depicted in Figure 4.

To replicate the flows through the comminution circuit, 
the material hardness characteristics (UCS, T10, Ta) were used 
to determine the mass proportion of material that was sent to 
oversize, grits, and slimes. These characteristics were also used 
in a simple comminution and screening model (Whiten, 1972) 

to simulate the operation of the crushing section and predict the 
mass and size distribution of the feed to the DMS circuit.

The DMS dynamic model was configured to respond to the 
estimates of proportion of each density class in each size class for 
the ore block that is treated.

 
[1]

Equation [1] gives the formula used to calculate the mass of 
material that is expected to report to the sink fraction, where:

Tdi = Tons in density class n
Tsj = Tons in size class n
Prk = Tons recovery proportion of size/density class k.

In the implementation, the proportion to sinks assumes 
a constant partition curve that incorporates a fraction of the 
less dense material that is the same for all periods. It would be 
possible in further iterations to include a rock type and cyclone 
configuration dependency in this model (Plitt, 1976). The 
specific partition curve used in this case is depicted in Figure 5. 
It would be possible to use historically recorded partition curves 
informed by regular tracer testing that has been carried out.  
Historical work has been conducted to develop and test several 
simulators, and the data and models developed during these prior 
programmes could be readily used to develop more robust models 
in this case. 

Value chain model results
At this early stage, the correspondence between the outputs of 
the model and the recorded historical data is encouraging. The 
proportion of material that reports to the DMS is depicted in 
Figure 6. 

represent pipe 3 material
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The DMS partition model is applied at block scale and the 
results of the derived DMS concentrate produced are depicted in 
Figure 7. Although the model underestimates yield in the first 

few years of the period reviewed, there is good correspondence in 
the later years. 

This process response prediction is based on a relatively 
smoothed kriged estimate of characteristics based on a few 
sparse samples. This demonstration model shows that there is 
indeed sufficient information available to begin building spatial 
models of geometallurgical characteristics at block scale and that 
the block-scale estimates can be used in a process simulator to 
forecast, albeit with some degree of error, the full-scale process 
plant performance. 

It is also evident when calibrating this model that the modes 
of operation before and after 2009 are markedly different.  This 
suggests that not only should the model be able to reflect the 
operation of the plant while in a tonnage-constrained mode, 
but it should also include measures that reflect the changes in 
efficiency that are achieved (or not) when the plant is run at a 
lower throughput and hence is responding to different sets of 
constraints.

treated
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Discussion and interpretation
The geometallurgical modelling process (variable selection, spatial 
modelling, and process simulation) has shown that it is possible 
to predict the future performance of the selected unit processes 
based on models developed from a historical analysis of the 
relationships between characteristics of the kimberlite that was 
treated and observed process response. 

The next phase of this project aims to use the mine plan for 
the next 5–10 years with the existing geometallurgical model to 
predict the average, or estimated, rock characteristics that will be 
treated by the plant, and its resulting performance. This process 
will identify which periods will require either changes to the plan 
or adaption in the process plant to achieve the desired targets. 

A second, more challenging but potentially more rewarding, 
focus is the inclusion of spatial simulations of the orebody 
characteristics to enable a range analysis to be undertaken. 
This will provide the mine with a method to understand the 
impact of extremes in the rock characteristics on overall process 
performance and quantify the downside and upside of the chosen 
plan and process configuration. 

The feedback loop analysis suggests that as the collection of 
data of the processed properties improves, so will the models, 
and hence the ability to move up the ‘geomet curve’ (Vann et 
al., 2011) to the next phase, which will see the embedding of 
the geometallurgical model in mine planning and operational 
optimization.

The structure and approach to data collection, storage, and 
interrogation is adapting rapidly (e.g., Internet of Things, 
Industry Four, Cloud Processing Arbitrage). The three main 
driving forces are:

1.  The development of cheaper, faster, more ‘intelligent’
sensors with improved granularity that can pre-process
data

2.  Vast increases in machine and sensor connectivity and
networking

3.  Ongoing increases in processing speed, and ease of
access to transient computing power with a parallel
reduction in processing cost.

The implications for geometallurgy are profound. At a 
strategic level there needs to be focus placed on improving the 
use of rich, quantitative orebody models, and integration of the 
approach into the business operating framework. At a tactical 
level, this urges operations to embrace technically advanced 
predictive models in both short-term and longer-term capital 
rationing decision-making (Dowd, 2016). 

One way to improve the use of richer geometallurgical models 
requires an integrated evaluation of the entire value chain design 
to incorporate explicitly the impact of orebody characteristics 
across the mining project. Such a platform provides the basis 
for empirically testing design and operating decisions. This 
allows project teams to assign financial benefit to increasing 
geometallurgical insight and to extract additional value from 
mining projects. The simplest approach is to use spatial models 
of primary variables that can be converted through transfer 
functions to process responses, as demonstrated here. Deriving 
these functions requires simplification of process simulations 
that emulate the dynamics of inter-block interactions and system 
interdependencies. 

A broad view of geometallurgy suggests that an improved 
quantitative understanding of the relationships between rock 
characteristics and the performance of processes used to mine 
and treat the ore should lead to mining projects that are more 
successful. The benefits potentially include a more robust return 
to all stakeholders for a longer period, with mining projects 
demonstrating resilience in the face of ubiquitous, rapidly 
changing operating environments.
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