
Mining projects are normally evaluated with
the objective of maximizing economic value, as
measured by the net present value (NPV). The
aim of mine planning is to develop a yearly
extraction plan that guides the mining
operation to the highest NPV (Dagdelen, 2007;
Yarmuch and Ortiz, 2011). This plan considers
the technical constraints such as blending
requirements, block sequencing, and pit slope
(Caccetta and Hill 2003). Thus, the mine plan
affects the economics and the payback period
of mining operations. 

Mine planning is a procedure based on
which the profitability of the mining operation
is guaranteed in changing and uncertain
conditions (McCarter, 1992). However,
conventional mine planning ignores the
volatility and uncertainty of future commodity
prices and does not allow for managerial
flexibility. It is common practice to assume a
deterministic and constant commodity price
through the mine life. The problem with this
approach is that the commodity price is the
heart of the mine planning procedure and
governs the profitability and feasibility of the
operation; thus ignoring price volatility will
result in a sub-optimal mine plan. 

Note that the NPV of a mining project is
highly sensitive to the future commodity price
estimates, therefore any decision in the context
of mining should be take price uncertainty into
consideration. The question here is whether a
mine plan that is optimal for an estimated
future commodity price will also be reasonably
optimal when price uncertainty is accounted
for. To answer the question, this paper
presents an approach to select a mine design
under mineral price uncertainty. 

The essential data required for mine
planning comprises geological, geo-
mechanical, hydrological, economic,
environmental, and infrastructural
information, and knowledge of mining
engineering. These factors contribute to a
greater or lesser degree to the mine planning
procedure and mine plans. The characteristics
of future mining activities, and also inherited
uncertainty in the data (such as commodity
price, ore grade, mining costs, and recoveries),
highlights the importance of mine planning
under conditions of uncertainty. As shown in
Figure 1, mineral prices have a changing and
volatile nature. In this figure, the price
changes for iron ore and copper are given from
the year 2000.

Open pit mine production planning is a
multi-period precedence-constraint knapsack
problem, and it normally fits into the mixed
integer linear programming (MILP) framework
(Osanloo et al., 2008; Newman et al., 2010).
This problem is defined on a spatial
representation of the mining area called a
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block model (Hustrulid et al., 2013). Considering the
exploration drilling pattern, geological conditions, and the
size of mining equipment to be used, the size of the blocks in
a block model will be determined (Figure 2). After
determining the block dimensions, the geological
characteristics of each block are assigned using any available
estimation techniques (Journel and Kyriakidis, 2004). By
considering the economic parameters such as commodity
selling price, operating costs, and overall recovery, one can
calculate the economic value of each block. The aim of the
mine planner is to determine whether a given set of blocks
should be mined or not; if so, at which time it should be
mined, and once it is mined, how it should be processed to
maximize the NPV of the operation (Dagdelen, 2007). Once a
block is earmarked for mining, different destinations or
processing methods can be determined for that block. The
process of determining the time and extraction sequence of
blocks through the mine life is referred to as mine production
planning (Johnson, 1968). This procedure is represented in
Figure 2.

The problem of production planning in open pit mines has
been studied by many researchers (Dowd and Onur, 1992;
Tolwinski and Underwood, 1996; Denby and Schofield, 1996;
Kumral, 2003; Ramazan and Dimitrakopoulos, 2004;
Menabde et al., 2007; Boland et al., 2008; Dimitrakopoulos
and Ramazan, 2008; Elkington and Durham, 2009;
Sattarvand, 2009; Bley et al., 2010; Kumral, 2010;
Groeneveld and Topal, 2011; Murakami et al., 2011;
Gholamnejad and Moosavi, 2012; Lamghari and
Dimitrakopoulos, 2012; Moosavi et al., 2014). These studies
aimed to maximize the NPV of the operation while satisfying
all the operational constraints. 

There are two optimization approaches to solve the

production planning problem in open pit mines, named
deterministic and uncertainty-based approaches (Osanloo et
al., 2008). In deterministic models, all the inputs are
assumed to have fixed known real values (e.g. Tan and
Ramani, 1992; Akaike and Dagdelen, 1999; Zhang, 2006;
Elkington and Durham, 2009; Cullenbine et al., 2011).
However, this assumption is not always realistic and some
data such as ore grades, future product demand, future
product price, and production costs can vary throughout the
mine life. Researchers (Albach, 1976; Rovenscroft, 1992;
Smith, 2001; Godoy and Dimitrakopoulos, 2004; Zhang et
al., 2007, Abdel Sabour et al., 2008; Abdel Sabour and
Dimitrakopoulos, 2011; to name a few) have developed
various models based on MILP, meta-heuristics, heuristics
and simulation, chance constraint linear programming, and
stochastic programming to determine the mine plan in
uncertain conditions. 

In this paper price uncertainty and its affect on mine
planning is studied. To do so, a simple integer linear
programming model is formulated to determine the
production planning and mining sequence of blocks.

The mineral or commodity price affects the mining cut-off
grade, mineable reserve, mine size, and mine life. Any long-
term change in commodity price will affect the cut-off grade
and amount of mineable reserve. For example, in the case of
a price fall, the ultimate pit limit shrinks, cut-off grade
increases, low-grade ore blocks will be classified as waste,
and the mineable reserve decreases. All these factors will
change the long-term and short-term plans of the mine.
Short-term changes in commodity price will affect the short-
term plans (Tulp, 1999). In these conditions, short-term
plans must be changed cautiously because short-term gains
may cause other problems in long-term plans (Hall, 2009a).

This paper studies the effects of price uncertainty on mine
planning and aims to minimize the risks from price changes
throughout the mine life. Figure 3 shows the procedure of the
proposed algorithm. Based on historical price data, scenarios
are generated. Then in the third step of the procedure, mine
plans are optimized based on each price scenario. The plans
are analysed to check their behaviour with respect to different
price forecasts. In the fifth step of the procedure, the
downside risk and upside potential of each mine plan are
determined. These two criteria will indicate the optimum
mining schedule among the different mine plans. 

This approach leads to the selection of a mining schedule
that captures the upside potential and minimizes the
downside risk of the mining operation associated with price
uncertainty. For that purpose, the available price data, its
volatility, and its simulated values are integrated into the
process. The practical aspects of the approach are illustrated
in a simple example.

According to Figure 3, in the first step the historical changes
in mineral price are collected in order to simulate future
possible price forecasts. There are various methods to
generate different price paths, including bootstrapping and
geometric Brownian motion (GBM). In the second step of the
procedure, the bootstrapping method is applied to determine
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some scenarios to model future price trends and changes.
Generally, bootstrapping is a sampling method. Assuming a
given data-set of historical mineral prices, the yearly or
monthly returns (i.e. rate of monthly/yearly price change in
each period) are calculated. The return of a mineral price is
equal to the natural logarithm of the division of two
consecutive prices (Equation [1]).

[1]

where μ is the return, and St, St-1 represent the mineral price
in periods t and t-1, respectively.

In order to predict future mineral prices or to generate a
new sequence of price path using bootstrapping, the
individual returns should be calculated for each period. It
should be noted that to generate a price path for the next 10
years, the returns for the previous 10 years should be
calculated. When the historical returns are calculated, then by
selecting the returns arbitrarily from the historical data and
putting them together, many price paths can be generated. 

The main advantage of this method is that it does not
need any assumptions about the distribution of the returns,
and the empirical distribution of the returns is inherited in
the sampling procedure. Using the historical data in Figure 1
and applying the bootstrapping method, several scenarios are
generated for the iron ore price (Figure 4). In the traditional
approach, the mineral price is assumed constant through the
mine life. In order to have a benchmark to compare the
results with the traditional approaches, another scenario with
the assumption of fixed price throughout the mine life is
generated. 

According to the procedure, in the third step, the optimum
block sequencing should be determined for each price
scenario. For that purpose, production planning and block
sequencing in open pit mines is formulated in an integer
linear programming model (Equation [2]). This model is
capable of determining the time of extraction of each block. It
also determines the destination or processing method of each
block such that it maximizes the total NPV. The notation
used in the model in Equation [2] is as follows:

B The set of all blocks in the block model 

Pb The set of blocks that cover or precede block b

t,t’ The time indices 

T The mine life or number of the periods to be
planned 

M The number of possible destinations or processing
alternatives 

cbmt The discounted economic value of block b mined at
time t and sent to destination m

xbmt The decision variable, which is equal to unity if
block b is mined at time t and sent to destination
m; otherwise it is equal to zero 

MCt, MCt The minimum and maximum mining rate at time t,
respectively 

Xb The amount or tonnage of rock in block b

gb The grade of commodity in block b (normally
expressed as a percentage of the total block
tonnage) 

Gt,m
min, Gt,m

max The minimum and maximum acceptable
grades at destination m at time t, respectively 

PCmt, PCmt The minimum and maximum processing capacities
at destination m at time t, respectively

Objective function:

[2a]

subject to:

[2b]

[2c]

[2d]
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[2e]

[2f]

[2g]

[2h]

In Equation [2a], the objective function of the model is
defined as the maximization of the total discounted economic
value or the NPV of the mining operation. Constraint [2b]
ensures that if block b is to be mined then it could only be
mined once and sent to destination m at time t. Constraints
[2c] and [2d] ensure that the total amount of rock mined and
processed at time t does not exceed the prescribed lower and
upper bounds on mining and processing capacities,
respectively. Constraints [2e] and [2f] ensure that the
average grade of material sent to each destination is within
the prescribed lower and upper bounds. Constraint [2g] is
known as the slope or proceeding constraint. This constraint
ensures that wall slope restrictions are obeyed and block b
can be mined only if all the overlying or covering blocks are
removed beforehand. The model in Equation [2] is
programmed in Visual Studio version.2012 and solved using
the CPLEX 12.5 solver. 

The term cbmt in the objective function is a function of
mining time and the mineral price in that period. The
scenarios in Figure 4 are used to calculate the block values in
different periods. In this figure, 16 price paths are generated.
Using these price paths and applying the model in Equation
[2], one can optimize the production plans for each price
path. At the end of this step, different options for mine plans
are generated for the ore deposit. The block sequencings in
these plans differ from each other due to different and
variable mineral prices in each period. The next step aims to
select the optimum block sequencing for the deposit by
applying a simulation-based approach.

Optimizations of the mine plan for each of the price paths
are generated based on the parameters given in Table I. 

These parameters are the same for each mine plan, and
the only difference is the iron ore price trend. The price trend
in each mine plan is taken from the generated price paths in
Figure 4.

The ultimate pit limit in all the cases is the same, and
only the block sequencing differs due to the embedded price
scenario. As mentioned, production planning and block
sequencing for each of the simulated price paths are
optimized using the model in Equation [2]. The planning
period is 10 years for all the cases. Differences in the block
sequencing and the schedules result in significant variations
in expected cash flow returns. In the example presented here,
16 price paths are used to illustrate different aspects of the
suggested approach. The experiments show that nine
different mine plans could be generated in this case study.
The question is: which of these mine plans is the optimum
mining schedule? To answer this question, a simulation-
based approach is conducted.

In order to select the optimal mining schedule, the generated
mine plans in the previous section are analysed to check their
behaviour with respect to different price forecasts. For this
purpose, geometric Brownian motion is applied to define
some more scenarios based on which the behaviour of each
mine plan should be determined. Geometric Brownian motion
(GBM) is one of the most common methods for price
modelling and scenario generation (Erlwein et al., 2012; Hall
2009b). In this method, the stock or the mineral price is
modelled as a Wiener process and is a function of return and
volatility of the mineral price (Equation [3]). 

[3]

where S0 and St are the current mineral price and the mineral
price in period t, and μ is the return of the mineral price and
is calculated using Equation [1]. The terms and dz are the
expected growth rate and an increment in a standard Weiner
process, respectively. Also, is the volatility of the mineral
price, and the Wiener process Wt is discretized using
Equation [4]. 

[4]

The price volatility is calculated from the historical data
using Equation [5].

[5]

where n is the number of historical data, and t is the time
length for which the volatility is calculated. When the
volatility of the mineral price is calculated, then it could be
estimated for the coming periods using the generalized
autoregressive conditional heteroskedasticity (GARCH)
method. In this method, the volatility of the mineral price is a
function of its previous conditions, and is calculated using
Equation [6].

[6]
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Table I

Technical and economic parameters considered
for optimizing mine plans

Parameter Value 

Pit slope (degree) 45
Mining cost (US$ per ton) 1
Processing cost (US$ per ton) 8
Recovery (%) 80
Annual discount rate (%) 10
Mine life (years) 10
Iron ore price (US$ per ton) From Figure 4



In this equation, VL is the long-term volatility of the
mineral price. The parameters , , are defined such that
they maximize the model in Equation [7].

[7]

Then, the GARCH model can be applied to estimate the
future volatility of the mineral price (Equation [8]).

[8]

Using the model in Equation [8], the volatility of the iron
ore price in the coming years is estimated. Combining the
result of the GARCH model and the GBM method, it is
possible to simulate more scenarios for future prices. The
result of 50 simulations is shown in Figure 5.

This simulation-based risk analysis discussed can be
used to choose the best mine design from the available
designs. The best design is the one that minimizes the
potential for losses while maximizing the possibility of better
financial performance (Dimitrakopoulos et al., 2007; Azimi et
al., 2013). For the iron ore case considered in this study, the
key project indicator is NPV. For a given mine design, a
distribution of NPV is calculated using the 200 price paths
generated by the GBM method. The cumulative probability
distributions of NPV for the two of the mine plans (plan 1
and plan 2) are represented in Figure 6.

In the fifth step of the procedure, the downside risk and
upside potential of each mine plan should be determined
(Figure 7). These two criteria will indicate the optimum
mining schedule. The selected mining schedule maximizes

the upside potential and minimizes the downside risk of the
mining operation associated with price uncertainty.

Assessing price uncertainty and the risks associated with
it suggests that there is a probability that a given mine plan
may perform better in other scenarios as well. Figure 7
elucidates the concept of maximum upside and minimum
downside based on the risk associated with price
(Dimitrakopoulos et al., 2007; Azimi et al., 2013). The figure
shows the distribution of NPV for a mine plan that can be
generated from simulated price paths. With a defined point of
reference such as the minimum acceptable NPV, the
distribution that minimizes risk and maximizes the reward or
upside potential leads to the selection of a suitable mine plan.
The upside potential (UPit) and the downside risk (DRit)
during period t are formulated in Equations [9] and [10].

[9]

[10]

where the term Ct is the accepted NPV of the mine plan
during a period of t years, and V +ijt and V –ijt represent the
total net present value of ith mine plan generated for jth
simulated price paths during period t, where V +ijt  Ct and V –jt
 Ct, respectively. Using Equations [9] and [10], one can

calculate the upside potential and the downside risk criteria. 
The other useful criterion is the value at risk, VaR. This is

a widely used risk management tool, and is a measure of the
worst expected loss under normal market conditions that is
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calculated for a specific time period at a given confidence
level. VaR answers the questions like: with a probability of
x%, how much can I lose over a pre-set horizon?’ (Benninga,
2008). This means that VaR (1%) is the 1% quintile point of
the probability distribution function of mine value. VaR
provides the answer of two questions: (1) what is the
distribution of the mine value at the end of its life; and (2)
with a probability of 1 %, what is the maximum loss at the
end of mine life? The main drawback of VaR is that it does
not consider the tail of distributions, thus the result may be
misleading. Therefore, it should be complemented with other
tools. 

Now the decision-maker has to choose among the
available options with regard to the three criteria. The three
criteria of downside risk, upside potential, and value at risk
are used to rank the mine plans. The result is given in Table
II. According to the results, plan 2 has the maximum upside
potential, plan 6 has the minimum downside risk, and plan 1
and plan 8 have the lowest VaR. The VaR in case of plan 1
and plan 8 is about 10.8% of the initial capital cost. Also,
plan 2 has the highest expected NPV. In this step, selection of
the optimal mine plan is converted into a multi-criteria
decision-making problem. The selection procedure depends
on the decision-maker and his risk-taking behaviour. The
risk-taking behaviour of the decision-maker is called the
‘utility function’ and is beyond the scope of the current paper.

In this example there are two negative criteria (i.e. VaR
and downside risk) and one positive criterion (i.e. upside
potential). Assuming that the importance weights of these
positive and negative criteria are identical, these weights can
be calculated. In this example the weights of VaR, upside
potential, and downside risk are 25%, 50%, and 25%,
respectively. Finally, plan 6 seems to be the ideal mine plan.
The plan has the minimum downside risk. Moreover, the
rank of plan 6 is among the top five considering the other
criteria. Therefore, plan 6 is suggested as the optimal mining
schedule in this case study.

Financial uncertainty has a significant impact on the value of
mining projects. In this paper a new framework was proposed
to optimize mine schedules based on price uncertainty. The
procedure is an iterative implementation of block sequencing
optimization under varied price forecasts and market
conditions. The approach is based on criteria that include
maximum upside potential, minimum downside risk, and
value at risk. The approach provides a set of mining
scheduling options for the mine planner. Selecting the
optimal solution is a multi-criteria decision-making problem. 

The main weakness of the approach is that it is hard to
implement, particularly in the case of larger ore deposits
where the number of block is very large. This suggests the
application of blocks aggregation methods that reduce the
size of the problem, such as the fundamental tree algorithm.
The other limitation of the procedure is the difficulties in
determination of price scenarios. The generated price
scenarios must be a representative sample of future price
outcomes. Also, the number of price paths must be low in
order to reduce the complexity of the mine scheduling
models. 

Considering the bootstrapped price scenarios, nine
options for mining plan are generated. Then, using a
combination of GARCH and GBM methods several (200
scenarios) price scenarios are generated to analyse the
behaviour of each individual mine plan through the mine life.
The result of this analysis represents the probability
distribution function of NPV for each mine plan. These mine
schedules have some important characteristics. Firstly, an
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Table II

Ranking of mine plans based on upside potential,
downside risk, and VaR 

Plan ID Upside potential Downside risk VaR

Plan 1 9 3 1
Plan 2 1 6 9
Plan 3 5 8 7
Plan 4 7 5 5
Plan 5 6 7 4
Plan 6 4 1 3
Plan 7 2 2 6
Plan 8 8 4 2
Plan 9 3 9 8



optimal mine schedule based on a given simulated price path
is not necessarily optimal for other price scenarios. Secondly,
besides the fact that the price scenarios are equally probable,
the corresponding mine plans are not equally probable.
According to the optimization results, 16 price scenarios are
considered but only nine different mine plans are generated.
Careful analysis of the mine plans shows that plan 1 and plan
8 are approximately the same, with a difference of less than
5%. In these two plans, the block sequencing has changed in
the 8th year. This is true also for the case of plan 4 and plan
5, where the difference is also less than 5%. This is
confirmed by the results in Table II, where it can be seen that
the rankings of these plans are virtually the same. 

The method aims to determine the optimum mining
sequence with minimal risk. In that regard, three attributes
are calculated for each mining scenarios, namely 'upside
potential', 'downside risk', and 'VaR'. First, the plans are
evaluated based on VaR. The contour map of normalized
VaR, upside potential, and downside risk shows the
relationship among these three criteria (Figure 8). The data is
normalized with respect to the maximum values. In Figure 8,
the x-axis is the downside risk and the y-axis is the upside
potential; the contour lines represent VaR. According to the
results, plan 6 is suggested as the optimum mining sequence
in this case. Analysing the price scenario on which plan 6 is
optimized, it can be seen that, in this scheduling scenario, the
mineral price has a falling trend compared with the other
scenarios. Under a falling price trend, high-grade ore blocks
will be mined earlier in order to gain the maximum possible
NPV. Conclusively, those mine plans that are determined
based on the falling price scenarios always have the lowest
value at risk compared with other plans.
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