
For adequate technical and financial
evaluation of a project, attempts should be
made to estimate the recoverable resources –
the portion of the in situ resource that can be
economically extracted by mining. To achieve
this, the estimates of the tonnage and grade of
the mineralization should be produced above a
given economic cut-off and should take into
consideration the proposed mining selectivity. 

At the early stages of exploration, we often
have only broad-spaced sample data to
estimate with. Ordinary kriging (OK), a
commonly used linear interpolator, may be
used to estimate grades into larger panels
(estimation into smaller panels that are not
adequately supported by dense data may result
in smoothed and conditionally biased

estimates). These larger panels, which are
suitable for the broadly spaced data, often do
not adequately represent the selectivity
expected at the time of mining. The mining
selectivity (represented by the smallest mining
unit or SMU) is based on the deposit type and
the chosen mining equipment. 

Nonlinear techniques, such as uniform
conditioning (UC) and multiple indicator
kriging (MIK), are commonly used to generate
estimates at SMU scale reflecting the proposed
mining selectivity. With these techniques, the
portion of the mineralization that can be
economically extracted is estimated by
determining the distribution of SMUs within
each panel based on a change-of-support
model. Estimates of the grades and
proportions extractable above a given cut-off
are provided for each panel without specifying
precise spatial locations for this recoverable
mineralization. A better understanding of the
actual spatial locations of the SMUs would
significantly simplify the manipulation of the
results for mine planning purposes and would
enhance the technical and financial evaluation
of the project.       

In 2006, Marat Abzalov (Abzalov, 2006)
proposed a method called localized uniform
conditioning (LUC) for predicting the spatial
locations of the economically extractable
mineralization by assigning a single grade to
each SMU-sized block. LUC enhances the UC
approach by localizing the model results. The
grades of the SMUs are derived from the
conventional UC grade-tonnage relationships.
For each panel, the UC grade-tonnage function
is divided into grade classes and the mean
grades of the grade classes are assigned to the
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SMUs in the panel. The method of mean grade assignment is
based on a predicted grade pattern within each panel. The
grade pattern is determined by OK of the SMUs from the
sparse data-set and is used to rank the SMUs within each
panel in increasing order of their grade before assigning the
mean grades of the UC grade classes. 

Abzalov (2006) noted that spatial grade distribution
patterns are often recognized by geoscientists in deposits
even when drill spacing is still too broad for direct accurate
modelling of small block grades, but sufficient for identifi-
cation of the major distribution trends. He suggested that,
even when drill spacing is too broad to avoid a smoothed
SMU grade estimate, direct kriging of the small blocks can be
used to obtain reliable grade patterns and the resultant SMU
ranking within the panels. Abzalov deemed that this was
particularly applicable to continuous mineralization charac-
terized by a low nugget effect, such as disseminated base-
metal sulphides, bauxites, and iron oxide deposits. He
cautioned that where the data is sparse and not close to a
panel, or its distribution is characterized by strong short-
range variability, there could be less of a meaningful pattern.
Accordingly, if the predictions of the SMU rankings by OK (or
any other technique) are inadequate, the advantages of using
the LUC approach will be more limited, or LUC may even be
entirely unsuitable. A basic assumption of the conventional
UC approach is that the locations of ore and waste within the
panels are unknown (the SMUs are distributed randomly
within the panels). The LUC method aims to overcome this
theoretical constraint by attempting to predict the spatial
locations of the SMUs, but its validity is strongly dependent
on the ability to confidently estimate the rankings of the
SMUs within the panels. 

As a result of this, a study was undertaken to determine
how meaningful the predicted grade patterns of a typical
Birimian-style gold deposit (with high nugget effect and
strong short-range variability) might be expected to be. This
was determined by investigating the relationship between the
LUC ranking (based on the direct kriging of the SMUs from

sparse data) and the grade control model ranking (based on
close-spaced data and the best available estimate of the
deposit).

The northern pit of the Tambali gold deposit was chosen for
the case study. The deposit forms part of the Sadiola gold
mine located in Mali close to the border with Senegal and
approximately 440 km northwest of the capital Bamako
(Figure 1).  

The Sadiola gold deposits lie within the Kenieba
Kedougou Birimian greenstone belt of southwestern Mali
(2.17–2.18 Ga). The deposits are hosted by the Kofi
Formation – a dominantly metasedimentary unit. At Tambali,
the host rocks consist of moderately-sorted meta-sandstone
with minor meta-siltstone interbeds and a finely bedded
siltstone-shale unit with minor sandstone interbeds. These
metasedimentary units are north-trending, but are intruded
by numerous NNE-trending quartz-feldspar porphyry (QFP)
dykes and plugs. The mineralization is developed in all host
rocks and the mineralization trends are associated with
structural corridors (shear zones) marked by veining,
alteration, and weathering. The dominant ore mineral is
arsenopyrite, although pyrite, and to a lesser extent
pyrrhotite, have also been observed in drill core. Antimony-
bearing minerals are present in trace to minor amounts. The
pathfinder element association of the ore typically comprises
As-Au-Sb ± Ag-Bi-Mo.

Gold grade and structural trends were used to interpret
the mineralization using Leapfrog© software. The interpre-
tation was generated using the implicit Leapfrog© Grade
Interpolation technique, which involves the 3D contouring of
grades while taking into account a chosen grade threshold
and defined structural trends. The output envelope based on
a threshold (or lower grade limit) of 0.35 g/t was selected as
it was deemed to best represent the mineralization. Before
finalizing, it was adjusted by a few manual edits where
required. The domain used for the study included all material
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occurring within the mineralization envelope and represented
the north- to northeast- trending shear fabric to which the
mineralization is related (Figure 2). 

All available exploration and grade control data from the
mined-out portion of the Tambali North pit informed the
study. The exploration drill-hole spacing was approximately
25 m E by 25 m N and the grade control drill-hole spacing
approximately 6.25 m E by 12.5 m N (Figure 2).  

The study area contained 4851 composited grade control
plus exploration samples (all available data, i.e. the dense
data-set) and 806 composited exploration samples (the
sparse data-set). All composites were approximately 2 m long
(Figure 3).

A grade capping exercise showed that capping the
exploration data-set to 15 g/t and the total data-set to 25 g/t
would be appropriate for estimation. The investigation of
histograms, log probability plots, and mean and variance
plots was used to determine suitable grade cap values. A total
of four values were capped for the exploration data-set
(representing about 0.5% of the data-set) and eleven values
for the total data-set (representing about 0.2% of the total 

data-set). The two data-sets were de-clustered with the
ISATIS© software, which makes use of a moving window to
assign de-c1 (perpendicular to the major and semi-major
planes). The experimental variogram was modelled with a
nugget effect and two spherical structures (Figure 5). The 

relative nugget effect of this variogram, calculated as a
ratio of nugget to the global sill, is approximately 33%. This
variogram model has been used further in this study for all
the block grade estimation using OK and UC techniques. 

The optimal set of estimation parameters was determined
by a kriging neighbourhood analysis (KNA). The kriging
efficiency and slope of regression were used to investigate
conditional bias for a given set of estimation parameters
(Figure 6). At the chosen block size of 30 m N by 30 m E by
10 m RL and a maximum number of composites of 80, the
slope of regression and kriging efficiency were satisfactory at
about 0.95 and 0.82 respectively.  

The final set of estimation parameters used for kriging
are summarized in Table I.

The Tambali mining equipment supports selectivity (SMU
size) of 10 m N by 10 m E by 3.33 m RL (mining of 10 m
benches in 3.33 m flitches). In total, 27 SMUs fit within each
panel of size 30 m N by 30 m E by 10 m RL.
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The sparse data-set (early stage/exploration) was used
for kriging both the SMUs and the panels. The same
variogram model and the same search neighbourhoods were
used for both kriging runs (Table I). The distributions of the
OK grades of the SMU and panels are compared in Figure 7
(represented by a 3.33 m horizontal slice through the block
models).  

Ordinary kriging estimates of the SMUs based on all
available data (dense data-set: grade control plus exploration
samples) were also generated and were considered to
represent the best available estimate of the SMU grades. For
the purposes of this study; they are referred to as the ‘true’
SMU grades. The SMU estimates from sparse data were
excessively smoothed in comparison with these ‘true’ SMU
grades, as shown in Figure 8. The global mean grades were
similar, but the variances differed markedly with the ‘true’
grade standard deviation of 0.75 much greater than the
standard deviation of the sparse data estimates (0.52). As
noted by Abzalov (2006), an attempt to use SMU grades

obtained by kriging with the sparsely distributed data can
lead to very inaccurate assumptions regarding the optimal
mining scenarios. 

ISATIS© software was used to model the recoverable
resources from the sparse data using the conventional UC
method. Correction for the information effect was made
during the change of support procedure. The information
effect takes account of the fact that the SMUs will ultimately
be selected on an estimated grade (based on the grade control
samples) instead of the real grade. Hence, some ore blocks
will be misclassified as waste and vice versa. In order to
obtain a more realistic recoverable estimate that takes
account of this misclassification, a correction for the
information effect was made by assuming that the final
sampling mesh will be 6.25 m E by 12.5 m N by 2 m RL (i.e.
the production or grade control sample spacing). 

The grade-tonnage curves of the OK panel grades, the
block anamorphosis function (at SMU support), and the UC
grades are shown in Figure 9. Compared with the panel

Table I

Minimum number of composites 10 10 10

Maximum number of composites 80 80 40

Search ellipsoid rotation Azimuth: 35 Dip: 75 Azimuth: 35 Dip: 75 Azimuth: 35 Dip: 75
Dip direction: 125 Dip direction: 125 Dip direction: 125

Search ellipse dimensions 70×50×20 70×50×20 35×25×15

Discretization 5×5×5 5×5×5 5×5×5
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estimate, the block anamorphosis and the UC estimate
showed greater selectivity (initial lower tons at higher grade).

The conventional UC grade-tonnage relationships
corresponded significantly better with the grade-tonnage
relationships of the ‘true’ SMU grades than that obtained
with the OK estimates from sparse data (Figure 10). The UC
model represents a significant improvement in comparison
with the ‘unconditioned’ OK estimates from sparse data. 

The conventional UC results were localized by the LUC
technique, which involved ranking the SMU blocks within

each panel (based on the OK SMU grades from sparse data)
and deriving the grades of the SMU ranks from the UC model
and assigning them to the corresponding SMU blocks 
(Figure 11).  

The grade-tonnage curves of the LUC estimate were very
similar to those of the UC estimate (Figure 12). The good
match between the grade-tonnage curves derived from UC
and LUC is expected as the LUC algorithm simply localizes
the UC results, maintaining the grade–tonnage relationships
predicted by the conventional UC model. 

�
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The grade distribution of the LUC estimates was less
smoothed than that of the sparse data OK estimates and,
compared with the ‘true’ SMU grades, it better represented
the variability of the deposit (Figure 13). The standard
deviation of the SMU grades modelled by the LUC method

(SD = 0.80) was closer to that of the ‘true’ grades (SD =
0.75) and significantly larger than that obtained by kriging
from a sparse data grid (SD = 0.52). 

It is evident that the LUC estimate is a significantly better
estimate of the recoverable resources than the OK estimates
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(from sparse data) and better represents the variability
expected at the time of mining. The LUC estimate is still
noticeably different from the ‘true’ grades. The technique
itself does not make up for the fact that the LUC estimate is
based on sparse (incomplete) data and that the LUC result
depends heavily on the grade pattern predicted by the direct
SMU kriging (also from sparse data).

The quality of the LUC localization is dependent on the
meaningfulness of the grade pattern predicted by the direct
kriging of the SMU (Abzalov, 2006). The resultant grade
pattern is used for ranking of the SMUs into increasing order
of their grade, which determines the order in which the mean
grades of the UC grade classes are assigned to the SMUs. 

For the case study, the quality of the localization was
assessed by comparing the rankings of the ‘true’ grades with
the LUC rankings. For both data-sets, the 27 SMUs within
each panel were sorted in increasing order of grade. Thus,
each SMU was assigned a ‘true’ ranking as well as a
‘predicted’ (or LUC) ranking between 1 and 27. The SMUs
that fell outside of the estimation domain were disregarded
(the affected panels therefore had fewer ranking pairs). A
scatter plot showed a reasonable correlation between the
‘true’ and LUC rankings with a correlation coefficient of 0.6
(Figure 14). 

The number of occurrences of each ranking combination
(‘true’ vs. LUC) was subsequently counted across all panels.
For example, counting the number of instances where the
actual and predicted ranks were both 1; then the number of
instances where the actual rank was 1, but the predicted rank
was 2; and so forth. The result is presented in Figure 15 and
shows all possible ranking combinations for up to 27 SMUs.

The actual (or ‘true’) ranking is shown on the X-axis and the
predicted (or LUC) ranking on the Y-axis. The colouring is
based on the number of instances that a rank pair occurred. 

Overall, the results showed a reasonable relationship
between the actual and predicted rankings, with a signifi-
cantly greater amount of predicted SMU rankings being closer
to the actual rankings than further away. It can be concluded
that, even though we are dealing with a deposit exhibiting
high nugget effect and strong short-range variability, there
nevertheless appears to be some confidence in the local
positioning achieved by the LUC technique, i.e. it does not
appear to be random, but shows a relationship with the ‘true’
positioning.

�
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LUC can easily incorporate external information such as
high-resolution geophysical data or other estimation
techniques, as pointed out by Abzalov (2006). The LUC
ranking determined by OK was compared with rankings
obtained by inverse distance weighting (IDW) to evaluate the
robustness of the OK estimation technique for determination
of the rankings (Figure 16). Two IDW estimates were
produced - one to the power of 2 (IDW2) and one to the
power of 5 (IDW5). 

Visually, the LUC results from the OK and IDW rankings
look similar, with the LUC model based on IDW rankings
slightly more smoothed in comparison with that based on OK
rankings. However, when comparing the rank count plots for
the three scenarios (counting the number of occurrences of
each ranking combination) the LUC ranking based on OK
appears to be better correlated with the ‘true’ rankings than
those based on IDW2 and IDW5 (Figure 17). In turn,
compared with the IDW2 rankings, the IDW5 rankings show a
better relationship with the ‘true’ rankings. 

As a last check of the reliability of the LUC estimate, it was
compared with the grade control model estimate over the
study area (Table II). For confidentiality purposes, the grades
have been factored with a constant value.

The grade control and LUC models compared well, with
tons and metal within about 4–9% of each other and grades
within 1–2%.

A basic assumption of the conventional UC approach is that
the locations of ore and waste within the panels are
unknown. The LUC method aims to overcome this theoretical
constraint by attempting to predict the spatial locations of the

SMUs, but its validity is strongly dependent on the ability to
confidently estimate the rankings of the SMUs within the
panels. 

Since 2006, the LUC method has been implemented in
commercial software and has been commonly used for the
estimation of recoverable resources. The LUC technique is an
enhancement of the conventional UC technique and it
reproduces the conventional UC grade-tonnage relationships.
Even though this is the case, the validity of the localization is
heavily reliant on the ability to reasonably predict SMU
rankings from sparse data and the accuracy of this
localization depends on the techniques used for the SMU
ranking (Abzalov, 2014). It is considered that, when using
direct kriging of the SMU for ranking, the presence of a high
nugget effect and strong short-range variability could
potentially result in inadequate localization. Accordingly, if
the predictions of the SMU rankings by OK (or any other
technique) are inadequate, the advantages of using the LUC
approach will be more limited or LUC may even be entirely
unsuitable. It is therefore deemed necessary to assess the
quality of the localization before accepting a LUC result. In
the mined-out area of an active open pit, one could achieve
this by comparing the rankings of the SMUs based on close-
spaced grade control data with the rankings based on sparse
exploration data (as was done in this study). In an unmined
pit with no close-spaced data, it is more difficult to assess the
quality of the localization. However, one could attempt to
improve the rankings from the direct kriging of the SMUs by
integrating them with auxiliary data such as geophysical or
geochemical information as proposed by Abzalov (s2014). 

In the current study, the LUC technique was implemented
for the mined-out portion of a typical Birimian-style gold
deposit (mined by open pit methods) to model the grades of
SMU-sized blocks from sparse, early-stage data. The LUC
grade-tonnage relationships closely matched the conventional
UC grade-tonnage relationships and better predicted the
grade-tonnage relationship of the ‘true’ grades than those
derived from ordinary kriging. In order to assess the quality
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of the LUC localization, the direct SMU kriging rankings
(based on sparse data) were compared with the grade control
model rankings (based on close-spaced data and the best
available estimate of the deposit). The results showed a
reasonable relationship between the actual and predicted
rankings and it was concluded that, even though the grade
patterns predicted by the direct kriging of the SMUs may be
less meaningful for deposits exhibiting strong short-range
continuity, there nevertheless appears to be some confidence
in the local positioning achieved by the LUC technique.
Therefore, it is considered that the use of the LUC technique
may be useful for this style of deposits. 
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Table II

0.0 778 083 1.39 1 084 858 713 083 1.41 1 005 692 -8% 1% -7%

0.4 777 472 1.40 1 084 658 711 667 1.41 1 005 208 -8% 1% -7%

0.5 775 528 1.40 1 083 744 706 583 1.42 1 002 855 -9% 2% -7%

0.6 757 944 1.42 1 073 911 691 083 1.44 994 202 -9% 2% -7%

0.7 718 417 1.46 1 048 128 650 417 1.49 967 707 -9% 2% -8%

0.8 651 805 1.53 998 432 590 333 1.56 922 518 -9% 2% -8%

0.9 575 139 1.62 933 577 529 833 1.64 871 178 -8% 1% -7%

1.0 510 944 1.71 872 971 470 417 1.73 814 883 -8% 1% -7%

1.1 445 139 1.81 804 089 412 833 1.83 754 347 -7% 1% -6%

1.2 384 000 1.91 733 918 355 000 1.94 687 977 -8% 1% -6%

1.3 330 444 2.02 667 239 308 000 2.04 629 348 -7% 1% -6%

1.4 286 139 2.12 607 876 267 833 2.15 575 153 -6% 1% -5%

1.5 242 917 2.24 545 271 231 250 2.26 522 203 -5% 1% -4%

2.0 121 722 2.78 337 940 115 917 2.80 324 365 -5% 1% -4%




