
Kansanshi is the largest copper mine in Africa
and the world’s eighth largest copper producer,
with a total of 253 272 t of copper produced in
2016 (Newall, 2017). It is located
approximately 10 km north of Solwezi, the
capital and administrative headquarters of the
North Western Province, Republic of Zambia.
The ore deposit consists predominantly of
chalcopyrite and malachite with variable
amounts of chalcocite, bornite, chrysocolla,
and azurite. Because of the varying
proportions of sulphide and oxide copper
minerals, the ore is classified into three
distinct categories: sulphide, mixed, and oxide
ores. As such, three separate processing
circuits are used to mill the ore down to a
standard targeted grind size of 80% passing
150 μm before froth flotation and leaching.

A lot of research and development has
been done to improve the performance of the
sulphide ore circuit at Kansanshi. Despite the
research efforts and subsequent operation, the
sulphide ore circuit did not attain the target
recovery and grade for 2016, primarily
because of the complexity of the orebody.

The constant drive to achieve the set
production target of recovery and
concentration grade after froth flotation

motivated the development of a tool for the
prediction of recovery. The anticipated benefit
is not only to enable the plant to apply
corrective actions when needed, but also to
make a tool available for the quick assessment
of the plant performance of the. For that
purpose, data spanning June 2016 to May
2017 was analysed, cleaned up and curve-
fitted to an empirical model. In doing so, key
parameters were determined and calibrated to
represent the behaviour of the plant.

The Kansanshi process comprises three
separate circuits for three distinct run-of-mine
ore feeds: sulphide ore, mixed ores, and oxide
ores. The three circuits run in parallel, with
each consisting of a dedicated crushing,
milling, and flotation circuit. The present
research work focuses on the sulphide ore
circuit.

The sulphide ore circuit at the Kansanshi
mine processed an average of 35 000 dry tons
per day between 1 June 2016 and 31 May
2017. The run-of-mine sulphide ore undergoes
a two-stage primary and secondary crushing
in open circuit. The material is then sent to a
classic semi-autogenous / Ball mill / Crusher
circuit, also known as an SABC design. From a
The product from the comminution section
undergoes two stages of flotation roughing in
6 × 300 m3 cells, and cleaning in 8 × 30 m3

cells. Relevant specifications of the
comminution equipment are listed in Table I.
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The primary objective of a processing plant is to produce
good quality concentrates at the highest levels of recovery
and throughput and at the lowest operation costs. The
attainment of this objective depends on the quality of the ore
feed, the geometry, configuration and operating conditions of
all the processing units involved and, most importantly, an
accurate knowledge and understanding of the circuit
behaviour.

Concentrators generally yield a variable metallurgical
recovery, to the extent that it has become common practice to
model the behaviour of the concentrator as a function of key
operating parameters. To do that, in-house databases can be
used with the data comprising for example, historical
operational performance data of the plant, planned surveys,
geometallurgical data, and ore characteristics. The work by
Compan, Pizarro, and Videla (2015) exemplifies this with a
regression model proposed for the Chuquicamata plant which
treats a copper sulphide ore by milling and flotation.

An attempt was made to produce an empirical model of
the Kansanshi plant similar to that of the Chuquicamata
plant. To this end, key input parameters were identified
before the structure of the model was proposed. The data was
pre-processed to enable curve-fitting by nonlinear regression.
This was to determine the values of the parameters of the
model and calibrate them to the Kansanshi operation.

The Kanshanshi plant is fitted with a wide array of sensors

for monitoring its general performance. For example, a
camera-based system is used to measure the particle size
distribution of the feed to the SAG mill, and weightometers
are installed on the belt conveyors of all major units to supply
mass flow data. Flow meters, densitometers, pressure
readers, and level sensors are also used in the flotation
section. On-stream analysers and laboratory analyses provide
assays of key plant process streams for process control and
metallurgical accounting purposes respectively. Figure 1
illustrates a typical signal from a weightometer measuring the
SAG mill load.

Overall, 29 signals are collected from the SABC section
and 49 signals comes from the flotation section. It became
clear that, to produce a useful and flexible model of the plant,
the number of input parameters should be cut down to a
reasonable minimum.

King (2012) described in a comprehensive manner the
most important phenomenological models that can be used in
the description of a wide variety of mineral processing units.
These units include SAG mills, ball mills, hydrocyclones and
flotation, which are all relevant to Kansanshi. A critical
review of the models applicable to each unit reveals that, of
the 78 signals streamed from the Kansanshi sulphide ore
circuit, 13 may be used to model the performance of the plant
with reasonable accuracy. These 13 parameters are listed in
Table II.

By consulting King (2012), the choice of the key
parameters above was also supported by the following
references: Austin et al. (1984), Compan et al. (2015), Hu
(2014), Klimpel (1995), Napier-Munn et al. (1996); Pease et
al. (2006) and Yahyaei et al. (2014).

The work by Compan, Pizarro, and Videla (2015) was
selected to serve as the basis for the development of a
regression model for use in determining the copper recovery
of the Kansanshi sulphide ore circuit, since the Chuquicamata
plant recovers sulphide copper minerals such as chalcocite
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Table I

Primary Crusher Gyratory crusher
Model: Metso 54 – 75
Available power: 450 kW
Open side setting: 125–200 mm
Closed side setting: 90–120 mm

Secondary crusher Nordberg MP800
Available power: 600 kW
Closed side setting: 40–55 mm

Pebble crusher Terex Cedarapids MVP 450
Available power: 315 kW
Closed side setting: 12 mm

Semi-autogenous mill Internal diameter: 9.75 m
Internal belly length: 6.10 m
Centre line length: 8.9 m
Available power: 11.6 MW
Grate discharge design
Speed: 75% of critical (VSD)
Ball filling: 19%
Top-up ball size: 125 mm
80% passing feed size: 75 mm

Ball mill Internal diameter: 6.10 m
Internal belly length: 9.30 m
Centre line length: 10.5 m
Available power: 5.8 MW
Overflow discharge design
Speed: 75% of critical
Ball filling: 28%
Top-up ball size: 50 mm
Average Bond Work index: 9.2 kWh/t



and chalcopyrite, which are also found in the Kansanshi
sulphide ore type. The following model was proposed for the
Chuquicamata (Compan, Pizarro, and Videla 2015):

[1]

where RCu is the final copper recovery after flotation; Cu is
the copper feed grade; Fe and CuS are, respectively, the iron
and copper sulphide feed grades to the plant; Mo, Cp, and Dg,
are the molybdenite, chalcopyrite, and digenite grades in the
ore feed; and Wi and P80 are the work index and product size
of the ore after milling.

A look at Equation [1] shows that the majority of the
input parameters in the Chuquicamata response function are
grades of mineral species in the ore feed. The other
parameters, including the work index Wi and product size
P80, are all physical properties of the ore. No parameter
relating to operating conditions of milling and flotation is
included, although the model should take into consideration
these two processes. This can probably be ascribed to the fact
that the parameters in Equation [1] are among those
monitored on the plant. 

The general problem with empirical models is that they
are developed based on available information. This, in a
sense, tempts one to overlook critical parameters in building
the model; hence the limitationof these models. The
advantages, however, of this type of model offers are
primarily their simple structure, flexibility, and quick
manipulation when estimates are needed, among others.

This brings us to discuss the structure of the empirical
model of recovery response proposed for the Kansanshi
copper sulphide ore circuit. The following equation was
proposed for testing on the Kansanshi data at our disposal:

[2]

where C0 to C9 are the model coefficients that needed to be
determined by the nonlinear regression of the Kansanshi data
collected between June 2016 and May 2017. Thirty percent of
this data was used in the calculation of the model
coefficients, while the remaining 70% served to assess the
predictive ability of the model proposed in Equation [2]. The
outcome of this endeavour is presented in the next section.

The results of the regression analysis are presented in this
section. The adequacy of the model and that of the regressed
coefficients are also discussed. A proposal is made for a
simplified model based on the contribution of each
parameter.

As a starting point, Equation [2] was curve-fitted against
the copper recovery data in the least squares sense. Initial
guesses were allocated to the coefficients C0 to C9 then the
sum of squared differences between the theoretical and actual
copper recovery values was calculated. A computer algorithm
was finally involved to iteratively adjust the values of the
coefficients until the sum of squared differences converged to
a global minimum. Table III summarizes this result, with
each coefficient value allocated its 95% confidence interval.

Figure 2 illustrates the results of the curve-fitting
performed on the recovery data spanning June 2016 to
September 2016. The theoretical and actual time-series
curves are superimposed for the time duration. The
coefficient of determination R2 of Equation [2] was
calculated. This statistic was found to be R2 = 0.557,
meaning that 55.7 % of the data considered can be explained
by Equation [2].

Based on the regressed coefficient values in Table III as
well as their respective confidence intervals at a 95%
significance level, it was decided to set the coefficients C2, C3,
C5 and C6 at to zero. The decision to eliminate these
coefficients was based primarily on their poor level of
accuracy with respect to their average regressed values. By
doing so, Equation [2] was simplified to the following form:

[3]
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Table II

SAG mill throughput Weightometer Q (t/h)
−22 mm feed size fraction Camera W1 (t)
−63 +22 mm feed size fraction Camera W2 (t)
−125 +63 mm feed size fraction Camera W3 (t]
Ball mill load Set point J (t)
Flotation feed flowrate Flowmeter F (m3/h)
Flotation feed density Densitometer Cw (% solids)
Flotation feed grade – total copper On-stream analyser TCu (% TCu)
Flotation feed grade – acid soluble copper Analytical Laboratory AsCu (% AsCu)
Flotation feed grade – acid insoluble copper Analytical Laboratory AiCu (% AiCu)
Bubble velocity Camera v (mm/s)
Air flowrate Flow meter a (m3/h)
Froth level Level sensor f (mm)



It should be noted in Equation [2] that input parameter
Cw (flotation field density) is now absorbed into coefficient
C7. This is because this particular parameter representing
(see Table II) did not vary significantly over the year for
which operation data was collected. Furthermore, for the sake
of simplicity, the lower the number of input parameters, the
better for the model. This, of course, needs to be balanced
with an acceptable level of accuracy within the capabilities of
the various measuring and monitoring instruments used at
the plant. That is why a new exponent parameter k was
introduced around parameter W3 to add flexibility to the
curve-fitting procedure.

With a simplified definition of the empirical model of
recovery response of the Kansanshi copper sulphide circuit, a
new regression analysis was initiated. This time, seven
coefficients were regressed and their uncertainties still
calculated at a significance level of 95%. The outputs from
the curve-fitting algorithm are reported in Table IV.

It will be noted that the parameters in Table IV are more
accurately predicted than those in Table III based their errors
at 95% significance level. In addition to this, when validated

again the data from 1 October 2016 to 31 May 2017, a
striking similarity is evident, as shown in Figure 3. To
confirm this observation, the coefficient of determination R2

of Equation [3] was calculated. This statistic was found to be
R2 = 0.694, indicating that 69.4% of the data considered can
be explained by Equation [3]. Compared with Equation [2]
(coefficient of determination R2 = 0.557) it is clear that
Equation [3] is preferable, especially considering its simple
format.

It is clear that some long negative peaks are not well
reproduced by the model; however, the general trend,
including the slight cyclical nature of the actual copper
recovery data, is followed to an acceptable extent. The other
concern is that the coefficient of determination may require
further improvement. For that to be done, relevant operating
parameters perhaps not yet available or not shortlisted in
Table II should be explored for inclusion into the model.

To further improve on the predictive ability, the inclusion
of the percentage acid-soluble copper (AsCu), the ratio of
acid-insoluble copper to total copper (AiCu/TCu), and the
difference between total copper (TCu) and total copper mean
for the data-set (TCu) into the empirical model was explored.
In doing so, Equation [3] was modified to the following form:
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Table III

C0 70.4 ± 12.1
C1 328 × 10−8 ± 14 × 10−8

C2 −223 × 10−4 ± 87 × 10−4

C3 141 × 10−5 ± 74 × 10−5

C4 0.13 ± 0.02
C5 −0.056 ± 0.032
C6 157 × 10−12 ± 61 × 10−12

C7 12.6 ± 0.2
C8 0.78 ± 0.09
C8 0.25 ± 0.03

Table IV

C0 76.1 ± 8.6
C1 106 × 10−7 ± 9 × 10−7

C4 0.911 ± 12
C7 21.213 ± 0.007
C8 0.076 ± 0.005
C9 0.36 ± 0.03
k 0.5323 ± 0.0034
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[4]

A new regression analysis was performed based on
Equation [4]. This time, 10 coefficients were regressed and
their uncertainties still calculated at a significance level of
95%. The outputs from the curve-fitting algorithm are
reported in Table V.

The result of this analysis was also validated against the
data between 1 June 2016 and 31 May 2017. Here, a
coefficient of determination R2 = 0.904 was noted for
Equation [4]. In addition, when validated again the data
between 1 June 2016 and 31 May 2017, a striking similarity
is evident, as shown in Figure 4. The improved coefficient of
determination R2 = 0.904 simply means that Equation [4]
describes 90.4% of the data well with the remaining 9.6%
being attributed to uncertainties inherent to the plant data
collected as well as the structure of the model. However, an
improvement is noted from R2 = 0.694 for Equation [3] with
a more complex structure for Equation [4].

Finally, empirical models are generally useful and simple
to use while their format is based on the experience of the
researchers involved. One shortcoming, though, is that they
need constant refinement and calibration. Therefore, they
should be used with caution outside the average operating
conditions under which they were developed. More realistic
models are needed for application in wider operating ranges.
Phenomenological models built around the population
balance model (Austin, Klimpel, and Luckie, 1984; King,
2012) are good examples of realistic models of mineral
processing operations. Further work is necessary to produce
such type of a model for the Kansanshi copper sulphide ore
circuit. A simplified version of the anticipated model may
then serve the purpose better than Equations [3] and [4] in a
wider operating range. The drawback may be the complex
format of this type of model and the need to define an
increased number of input parameters. For as long as the
phenomenological model or its simplified version are not
available, the proposed empirical model should be used.

The objective of this research was to develop a predictive
model for copper recovery in the Kansanshi copper sulphide
ore circuit. All available data collected online from the
operation was reviewed to shortlist important input
parameters to the model, and the literature was studied to
determine an initial form of the empirical model.

The model building ensued once only 13 operating
parameters of the circuit were retained; the information from
the signals corresponding to each parameter was then
extracted for the period from 1 June 2016 to 31 May 2017.
This time-series data was curve-fitted using the empirical
model initially proposed and the relevant statistics were
produced in the process. From the statistics, it was clear that
some regressed fitting coefficients added little to the accuracy
of the model. These were eliminated and, consequently, the
empirical model took a simplified format that included only
ten fitting coefficients and seven input parameters. The input
parameters are the copper head grade (TCu), percentage acid-
soluble copper (AsCu), acid-insoluble copper (AiCu) at the
flotation section, the SAG mill throughput, the ball mill load,
and the tonnage of feed material to the SAG mill in the size
fraction −125 +63 mm. The regression analysis revealed that
the simplified empirical model accounts for approximately
90% of the copper recovery data. The significant
improvement in model prediction ability with the inclusion of
acid soluble copper provides strong evidence of the influence
of mineralogy on flotation recovery. The influence of acid-
soluble copper grade on model predictive ability was expected
because soluble copper minerals do not float under sulphide
flotation conditions. This indicated that there is room for
improvement in the model; this may be achieved by the
inclusion of parameters not currently measured or those that
were not shortlisted in the development of the initial model.
Despite some limitations, the model has the potential to serve
the purpose of quickly estimating the expected recovery
under given operating conditions. This timely information
may help make sense of the actual recovery and identify
avenues for corrective action guided by production targets.

Work is currently underway aimed at developing a model
of the behaviour of the Kansanshi copper sulphide ore circuit.
This computer model will be based on a more theoretical
description of unit processes using MODSIM®, a specialized

Table V

C0 27.4
C1 1.301 × 10−5

C4 3.550
C7 1.883
C8 1.521
C9 0.11
C10 62.87
C11 45.1
C12 6.526
k 0.2896
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module simulator for mineral processing operations. This will
become an additional, yet more comprehensive, tool to assist
the process engineers in efficient operation of the plant.

The authors are indebted to the management of Kansanshi
Mining PLC, First Quantum Limited, for permission to
publish this paper. The University of South Africa (UNISA) is
also acknowledged for encouraging the collaborative work
and providing an environment conducive to research.
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