
The problems of non-simultaneous combined
mining by open pit and underground methods
and transition from open pit to underground
mining are among the most important
challenges in mining engineering, and have
been recently considered in many research
investigations. Different researchers have
attempted to solve these problems and
presented solutions based on empirical,
heuristic, and mathematical programming
methods. In these works, the transition
problem has been examined in three modes:
(1) optimizing transition from open pit to
underground mining, (2) determining the
point, depth, or limit of transition from open
pit to underground operation, and (3)
determining the time of transition.

Bakhtavar, Shahriar, and Mirhasani
(2012) reviewed the solutions proposed for the
transition problem, a summary of which is
given in Table I, together with the most recent
solutions. It can be seen from Table I that few
of the solutions have an empirical basis,
ultimately leading to only an estimated
response. The main weaknesses of the
empirical solutions are ignoring the time value
of money, production planning, and
uncertainties.

Most of the solutions for the transition
problem have a heuristic basis and follow a
similar process by use of the cash flow

solution introduced by Nilsson (1982). They
make an economic comparison among
different options, including open pit and
underground mining. Some other heuristic
solutions, such as the algorithms proposed by
Bakhtavar and Shahriar (2007) and Shahriar
(2007) and Bakhtavar, Shahriar, and Oraee
(2008a, 2008b) are based on an economic
comparison of open pit and underground
mining methods at different levels of an ore
deposit. The main drawback of the heuristic
solutions is their complete dependence on the
optimization algorithms of surface and
underground mining. For this reason, they
cannot solve the transition problem
independently. Another deficiency of the
heuristic solutions, excluding the research
presented by Opoku and Musingwini (2013),
is failure to consider uncertainty. This
deficiency leads to the small difference
between their responses and the reality. The
working steps of the solution presented by
Opoku and Musingwini (2013) are mostly
similar to the solution by Visser and Ding
(2007), except that Opoku and Musingwini
emphasized uncertainties during geological
simulation (in kriging) and prepared
production planning and economic models
employing conventional mining software.

Among the solutions for the transition
problem, studies by Bakhtavar, Shahriar, and
Mirhasani (2012), Newman, Yano, and Rubio
(2013), Chung, Topal, and Ghosh (2016), and
MacNeil and Dimitrakopoulos (2017) have a
mathematical basis and are more stable than
others. These methods can be considered a
foundation and then developed or modified to
achieve an optimum solution to the transition
problem, similar to the development of the
optimization models of final pit limits and
production planning.
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Table I



The model by Bakhtavar, Shahriar, and Mirhasani (2012)
started to apply mathematical programming in combined
mining by open pit and underground methods and in solving
the transition problem. It has some deficiencies, such as
failure to consider production planning and net present value
(NPV), presentation on a two-dimensional block model,
limitation in the number of decision variables, and ignoring
uncertainties such as ore grade. Among the important
advantages of this model are its detail-oriented trend (on
blocks with economic value) and its independence from other
pit limits and production planning optimization algorithms.
This model uses binary integer programming to maximize the
profit from combined open pit and underground mining. A
computerized tool was developed based on the model
established by Bakhtavar, Shahriar, and Mirhasani (2012)
for simple applications (Bakhtavar, 2015).

The model introduced by Newman, Yano, and Rubio
(2013) follows a holistic trend based on investigating various
strata of an ore deposit at different levels using network
programming. In this model, which is stated by schematic
networks, the method of determining deposit boundaries in
each stratum was not specified. Using strata instead of blocks
in a block model can reduce the number of decision variables
and investigations; however, this may not lead to an accurate
response compared to blocks. The strata were considered due
to the large size of the deposits with combined open pit and
underground mining potential. In these cases, using
conventional ore blocks would limit problem-solving using
the available solvers and personal computers. Since each
stratum is mined during two or more scheduling periods,
mining sequence and production planning cannot determine
which part of the stratum must be mined in the first place. To
solve this problem, the strata must include ore blocks with a
grade or economic net value. The main weakness of the
network model by Newman, Yano, and Rubio (2013) is
failure to consider uncertainty. This model is primarily based
on maximizing NPV and decision-making based on
production planning, which is a benefit of this model.

An integer programming-based model was developed by
Chung, Topal, and Ghosh (2016) to determine the transition
point from open pit to underground mining in three-
dimensional space. Some strategies for shortening the
solution time were attempted in order to deal with the
problem of a large number of variables. This research focused
on the optimal mining strategy, in addition to the optimal
determination of the transition point from open pit to
underground mining.

MacNeil and Dimitrakopoulos (2017) developed a two-
stage stochastic integer programming model by use of
geological uncertainty and managing technical risk to
determine the transition from open pit to underground
mining. The discounted cash flow values of different
transition depth alternatives are calculated after optimizing
the production schedules of each depth for open pit and
underground operations. The most profitable transition depth
alternative is determined by comparing the sum of both open
pit and underground mining values. This base concept of
making a comparison among a set of transition depth
alternatives is similar to the work by Bakhtavar, Shahriar,
and Oraee (2008a, 2009). The only deficiency of the model is
holistically investigating and solving the transition problem

by use of a two-stage process of open pit and underground
production scheduling.

In the present study, attempts are made to introduce a
stochastic binary integer programming model, which not only
eliminates the deficiencies of other methods but also
incorporates their benefits as far as is possible. Therefore, the
model follows the following objectives:

� Determining the optimal time for transition from open
pit to underground mining based on maximizing NPV

� Searching three-dimensional block models based on a
detail-oriented trend 

� Independence from the software and algorithms of
production planning and pit limit and underground
layout optimization (i.e., independent working)

� Considering ore grade uncertainty in mathematical
planning of the model

� Considering technical and economic criteria
(constraints).

For these purposes, the stochastic model presented by
Gholamnejad, Osanloo, and Khorram (2008) for optimal
long-term production planning for open pits, which was
originally introduced by Rao (1996), is the basis for the
present research.

This research aims to maximize the overall NPV obtained
from combined open pit and underground mining. Thus, in
mathematical modelling, the objective function is defined as
the maximization of the combined NPV resulted from both
open pit and underground operations. To this end, the
following requirements are taken into account.

First, the economic net values of combined open pit and
underground blocks are determined. In the transition
problem, the main objective is to identify levels, and
consequently blocks, extractable by open pit or underground
methods so that an economic comparison is made for each
block and level between open pit and underground methods.
Then, the mining method with a higher NPV is selected as the
superior option. This research uses the concept of the priority
of open pit to underground mining. In this case, the
combined economic value for each block is calculated by
subtracting open pit and underground block net values. This
concept has been used in some solutions for the transition
problem, such as the work by Camus (1992) and Tulp
(1998). Open pit and underground economic net values for
each block are calculated by use of Equations [1] and [2],
respectively. Moreover, according to Equation [3] and by
subtraction of open pit and underground block net values,
combined (subtracted) block net value can be calculated
using Equation [4]. It should be noted that block caving is
the most practicable underground method in the case of non-
simultaneous open-pit and underground mining. In block
caving, ore recovery can usually be close to the open pit
recovery, approaching 100%. Therefore, in Equation [4], ore
recovery (r) is considered to be 100% for both open pit and
underground methods (rop = rug = 1).

[1]
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[2]

[3]

[4]

where
BEVop: Open pit economic net value for each block
P: Unit selling price of metal
CS: Unit selling cost of metal
rop: Total metal recovery in open pit mining
g: Block grade
TO: Total amount of ore in each block
Cop: Unit open pit cost of ore extraction
CW: Unit open pit cost of waste removal
TW: Total amount of waste in each block
BEVug: Underground economic net value for each block
rug: Total metal recovery in underground mining
Cug: Unit underground cost of ore extraction
B: Open pit and underground combined economic net

value for each block.
In Equations [1] to [4], the economic net value of a waste

block is negative, since a waste block imcurs removal cost
without any profit. The NPV resulting from combined open
pit and underground mining is obtained by Equation [5].

[5]

In certainty mode, based on Equations [1] to [5], the
objective function can be defined as Equation [6] in the form
of a programming model using (0-1) integer decision
variables.

All the model variables, parameters, indices, counters,
and indicators are defined in Appendix 1.

[6]

The most important uncertainties should be involved to
minimize the errors of the optimization process and to
achieve the optimal response, especially in specific mining
situations that are greatly influenced by uncertainties.
Simulating a deposit and preparing a geological block model
with block grade estimation are the basis for the optimization
of production planning and mining layout. These simulations
and grade block models, which are constructed using
exploration data, particularly from exploration boreholes,
contain estimation errors. As a result, these errors are
incorporated directly into all the processes based on using
data on grade (geological) block models in optimizing
production planning. Therefore, block grade is randomly
considered with uncertainty in the optimization of production
planning to minimize the impact of grade error resulting from
exploration phase and block model simulation. In this case,
the objective of maximizing NPV is accompanied by
minimizing risks arising from the uncertainty in block grade.

The random grade parameter is imported to the objective
function and the related constraints of the model.
Accordingly, the objective function of maximizing NPV as
given in Equation [6] is randomly formulated in the
following stages.

After applying changes associated with the random
variable to the objective function and constraints, they are
non-linearized. They can be converted into linear mode using
linear approximation methods, or the model can be solved in
the same nonlinear mode. When a parameter is randomly
considered in stochastic programming, some changes are
made to the objective function and constraints. Assuming
that a random variable has a normal distribution, a specific
probability is considered for a constraint, and then the
expected values and the variance are calculated. Given that
the random variable has a normal distribution, the objective
function would also have a normal distribution, and the
expected value and variance would be calculated in the
objective function. In such a case, a new objective function is
defined in two stages: the first stage consists of maximizing
the average of NPV, and the second is minimizing deviation
from the main objective, which is the maximization of NPV.

Now that ore grade is considered as a random variable, a
confidence level is first assumed based on Equation [7] for
the constraint related to the average grade as given in
Equations [8] and [9].

[7]

[8]

[9]

Then, the expected value and variance of a random
variable are calculated. The calculation results for expected
value (average) and variance on the constraint with ore
grade random variable are applied as given in Equations [10]
to [14].

[10]

[11]

[12]

[13]

[14]
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Given that the random variable of ore grade exists in the
objective function, the expected value and variance of the
objective function by the random variable of the ore grade are
calculated by Equations [15] and [16].

[15]

[16]

According to Equation [17], the new objective function
maximizes the average NPV resulting from combined mining
and minimizes the deviation from grade distribution where
optimal production planning is applied only to open pit
mining in the combined block model.

[17]

Equation [18] indicates that values for the expected value
and variance of the objective function are imported to
Equation [17].

[18]

[19]

[20]

Consistent with the long-term production planning model
presented by Gholamnejad, Osanloo, and Khorram (2008),
the following constraints are considered for the problem of
transition from open pit to underground mining.

The average ore grade of materials that are sent to the
processing plant in each period is different, and has upper
and lower bounds, as given in Equations [21] and [22] by
Gholamnejad, Osanloo, and Khorram (2008).

[21]

[22]

The normal distribution function of the ore grade random
variable is converted into a standard normal distribution by
use of Equations [23] and [24].

[23]

[24]

where                       is a standard normal random variable
associated with ore grade which has an expected value
(average) of zero and variance of unity. In this case, St is the
value of a random variable that is true in Equation [25].

[25]

Equation [26] can be derived from Equations [23] and
[25].

[26]

According to Equation [26], the following certain and
nonlinear inequality (Equation [27]) can be fixed. Thus, the
constraint of the problem changes from random and
uncertain mode to certain but nonlinear.

[27]

[28]

Now, the values for the expected value and variance of a
random variable are substituted into Equation [28], and the
grade-related constraints are given by Equations [29] and
[30].

[29]

[30]

Equation [33] shows the constraint related to the lower
bound of the grade blending constraint. The values of St and
S 't are calculated by taking the integral of standard normal
distribution function as given in Equations [31] and [32].

[31]

[32]
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The tonnage of ore and waste materials mined in one period
cannot exceed the maximum capacity or be less than a
minimum capacity of equipment available in that period.
Accordingly, the constraints of the maximum and minimum
capacity of equipment can be formulated as Equations [33]
and [34].

[33]

[34]

All blocks above the desired block must be extracted so that,
for the stability of the pit wall, a cone with at least three
blocks would comprise the desired block. This constraint also
indicates that all rows of the pit limit should be assumed
continuous in mining. This constraint is mathematically
defined by Equation [35].

[35]

According to the constraints of reserve extraction, any block
in the block model can be extracted only once, in one period
and using only one method (open pit or underground
mining). This constraint is mathematically modelled using
Equation [36].

[36]

The objective function of the model (Equation [18]) and the
constraints of the upper and lower bounds of grade
(Equations [29] and [30]) are certain but nonlinear. They are
linearized by use of a linear approximation method.

If xi and xj are assumed as two interdependent random
variables, a parameter can be defined as a correlation
coefficient between these two variables as given in Equation
[37].

[37]

Since the correlation coefficient is between 1 and -1,
Equation [38] can be applied.

[38]

Therefore, the maximum amount of covariance can be
equal to the product of the variance of two variables. In

Equations [18], [29], and [30], instead of covariance, the
product of the variance of two variables is imported, yielding
Equation [39].

[39]

Now, the certain and nonlinear equations are linearized
and rewritten as in Equations [40] and [41].

[40]

[41]

In Equation [29], changes are applied as Equation [42].

[42]

According to Equation [18], this can be written as:

[43]

[44]

These values are substituted in the objective function,
which is written as Equation [45].

[45]

Using the linear approximation method, the objective
function and the constraints for grade blending become
linear. Finally, the model for determining the transition time
in non-simultaneous combined mining is formulated
employing ore grade uncertainty based on binary (zero and
unity) integer programming as follows: 

�
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s.t.

An iron ore deposit with potential for mining by a
combination of open pit and block caving is used to apply the
introduced stochastic programming model. The size of the ore
deposit was estimated at approximately 160 Mt at an average
grade of 51%. According to the mine design parameters, the
height of the benches in the open pit part was to be 15 m. It
should be noted that in addition to block caving, sublevel
caving can also be used as an alternative the case of non-
simultaneous underground and open pit mining.

A geological model of the iron ore deposit that includes
blocks with Fe grades is first created. The model consisted of
11 023 blocks with an average grade of 51%. The block size
is 15×15×15 m. Table II summarizes some essential technical
and economic parameters for applying the presented
stochastic model in the non-simultaneous case of open pit
and block caving mining. The grade value of each block that
resulted from the kriging-based geostatistical process is
imported to the stochastic model. A normal distribution
function is assumed by the mean (kriging estimate) and
variance (estimation variance) values of the grade parameter
taken from the kriging process. The normal distribution
function of the ore grade random variable was also
considered by Gholamnejad, Osanloo, and Khorram (2008)
and Halatchev and Lever (2005) for simplifying the
calculation procedures.

Then, the stochastic mathematical model of the studied
case with 22046 decision variables is solved in approximately
55 minutes, and the optimal solution obtained. As shown in
Figure 1, the results indicated that the optimal transition time
is when the pit depth reaches the 1765 m level in the case of
non-simultaneous combined open pit and block caving
mining. According to the optimal transition time, a total NPV
of $5159.7 million is determined.  In the optimal case, the
iron ore deposit should be mined by open pit to the 1765 m
level, and the rest of the ore deposit between levels 1765 m
and 1630 m by block caving.

It is noteworthy that the determination of the transition
time from open pit to underground mining is a very complex
multi-attribute decision-making (MADM) process.
Mathematical modelling of the transition problem based on
the MADM concepts is very complicated, especially in the
case of a detail-oriented trend as was considered in this
research by searching for blocks on a block model with
combinational economic values. The current research focused
only on the technical and economic parameters (attributes) to
avoid the complexity of modelling the transition problem as a
multi-attribute system.

The transition problem is similar to other mining
problems based on strategic planning and asset management,
which are long-term processes. Komljenovic, Abdul-Nour,
and Popovic (2015) explained that the strategic planning and
asset management models in mining projects should
incorporate all related economic, operational, technical,
engineering, organizational, natural, and other important
factors in a systematic manner. The impacts of uncertainties
and operational complexities should also be considered.
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Table II

Processed ore price 69 Annual 355
($ per ton) working days
Open pit stripping cost 1.5 Processing 80
($ per ton) recovery (%)
Open pit mining cost 1.75 Open pit 100
($ per ton) recovery (%)
Open pit capital cost 109 Underground 90
(million $) recovery (%)
Block caving cost 4.25 Discount rate (%) 20
($ per ton)
Underground capital cost 430 Maximum open pit 8 000 000
(million $) mining capacity (t/a)
Processing cost 8 Maximum underground 8 000 000
($ per ton) mining capacity (t/a)
Additional costs ($ per ton) 4.5 Mine life (years) 20
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Accordingly, mining problems and challenges are quite
complex with a multidimensional space because of major
uncertainties arising through the complexity of the system.
The traditional models in strategic planning, asset
management, and decision-making in the case of mining
problems have some limitations which make it difficult to
deal with the complexities adequately. For this reason, many
mining organizations have employed the strategic planning
and management models that decrease uncertainties to
increase the overall efficiency of the system. In this case, the
new approaches are required to model and analyse mining
problems as complex adaptive systems (Komljenovic, Abdul-
Nour, and Popovic, 2015).

A mathematical model was presented utilizing open pit long-
term production planning and the stochastic effect of ore
grade to determine the optimal transition time from open pit
to underground mining. The objective function of the model
is based on the maximization of NPV in the case of non-
simultaneous combined open pit and underground mining.
The most important constraints are developed for the non-
simultaneous combined mining based on open pit long-term
production planning. A database from an iron ore deposit of
about 160 Mt was used to implement the model in detail. The
deposit is suitable for mining by a combination of open pit
and block caving. The proposed model was developed and
solved considering the essential technical and economic data
for the mining system. The results indicate that a total NPV of
$ 5159.7 million is obtained based on the 1765 m level being
selected as the optimal level for the transition from open pit
to block caving.
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i: Index for blocks (i=1,2,…,N)
N: Total number of blocks
t: Index for planning period (t=1,2,…,T)
T: Total number of planning periods
d: Discount rate
xi

t: A binary integer variable; 1, if block i to be
planned for extraction, and 0, otherwise

Toi: Total amount of ore in block i to be extracted in
period t

Twi: Total amount of waste in block i to be removed
in period t

Copi: Unit open pit cost of ore extraction for block i
CWi: Unit open pit cost of waste removal for block i
Cugi: Unit underground cost of ore extraction for block

i
Pt: Unit selling price of metal in period t
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CS
t: Unit selling cost of metal in period t

ropi: Total metal recovery of block i using open pit
rugi: Total metal recovery of block i using

underground mining
Qt

max: Maximum capacity of the available equipment in
period t

Q t
min: Minimum capacity of the available equipment in

period t
a: The total number of blocks overlaying block i in

period t

Ci
t: NPV resulting from combined openpit and

underground mining of block i in period t

t: A confidence level in the form of the least
probability of fulfilling the demand in period t

g~i: Grade of block i, which is a random variable

E(g~i): Expected value of the random variable g~i

var(g~i): Variance estimation of the random variable 
g~i

cov(g~t
i, g

~t
j ): Covariance between g~i and g~j     �
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