
Uniform conditioning (UC) is a nonlinear
estimation technique that estimates the
conditional distribution of metal and tonnage
above cut-off within a mining panel. It does
not directly estimate grade, although grade is a
typical outcome from the estimated metal-
tonnage distribution or the results produced by
localized uniform conditioning (LUC). UC
results are typically presented as a recoverable
resource above multiple cut-off grades. The
advantage of UC is that it can be used on
widely spaced data, across domains that are
not strictly stationary, provided that there is
sufficient data for a conditionally unbiased
estimate of the panel mean grade (Rivoirard,
1994). 

Previous studies where UC has been
applied to porphyry copper deposits (Deraisme
et al., 2008; Deraisme and Assibey-Bonsu,
2011; Millad and Zammit, 2014) show the
application of the method to normal grade

distributions. Additional studies have applied
this approach to gold deposits (Assibey-
Bonsu, 1998; Humphreys, 1998) and an iron
ore deposit (De-Vitry et al., 2007), indicating
that the method is applicable on skew,
lognormal distributions. While UC has been
practically applied to different types of deposit,
it is not known how well UC predicts actual
grades for the underlying grade distribution.

This paper discusses the UC estimation
method as well as the popular add-on, LUC,
presented by Abzalov (2006). A case study is
presented that compares UC and LUC estimates
of two hypothetical data-sets, referred to
herein as scenario 1 and scenario 2. Scenario 1
is a normally distributed grade distribution
and scenario 2 is a skew, lognormally
distributed grade distribution, both of which
are compared against the simulated
realizations that represent the actual grades. 

The conditions found in the two data-sets
are similar to those found in naturally
occurring mineral deposits. The aim of this
investigation is to determine the underlying
conditions of the grade distribution that
produces favourable results when applying UC,
and subsequently LUC, to such data-sets.

The following section describes a UC with LUC
workflow, which follows the process outlined
in Figure 1.

This initial part of the UC workflow is to
prepare and carry out exploratory data
analyses, including histograms, to understand
the sample grade distribution and variability in
the deposit. The data must be appropriately
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declustered, so that the normal score transforms of the grades
are an accurate representation of the grade distribution. This
is important for the Gaussian anamorphosis function (to be
discussed later), and failure to correctly complete this will
affect the results of the UC estimate. 

As the discrete Gaussian model (DGM) for change of support
is used for UC, the data must be transformed to the
equivalent Gaussian (or normal score) values using
declustered weights. This is performed by transforming the
cumulative distribution frequency (CDF) of the original
grades to a Gaussian probability CDF, on a percentile to
percentile basis for the entire data-set. Figure 2 shows the
CDF of a lognormal grade distribution (data from scenario 2)
on the left, with the green and red lines showing percentile
paired mapping of values to the equivalent normal score
values on the right.

The DGM relies upon the assumption of bivariate
Gaussianity of the transformed grades (Rivoirard, 1994).
Bivariate Gaussianity means that any linear combination of
the Gaussian transformed data is also Gaussian. Several tests
exist to determine if the transformed data conforms to such
conditions, and is therefore suitable for use with the DGM.
Schofield (1988), Rivoirard (1994) and Humphreys (1998)
give practical examples on how these tests may be run.  

The quality of the panel estimate determines the success of
the UC estimation (Rivoirard, 1994). A panel estimate should
be conditionally unbiased (Rivoirard, 1994; De-Vitry et al.,
2007), so that the UC conditional grade distribution will be
an accurate estimate of the actual grade distribution. The
panel estimate can be carried out using any linear estimator,
but conventionally ordinary kriging (OK) is used. 

The panel size should be chosen relative to the spacing of
the sample data. De Vitry et al. (2007) suggested that the
panel should be as small as possible to ensure an accurate
estimate, but large enough for minimal conditional bias of the
estimate. The number of smallest mining units (SMU) within
the panel is linked to the resolution of the grade-tonnage
relationship, as the number of SMU discretizes the grade-
tonnage curve of the panel (Harley and Assibey-Bonsu,
2007).

The DGM can be used to derive the marginal histograms at
different supports. The Gaussian anamorphosis function is
modelled by a set of Hermite polynomials, weighted with an
accompanying set of Hermite coefficients. A full description
of Hermite polynomials and how these may be calculated is
given by Rivoirard (1994). 

A point and fitted model anamorphosis function for a
normal and lognormal distribution are shown in Figure 3.
The anamorphosis function for the lognormal distribution is
constructed from the normal score data, by plotting pairs of
grade and Gaussian transformed grade values.
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The Hermite polynomials are functions of the standard
Gaussian distribution, and therefore they express
probabilities and have the properties of a standard Gaussian
distribution (data is symmetrically distributed around the
mean value of zero, and has a unit variance). An additional
property (see Table I) shows the variance of the grade Z(x)
expressed by the sum of Hermite coefficients, excluding the
0th, which describes the mean. 

The number of Hermite coefficients used to fit the
anamorphosis model can vary, and the optimal number
depends on the how well the polynomial set fits the
underlying distribution. Neufeld (2005) recommends using
less than 100 coefficients, although 20 to 30 coefficients are
usually sufficient.

The variance of grades depends on the support that the
grade represents, and a change-of-support model, like the
DGM, is used to predict the distribution of grade at different
supports. Grades at a point support have a higher variance
than grades of SMU, which similarly have a higher variance
than grades of panels. As the support of a grade increases, so
the grade values tend towards the population mean, have less
deviation from it, and are more symmetrical around it 
(Figure 4).  

There is a correlation between the distribution of grades
seen at a point support and the distribution of grades seen at
a SMU support, named the SMU change-of-support co-
efficient (r). Similarly, there is a correlation between the
distribution of grades seen at a point support and the distri-
bution of grades seen at a panel support, named the panel
change-of-support coefficients (R). The ratio R/r is the
correlation of SMU grades and panel grades. The R and r
change-of-support coefficients are determined by solving the
variance equations and the Gaussian anamorphosis
equations at SMU and panel supports, shown in Table I
(Rivoirard, 1994).

The schematic in Figure 5 shows the relationship between
grades at a SMU support, grades at panel support, and how a
distribution of SMU grades is conditional on panel grade. A
low R/r ratio indicates a weak correlation between the SMU
and panel grades, which is caused by a high-nugget semivar-
iogram and/or short semivariogram ranges relative to the

data spacing. A high R/r ratio is indicative of a strong
correlation between SMU and panel grades, which indicates
good grade continuity in the deposit. 

The result of a UC estimate is presented as a distribution of
grades, shown as metal content and tonnages reported for a
series of cut-off grades. While this is insightful information
about the grade-tonnage distribution, it is not a particularly
practical data format as the SMU location is not provided. 

Abzalov (2006) presents LUC as a simple extension to UC
that provides a practical solution for visualizing grades at the
SMU level. A UC grade-tonnage distribution is decomposed to
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Table I

Variance equations

Gaussian anamorphosis equations

i Hermite coefficient
Hi Hermite polynomial evaluated for Gaussian value
2 Dispersion variance
n Number of Hermite polynomial terms
R Panel change-of-support coefficient [0 ≤ R ≤ 1]

r SMU change-of-support coefficient [0 ≤ r ≤ 1]
Z(V) Grade at panel support V
Z(v) Grade at SMU support v
Z(x) Grade at point location x
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a series of grade values that reproduce the grade-tonnage
relationships. These plausible SMU grades are located into a
SMU model based on the rank location of grades from a
linear estimate of equally sized blocks. This results in a direct
grade model at the SMU resolution that respects the grade-
tonnage distributions of the UC panels and attempts to reflect
the localized spatial grade distribution within the panel.

The objective of this case study is to assess the suitability of
UC and LUC for two data-sets with different grade distrib-
utions, namely scenario 1 and scenario 2. The two scenarios
are distinctly different and represent two end-members of the
range of grade distributions that may typically be seen in
mineral occurrences, being a symmetrical distribution and a
positively skewed distribution. The grade distributions were
synthetically generated and sampled to mimic how this would
be done in a mineral exploration project.

The UC with localization procedure described in this paper
was followed for both data-sets, as outlined in Figure 1.

Two sets of simulated data were generated, which were used
as base data for the assessment. A single realization was
simulated on a 2 m × 2 m × 2 m point grid, over a 800 m ×
600 m area, with a thickness of 200 m, for each distribution.
A plan view at surface through both simulations is shown in
Figure 6 and Figure 7.

A spatially representative subset of data was taken from both
simulations, which makes up the sample database used for
this project. A total of 417 pseudo drill-holes, each containing
100 composites, was taken over the study area. The area is
densely sampled, and this drilling grid would be consistent
with that of a feasibility-stage project. 

Although both scenarios are equally sampled (at a
density of 1%), the drill-hole spacing relative to the semivar-
iogram ranges for scenario 1 is closer than for scenario 2. For
scenario 1, the samples are spaced at approximately one-third
of the semivariogram ranges (120 m) in X and Y, while for
scenario 2 the samples are spaced at approximately the
maximum semivariogram range (40 m). Statistics of both
scenarios are compared, but there is no correlation between
them as the simulations were run independently. Declustered
statistics are presented in Table II, histograms in Figure 8 and
Figure 9, and modelled semivariograms in Figure 10 and
Figure 11.

In scenario 1, the grade distribution is symmetrical, with
a comparatively low nugget effect (12%) and well-defined
continuity up to distances of 170–300 m. Slight anisotropy
was evident, and possibly some zonal anisotropy seen in the
Y-direction where the variance does not reach the sill value.
The distribution is approximately normal, and is similar to
what one would find in a porphyry copper mineral
occurrence. The first distribution has a smaller range of grade
values than the second (approximately half). 

In scenario 2, the grade distribution is approximately
lognormal, supported by the shape of the histogram. This
distribution has the characteristics of being asymmetrical,
strongly positively skewed, with a long tail. There is a higher
nugget effect (26%), with long-range continuity of approxi-
mately 60–90 m. The coefficient of variation (CoV) for
scenario 2 is higher (1.3) than that of scenario 1 (0.4),
showing a wider spread and higher variability of grade
values. 

Panel grade estimates, using OK, were produced for both
scenarios with the intent of minimizing conditional bias while
retaining some local variability. The block sizes were chosen 

�
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Table II

Scenario 1 41 700 417 0.0 29.6 11.8 21.5 4.6 0.1 0.3 0.4
Scenario 2 41 700 417 0.0 59.3 4.1 30.3 5.5 3.7 19.5 1.3



relative to the average sample spacing, at 50 m × 50 m × 
20 m. Ten discretization points were chosen in the X and Y
directions, based on a quantitative kriging neighbourhood
analysis (QKNA) optimization of the block variance.
Discretization points in the Z direction were chosen to be
equal to the compositing length.  A sufficiently large search
neighbourhood was chosen for the panel estimate to ensure
high slopes of regression, without the introduction of too
many (>5%) negative kriging weights.  

The panel model estimation for scenario 1 had a mean
slope of regression of 0.97; while that of the scenario 2 
panel model estimation was 0.72. Figure 12 and Figure 13
show plan views of the respective scenarios, at surface
elevation. Comparing these to the simulated data (Figure 6
and Figure 7), the grade smoothing effect and reduction of
variance from the OK is evident.  

Sample data was converted to normal scores and tested for
bivariate Gaussianity. For both scenarios, the test results
were consistent with bivariate Gaussian conditions of the
Gaussian transformed data. Change of support was carried
out for each scenario using the DGM, with parameters shown
in Figure 3. 

In scenario 1 the SMU change-of-support coefficient
indicates a strong correlation between point and SMU grades.
For scenario 2, the SMU change-of-support coefficient implies
a weak correlation between point and SMU grades and is a
result of the high nugget effect. 

Panel change-of-support coefficients are measured from
the direct variance of estimated panel grades. Well-informed
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panels, as defined by the number of samples in the
neighbourhood and semivariogram ranges, will have better
estimation confidence. To account for this, different panel
change-of-support correlations are used for panels with
similar confidence in the estimation. Three such isovariance
groupings were used for each scenario, and the ranges of
these results are shown in Table III. Relatively higher
variances of estimated panel grade groupings are typically
from better-informed areas where there is better grade
continuity that results in a greater spread of estimated panel
grades. Conversely, relatively lower estimated panel grade
variance groupings are for worse-informed areas, where there
is more evidence of smoothing and panel estimates are closer
to the mean, giving rise to less variance

UC was carried out for both data-sets using the panel model
and DGM. After completion of UC, the model was localized
using a local SMU model, which was estimated using smaller
kriging neighbourhoods to reflect local variability. 

The performance of UC may be assessed by how closely the
UC grade-tonnage estimate conforms to the actual simulated
model and an OK model, as a benchmark for a linear
estimator. This comparison was made globally, to
demonstrate the effects of incorrectly predicting the
extractable tonnage of the deposit, and locally, to
demonstrate the effects of getting individual panel grades
right/wrong. 

The grade-tonnage relationship for the normally distributed
scenario is shown in Figure 14. The global UC prediction of
tons and grades is very close to the actual grades, and shows
a slight improvement on the OK grade-tonnage curve. 

In the case of the normally distributed grades (scenario
1), where there is good data coverage (relative to the
semivariogram ranges), OK performs well for determining
recoverable resources. Slopes of regression for the OK model
were, on average, close to unity, indicating a very low
conditional bias (which is reflected in the OK estimates being
close to the actual values). However, UC marginally
outperforms OK in terms of estimating a recoverable
resource, as it more closely predicts the grade and tonnage of
the simulated reality. For low cut-off grades, there is slightly
less tonnage than predicted for the both the OK and UC
model, but the UC estimates are closer to the actual values. 

Where the grade data has an underlying lognormal distri-
bution (scenario 2) with relatively poor data coverage, the
simulated model shows a decline in tonnage (or volume) as
the cut-off grade increases (Figure 15). OK generates a
moderate estimation of the grade and tonnage extractable for
any cut-off grade. This lack of adherence to the grade-
tonnage curve can be explained by a grade smoothing, which
was expected, as the slopes of regression of the panel
estimate were, on average, poor. UC gives a better result than
OK, but the resultant estimation of grades and tonnage does
not closely conform to the actual values. As the selectivity
increases (i.e. high-grade areas are targeted), the average
grade of the actual material will be higher than the OK model
predicts.

�
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Table III

Sample variance (sill) 21.7 g/t2 30.6 g/t2

Dispersion variance in SMU (theoretical value) 4.22 g/t2 24.45 g/t2

SMU change of support coefficient, r 0.903 0.503
Dispersion variance in panel (measured values) 6.17 g/t2–13.39 g/t2 0.91 g/t2–1.04 g/t2

Panel change of support coefficient, R 0.537–0.791 0.230–0.215
Change of support correlation R/r 0.595–0.876 0.427–0.457



At low cut-off grades, a linear estimated model frequently
shows an overestimation of volume or payable ground. This
is referred to as the ‘vanishing tons’ problem as described by
David (1977), which is seen when mining commences and
less material is recovered than was predicted. This is caused
by a conditional bias and/or smoothing in the estimate,
which are reflected respectively by low slopes of regression
and/or higher estimation variance in the estimated result.
This phenomenon is amplified by a high nugget effect and
small block sizes used for estimation. 

In order to resolve a conditional bias, one can estimate
grades into larger blocks. However, estimating into larger
blocks can produce an over-smoothed histogram, or too much
average material, and does not provide the accuracy required
to select blocks for mining. This is the ‘kriging oxymoron’
(Isaaks, 2004), which states that a kriged estimate cannot be
conditionally unbiased and accurate at the same time. UC
uses the ‘conditionally unbiased’ large block estimator to
condition the average of a distribution of small blocks,
thereby maintaining the correct grade-tonnage curves and
applying a conditional distribution to obtain an accurate
histogram of small block (SMU) grades. This attempts to
satisfy the apparent contradiction embodied in the kriging
oxymoron. 

An assessment was done to compare the grade-tonnage
results of panels that are well estimated and did not contain a
conditional bias (as determined by the slope of regression)
against poorly estimated panels. Panels chosen for this
assessment are shown in Figure 16, where values with the
better slopes of regression fall on or close to the 1:1
regression line.

For the normally distributed data, if the mean panel grade
estimate is correct, the UC accurately predicts the distribution
of grades and tonnage (Figure 17). For the lognormally
distributed data, UC predicts the grade-tonnage relationship
(Figure 19 and Figure 20) fairly well. For both distributions,
if the mean panel grade is wrong, the distribution of SMU
grades will not necessarily match the simulated distribution
(Figure 18 and Figure 21). It appears that, in addition to an
unbiased panel estimate, UC performs slightly better on an
individual panel basis when the underlying distribution is
normal.  

The localization of the UC result places individual SMU
grades (derived from the SMU grade-tonnage curve within
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the panel) at specific locations within the panel, based on the
estimated grades of the OK SMU model. The success of the
localization is verified by visual comparison and by statis-
tically comparing the rank values of the actual versus the UC
ranking (Figure 22). 

The success of localization depends entirely on the
reliability of the OK SMU estimate. However, the smoothing
and inaccuracy of this estimate is the prime motivation to use

UC in preference to linear estimates. If the OK SMU estimate
provides a good spatial representation of the local grades,
then the location of the UC grades within the panel will be
more accurate. This confirms Abzalov’s (2006) findings that
the localization success is dependent on available data
(among other factors). 

If the data is closely spaced enough to provide accurate
localization, then it is also likely that the data is sufficiently

�
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closely spaced for a linear estimation to accurately predict the
model grade value. In this circumstance, the benefit of using
a nonlinear UC estimator over a linear estimator is not as
significant as the benefit seen with widely spaced data. This
is evident in the grade-tonnage predictions for the well-
estimated data, where the OK and UC results are similar; and
the predictions for the poorly estimated data, where the UC
results show a significant improvement over the OK results. 

Although LUC is a useful addition to UC, it does not
improve the accuracy of the UC estimate and the localization
algorithm cannot predict the placements of SMU beyond the
available data. This is the main problem: one cannot simulta-
neously know the local mean and the local variability from
limited local data. The single largest contribution of the
localization approach is to present a UC model in a more
accessible and immediately useful format for mine planning.

UC performs well in terms of estimating grades and tonnages
when there is a normal underlying grade distribution and
good sample coverage relative to the variogram ranges, which
result in low conditional biases. In such circumstances a
linear estimator can also closely predict recoverable resources
and provide a spatially representative grade model, although
the UC estimate of tons and grades is slightly better. 

When there is an underlying lognormal distribution and
poor sample coverage relative to variogram ranges,
conditional biases of a linear panel estimate will occur. This
results in UC providing a more accurate global estimate of
grades and tonnage than a linear estimate. The individual
panel results predict the actual grade and tonnage distri-
bution when there is no evidence for conditional bias for that
panel. 

LUC results are favourable when there is sufficient closely
spaced data, in which case it is likely that a linear estimation
could also accurately predict the model grade values.
Therefore, the benefit of using a nonlinear UC estimator over
a linear estimator is more significant when the data is widely
spaced. 

My thanks to those who reviewed  this work, and  partic-
ularly to  Michael Harley of Anglo American for his advice. 
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