
A mining project starts with an exploration
stage that defines the location of the orebody
and its properties that help to develop the
geological block model. The geological block
model can then be converted into an economic
block model by including economic parameters
such as mineral price and mining and
processing cost. Later, the determination of the
best possible mining strategy is emphasized.

The strategy for mining method selection
plays an important role as it will directly affect
the profit of the operation. Therefore, at this
stage, the question is often ’Is the optimal
mining method by open pit (OP), underground
(UG) or combination of both?’ (Topal, 2008).
Globally, shallow deposits are generally mined
by the OP method as it is economically
superior to most UG mining methods with
respect to production rate, dilution, safety, and
other technical issues. However, OP mining is
fairly sensitive to the mining depth because of
haulage cost; thus, UG mining is usually
applied for deep deposits.  

Some shallow deposits extend vertically to
considerable depth and thus have the potential
to make the transition from OP to UG mining.
Combining the OP and UG mining methods is
referred to as combination mining. Worldwide,

there are a few mines that have the potential
to make the transition, or the transition has
already been made, such as Kanowna Bell
Western Australia, Chuquicamata in Chile,
Grasberg in Indonesia, and Sunrise Dam in
Western Australia.

The deposits that have the potential to
make the transition from OP to UG will usually
confront the ‘transition problem’. In the
combination mining method, ‘transition point’
refers to the point at which the decision has to
be taken whether to (1) extend the pit or (2)
switch from OP to UG. The determination of
the optimum transition point is the ‘transition
problem’. The general view of the transition
problem is illustrated in Figure 1.

In the current traditional approach to
combined mining, the ultimate pit boundary
will be determined and pit design will be
accomplished as the first step. At this stage,
the ultimate pit limit can be determined
optimally by using algorithms such as the
Lerchs-Grossman (LG) algorithm (Lerchs and
Grossman, 1964) or maximum flow-based
algorithms e.g., pseudoflow algorithm
(Hochbaum and Chen, 2000). The UG mine
optimization and design will be started after
the standard ultimate pit limit. However,
according to Fuentes (2004), if the economic
potential associated with the UG resources is
taken into account, the final pit can be signifi-
cantly diminished as shown in Figure 2.
Therefore, it is essential to consider both OP
and UG mining potential simultaneously, in
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order to maximize the project profit. In this paper we propose
a new mathematical model in order to not only determine
optimal transition point in three-dimensional space, but also
the optimal mining strategy. 

We firstly review the relevant literature to provide the
context for the transition problem. The methodology used to
formulate the transition problem and the formulation of the
proposed integer programming (IP) model which optimizes
the transition problem is then presented. The application of
the proposed model in a two-dimensional (2D) case study is
then illustrated, followed by a three-dimensional (3D)
implementation along with strategies to reduce the computa-
tional size of the model. The paper concludes with a summary
of the research findings and recommendations for future
work.

Several research studies have been carried out previously to
solve the transition problem. The first method was introduced
by Soderberg and Rausch (1968), and involves the break-
even cost differential between two mining methods as shown
in the following formula: 

This method emphasizes the relationship between the
mining costs of 1 t of ore in both OP and UG compared to the
waste removal cost. For instance, if the stripping ratio for any
part of the deposit is less than the indicated stripping ratio;
mining should be by OP. The shortcoming of this method is
that it does not consider the cost of leaving a crown pillar and
UG development work.

A methodology based upon cash flow was introduced by
Nilsson (1982). This method takes the variations in the
economic situation into consideration, including the impact of
stripping ratio, interest rate, mining cost, and other
components (Nilsson 1992, 1997). This is a trial-and-error
method which is mainly based on the experience of the mine
planner, and does not include any optimization strategy.
Furthermore, the location of the crown pillar and the timing
of transition are unknown.

Camus (1992) presented an innovative way to estimate
block economic value (BEV) for block i which includes the
profit on OP, UG, and stripping ratio as shown in the formula:  

By using the traditional ultimate pit optimization
methods, the pit boundary for a combined mining method can
be determined. This approach is advantageous in large-scale
case studies as it uses only a single block economic model,
which reduces the size of the problem by 50%. However, this
method has difficulty in crown pillar location and also takes
no consideration of the UG mining process.

A heuristic approach has been used to solve the transition
problem (Bakhtavar and Shahriar, 2007). In this method, the
optimal pit limit is solved by using the Korabov algorithm
and the blocks in the final pit level are divided into small
sub-blocks and compared with the UG block values. These
steps can help to define the transition depth. In addition,
Abdollahisharif et al. (2008) also introduced a heuristic
approach that outlines all the possible mining layout options
and compares the profit generated by each option. A case
study that employed this method was presented by Bakhtavar
et al. (2010). The disadvantage of the heuristic approach is
that the result is not optimal due to the nature of the
methodology.

Mathematical modelling techniques are also used to solve
the transition problem. For example, Bakhtavar et al. (2012)
developed the binary integer programming model to define
the optimal transition depth. The objective of the model is to
maximize the overall profit by taking into account both the
technical and the economic aspects of OP and UG mining
methods. However, there are flaws in this mathematical
model such as: (1) there is no consideration of an OP and
crown pillar contiguous row of blocks, which will result in the
location of the crown pillar away from bottom of the pit, and
(2) the model is difficult to apply in real case studies due to
its scale problem and computational intensity. Lastly, the
model is formulated in 2D.  

Opoku and Musingwini (2013) presented a structured
approach to address the indicators to guide the decision-
making process for the transition problem. The method
chooses the most significant qualitative factors for the
transition problem and incorporates them. Case scenarios are
considered in the study for evaluation purposes. In the
evaluation process, a comparison technique is utilized to
overcome the transition problem. The authors introduced the
term ‘transition indicator’ to guide the decision-making
process. However, this approach depends heavily on the
predetermined transition indicators and is not a true
optimization process.
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Newman et al. (2013) evaluated the transition problem
via a series of small longest-path problems with the objective
of maximizing the profit, which is the discounted gross
margin from the mined level minus the discounted UG
development cost. The main objectives of this method are
which level to mine by OP or UG and when to make the
transition, as well as when to start UG mine development.
The drawback of this approach is the scheduling that is
developed per level/stratum is not practical.  

Carli and Peroni (2014) proposed a preliminary analysis
for the transition problem. The approach firstly generates the
optimum ultimate pit by using the cut-off grade for OP
mining and then estimates the UG resources (after pit
exhaustion) considering the cut-off grade for UG mining.
This approach considers OP and UG separately, which is not
appropriate; as mentioned above, OP, UG, and crown pillar
designs need to be considered simultaneously. 

Dagdelen and Traore (2014) presented an iterative
approach to determine the transition depth through an
analysis of production scheduling for both OP and UG. The
method starts the iteration process using the Whittle software
to generate an ultimate pit boundary. Studio 5 and EPS
software from CAE are then used to generate the stope
layouts for UG mining, and OptiMine scheduler for the life-
of-mine production schedule. Even though, the method aims
to answer the questions ‘where’ and ’when’ to transit from
OP to UG, the methodology has some drawbacks. For
example, it is based on an iterative process that does not
generate an optimal solution; it assumes that transition will
occur only after the ultimate pit boundary, which is not the
case in most applications; and the crown pillar is unlikely to
be at the optimum location. 

Morales et al. (2015) assessed the optimal economic
envelope for the combination mining method by creating a
mathematical model. In order to solve the model, an
algorithm that parameterizes the problem with regard to the
location of the crown pillar and production level is developed.
The framework of the algorithm uses the ultimate pit
computations to search both the OP and UG mine plans. The
iterative calculations are used to compute the different
combinations of the OP mining level, UG mining level, and
crown pillar location by placing the crown pillar at different
locations. Evaluation of the results generated by different
combinations will indicate the optimal transition envelope.
The only criticisms of this method are that it is an iterative
process, and also it does not consider the UG mine design,
which leads to the impracticality of the transition envelope.

As many OP operations are approaching the final pit limit
and/or have the potential to make the transition to UG
mining, a competent method to handle the transition problem
is required to maximize the project value and the resource
utilization. This paper presents a new mathematical model
that defines and resolves the transition problem for the
combination mining method. Furthermore, the proposed
model also helps to determine the best possible mining option
for the deposit. The objective of the proposed model is to
maximize the project’s undiscounted profit among the
options of (a) OP mining only, (b) UG mining only, or (c) a
combination of OP and UG mining. Furthermore, if the model
suggests combination mining as the preferred method, it will
further define the mining layouts for OP and UG, including
the position of the crown pillar. 

The aim of a mathematical model is to represent a real-world
problem through mathematical formulations. As the demand
for mine planning optimization techniques increases in line
with the number of shallow deposits approaching the
designed final pit, the establishment of a mathematical model
for the transition problem becomes more and more
significant. IP, which is a well-recognized optimization
technique in operation research, has the ability to find the
optimal solution for the complex problem. Therefore, a special
version of IP, namely the binary integer programming
technique, is utilized in this paper to solve the transition
problem optimally.

The IP technique is a branch of linear programming (LP).
Generally, a LP problem is built with an objective function, a
set of linear constraints, and a set of non-negativity
restrictions which are shown as follows:

where z represents the objective function, which aims to
maximize the profits or minimize the costs, xi represents the
decision variable for which values are to be determined by
the model, aij and cj are the constant coefficients representing
the nature of the problem, and bi is the right-hand side
constant representing the availability of the resource for a
constraint. Generally, an IP problem is a subcategory of an LP
problem in which all the decision variables must be integer
values as they represent entities that cannot be divided, such
as people or machinery. A binary IP model is formed to
capture the binary decisions ‘yes’ (0) and ‘no’ (1) such as if
the block needs to be mined or not. Therefore, it is formed as
a decision-making process, and 0 and 1 will be attributed to a
decision of not extracting and extracting, respectively. 

i, i Block reference name for OP mining
j, j Stope reference name for UG mining
k, k Mining level
m Mining method; = 1 for OP mining and 2 for UG

mining

Mi Set of all blocks i in block model for OP mining
Nj Set of all possible stopes j in block model for UG

mining
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Oi Set of overlying blocks should be removed in order to
mine block i

Bj Set of the all stopes that share common blocks with
stope j

LOk Set of all OP blocks on level k
LUk Set of all UG stopes on level k

Ci The undiscounted profit to be generated by mining i
Sj The undiscounted profit to be generated by mining j
A Number of overlying blocks that need to be removed in

order to mine ore block i
Number of rows that should successively remain as
crown pillar

Subject to:

OP slope constraints

[1]

UG stope design constraints

[2]

Reserve restriction and ‘one mining method for each
level’ constraints

[3]

[4]

[5]

Crown pillar location constraints

[6]

[7]

Non-negativity and integer constraints
[8]

The objective function is formulated to maximize the
profit gained through OP and UG mining operations. Ci and Si

are the constants that represent the undiscounted profit of OP
and UG mining, respectively. These values will associate with
one decision variable from either OP (xi or UG yi to form the
equation representing the objective function.

The constraint [1] is established to hold the OP slope
restriction. It forces all the overlying blocks to be mined in
order to extract a given block. Conventionally, a 45-degree
slope angle is considered. Therefore, in a three-dimensional
case, it can be 1 to 5 or 1 to 9, which means that in order to
mine an ore block, 5 or 9 overlying blocks will need to be
removed. 

Constraint [2] ensures that there is no overlapping stope
is the final stope layout – only one stope can be removed
from all possible stopes which share at least one common
block. For further explanation, if the stope j which is formed
by blocks 1–8 is selected to be mined, none of these blocks
can be part of another mineable stope to avoid overlapping in
the final stope layout. 

Constraints [3], [4], and [5] are formed for the purpose
of reserve restriction and to ensure that only one mining
method (OP or UG) is employed for each row. Constraints [3]
and [4] enforce that if a block or a stope is selected to be
mined, the entire row will be mined through the same mining
method. As an example, if block i located at level k is
removed with OP mining, the entire k level will be mined
through OP mining, and if one of the blocks within the
mineable stope j located at level k is mined with UG mining,
the entire k level will be mined through UG only. Constraint
[5] is used to ensure that each row can be mined either
through OP or UG or left as crown pillar. 

The crown pillar plays an important role in the transition
problem as it is used for strata control and to prevent inrush
of water. Therefore, a good crown pillar design will reduce or
even eliminate most of the geotechnical issues, particularly in
the combination mining method. Constraint [6] is used to
make sure that an appropriate number of rows remain as
crown pillar, as dictated by the geotechnical requirements of
the deposit. It also ensures that the crown pillar is located
between the UG layout and final pit limit. 

Furthermore, constraint [7] is structured to guarantee
that if the whole deposit is mined through the UG method, an
adequate thickness of roof remains. 

Constraint [8] ensures non-negativity and integer nature
of the variables, as required. 

In order to demonstrate the validation of the proposed IP
formulation, a 2D hypothetical block model has been
developed and utilized. This section discusses the results
generated by the model and compares the results of the
combination mining method and single mining method, as
well as the traditional transition approach. The IP model and
its data file were written using Microsoft Excel VBA (2010)
programming code. IBM CPLEX ILOG Corp. (2013) was used
to solve the optimization model on a standard office computer
(Dell OPTIPLEX 9020 with Intel Core i7 3.40 GHz CPU and 8
GB installed RAM). 

The 2D hypothetical deposit containing 204 blocks with a
size of 20 x 20 m and a stope size of 2 x 2 was used. The

�

804 VOLUME 116     



BEVs of both OP and UG have been calculated and are shown
in Figure 3 and Figure 4 respectively.

For the 2D case study, the number of decision variables
and constraints required to solve the proposed model is 444
and 841 respectively. The solution time for this case is less
than a minute with 0% gap. As can be seen from Figure 5,
the model recommends that levels 1 to 5 should be mined
through OP, two levels below the pit will be reserved as a
crown pillar, and the remaining levels will employ UG mining.
Therefore, the optimal transition depth is 80 m. According to
Figure 6, all the constraints included in the model are
satisfied. Thus, the validity of the model has successfully
been verified through the 2D hypothetical case.

Furthermore, three other mining strategies have been
considered: (1) OP mining only, (2) UG mining only, and (3)
the traditional approach which utilizes OP mining until the
ultimate pit boundary is determined via LG, then switches to
UG mining. The results generated by these mining strategies
are shown in Figure 6. 

The result generated by each mining strategy is shown in
Table I. It demonstrates that by using the proposed IP model,
the profit generated by the 2D hypothetical case study can
maximize the undiscounted profit up to 186 units. The
proposed method has successfully improved the
undiscounted profit by more than 30% for the traditional
approach, and more than 75% and 84% for UG mining and
OP mining respectively.

The proposed IP model is applied to a gold deposit in 3D
consisting of 83 025 blocks with average grade of 1 g/t. The
block size is 20 × 20 × 20 m and each stope size consists of 2
× 2 × 2 blocks totalling 8 blocks. Figure 7 presents the grade
distribution of the resource model.

The computational time required to obtain an optimized
solution depends heavily on the decision variables; as the
number of variables increases, the solution time increases
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New IP model 186
Traditional transition from OP to UG approach 142
UG mining method only 106
OP mining method only 101
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exponentially. Therefore, in order to keep the solution time
reasonable, reduction of the problem size is crucial. 

For the 3D case study, 166 173 decision variables and
332 183 constraints are required to formulate the problem to
obtain the optimal solution, which requires approximately
34.5 hours. Therefore, some strategies are suggested in the
next section to reduce the solution time while maintaining
optimality of the results. 

The IP technique has been recognized as the method that has
the potential to optimally solve real case problems; however,
it requires a large number of variables and constraints to
formulate the large-scale models. Furthermore, the
magnitude of the variables can increase substantially when
the stochastic models are considered (Groeneveld and Topal,
2011). It may, in some instances, preclude obtaining an
optimal solution considering today’s computing power. In
order to overcome the deficiencies of the IP model, some
tactics have been employed to keep the number of variables
at the minimum level. With the assistance of these tactics, the
efficiency of the proposed model can be maintained and it will
be able to generate the optimal solution that satisfies the
model integrity.  The main techniques applied in the proposed
model are focused on UG mine design and optimization as
follows.

� Stope-based modelling is introduced instead of block-
based modelling, as shown in Figure 8. The idea, which
was proposed by Little and Topal (2011), is an
innovative way to reduce the number of variables in
the optimization model. For instance, instead of
considering eight decision variables in 2 x 2 x 2 stope
design, only one variable is considered for each stope,
which represents eight blocks. The naming of the stope
is  X (first block coordinate) / (last block coordinate);
using Figure 8 as an example, the stope is referenced
as X (1,1,1)/(2,2,2)

� The predetermination of the positive value stope
strategy is also utilized. This determines all the positive
stopes in the prior stage of the mathematical model for
UG mining. This strategy successfully reduces the
variables in the proposed model by taking only the
positive stopes into consideration and removing all the
unprofitable stopes, which shortens the solution time
(Little et al., 2013). This strategy provides the
optimality of the proposed model by considering all the
positive stopes and discarding the stopes formed by

waste (meaningless variables) in the model.

Gap is often represented as x% which means that the
feasible solution is to be within x% optimality. To solve
large-scale models, it is usually thought that a proved
optimum is unlikely to be obtained within a reasonable
amount of computational time. Thus, a gap (x%) can be
chosen to reduce the solution times. 

As many hours are required for obtaining an optimal solution
of a larger model, the strategies discussed in the previous
section have been adopted for the purpose of reduction the
scale of the problem and solution time. 

1. A stope-based mathematical model is used for UG
mine planning and optimization. This approach has
reduced the number of constraints drastically by one-
eighth

2. A pre-processing step to determine the qualified stope
has been included. This has successfully excluded all
the non-profitable stopes and reduced the variables in
the mathematical model. In the 3D case study, the
mathematical model for UG mine optimization has 86
562 blocks. The process of obtaining the positive
stopes takes approximately 1 hour, with 2910 positive
stopes obtained. This strategy helps to reduce the 86
562 UG variables to 2910 variables in the proposed IP
model. The profitable stopes thus determined will be
substituted into the proposed IP model.

3. Often, an improvement of 1% gap will take quite a lot
of time but may not improve the optimal result.
Therefore, a 5% gap is used in this paper.

The whole process for solving the transition problem 
and associated size reduction strategies is demonstrated in
Figure 9. Firstly, the block economic model (BEM) of both OP
and UG mining is established. Then, the size reduction
strategies are implemented:

�
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1. Find all the possible stopes in the UG BEV
2. Obtain all the profitable stopes out of all possible

stopes.

Then, by substituting the outcome from the pre-handling
stope design and optimization step, and the OP’s BEM into
the proposed model, the IP model for the transition problem
is formulated. The model is solved by using one of the
commercially available solvers, in this case CPLEX. CPLEX is
used to solve the IP model to find optimal transition depth
that creates the maximum profit for the project.

By employing all the suggested strategies, the decision
variables required to solve the 3D case study have
successfully been reduced from 166 173 to 86 058. The
optimal result with less than 5% gap is obtained in approxi-
mately 2.5 hours with an $8.813 million undiscounted profit.
The result obtained by the proposed model is compared with
the result from other mining strategies in Table II. The result
generated by the proposed model provides a much higher
undiscounted profit compared to any other options. 

Currently, mines that have the potential to make the
transition mostly exercise the traditional approach – obtain
the optimal pit limit first and observe the transition later.
However, the traditional approach may not generate the
maximum profit for the operation. This can be observed from
the result presented in Table II; the proposed model generated
approximately 5% more undiscounted profit than the UG
mining method only, and 50% and 144% better than the
traditional approach and OP mining method, respectively.
Therefore, in order to maximize the value of the operation, it
is essential to consider OP and UG mining methods simulta-
neously.

Furthermore, as indicated previously, the proposed model
gives guidance for mining strategy selection by means of the
maximized profit generated by the deposit through OP, UG,
or combination mining strategy. Table II shows that UG
mining results in a better undiscounted profit than OP
mining, while the traditional approach also does not achieve
as much as UG mining. Figure 2 illustrates the resource split
for different mining strategies. It shows that there is a
proportion of the resource to be left as the crown pillar or
mined by UG methods in order to generate the maximized
profit. 

Figure 10 presents the result generated by the model for
different mining strategies. It recommends that the first seven
levels should be mined by OP, and then two levels left for the
crown pillar followed by UG mining starting from level 10

and ceasing at level 41. The optimal transition point is at
level 7 and the transition depth is 140 m – 7 (levels) x 20 m. 

For the 3D case study, to obtain the optimal solution for
the transition problem, the process presented in Figure 9 was
followed. The whole process took approximately 3.5 hours (1
hour for UG optimization plus 2.5 hours to solve the new IP
model) to generate the optimal solution for the transition
problem, which is a significant improvement as it is a
reduction of approximately 90% on the initial computation
time (34.5 hours). Consequently, these strategies help to
reduce the variables handling in the proposed IP model and
improve the solution time drastically for a large-scale
implementation. 

Over the years, the optimization of the transition from OP to
UG operation has become a significant issue and created a
new challenge for the mine design process. A new IP model is
proposed to provide a tool to solve the transition problem,
which is able to maximize the profit gained from the
operation within a reasonable solution time. The framework
of the proposed model is on a 3D basis. It uses the block
economic values as the coefficients in the objective function
associated with a set of constraints for OP mining, UG stope
mining, mining method, and reserve restriction.

A hypothetical 2D model was generated and utilized as
the inputs to the proposed model to demonstrate the validity
of the model. The result generated by the proposed model –
combination mining method ($186) was compared with the
results from other considered mining methods, which
included the traditional transition approach ($146), UG
mining method only ($106), and OP mining method only
($101). This showed that in the hypothetical case study, the
combination mining method would generate the maximum
profit for the operation. It also proved that it is essential to
consider both OP and UG simultaneously.  

Table II

New IP model 8.813
UG mining method only 8.397
Traditional approach 5.867
OP mining method only 3.603
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The 3D case study, which had 83 025 blocks, required
roughly 27.5 hours to solve. It was shown that an increase in
the number of decision variables will increase the solution
time exponentially. Therefore, stope reference and pre-
handling stope design and optimization strategies are
employed to reduce the number of decision variables required
for the proposed model. The solution time for the IP model,
which employed the proposed strategies, was reduced to 3.5
hours. The 3D case study generated approximately $8.813
million undiscounted profit with a 5% gap, with an optimal
transition depth of 140 m. This is approximately 50% higher
than the undiscounted profit generated by the traditional
approach to the transition problem. Furthermore, the
approach proposed in this paper is equally effective in both
greenfield and brownfield projects. 

Although this research has demonstrated that IP
modelling is an effective technique for solving the transition
problem, there is a need to improve the practicality and
performance of the current model. Further research is
underway that focuses on the timing of the transition to
maximize the NPV of the project, as well as methodologies to
reduce the solution time further. Future research will also
study the effect of the uncertainties involved in mining
projects that affects the transition points. Changes in
uncertain variables such as commodity price, operating cost,
and geological uncertainty will influence the transition point
directly. For instance, grade uncertainty has a great impact on
the determination of the transition point (Chung et al., 2015). 
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