
Nowadays, rock engineering classification
systems, which constitute the backbone of the
empirical design approach, are widely
employed in both civil engineering and mining
engineering. Rock mass classifications have
recently been quite popular and are being used
mostly for the preliminary design and planning
purposes of projects. According to Bieniawski
(1989), a rock mass classification scheme is
intended to classify the rock masses, provide a
basis for estimating deformation and strength
properties, supply quantitative data for support
estimation, and present a platform for
communication between the exploration,
design, and construction groups.

The requirements for building the type of
system that can adequately solve rock
engineering problems include the following:

� A supervised classification system must
be adapted to fit the specific project at
hand

� The reliability of the classes to handle
the given rock engineering problem must
be estimated

� The classes must be exhaustive and
mutually exclusive (i.e. every object has
to belong to a class and no object can
belong to more than one class)

� The principles of the division into
classes must be established based on
suitable indicators

� The indicators should be related to the
different tools used for the design

� The principles of the division into
classes must be flexible so that
additional indicators can be incorporated
into the scheme

� The principles of the division into
classes have to be updated to take into
account the experiences gained during
the construction phase

� The uncertainties or quality of the
indicators must be established so that
the probability of classification can be
estimated

� The system should be practical and
robust and provide an economic and safe
design.

In practice, none of the existing
classification systems fulfil the requirements
mentioned above and, thus, do not constitute a
true classification system capable of solving
rock engineering problems. According to
Williamson and Kuhn (1988), ‘no
classification system can be devised that deals
with all the characteristic of all possible rock
material or rock masses’. Riedmuller and
Schubert (1999) further note that the ‘complex
properties of a rock mass cannot sufficiently
be described by a single number’. 
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applicability of FRMR. The results of this study show that the FRMR
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uncertain input parameters have been used. FRMR consists of three parts,
each of which is suitable for certain conditions.
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Rock masses are complex materials that exhibit different
properties. Hence, they are divided into uniform structural
regions. Quantitative rock mass classification systems are
based on the experiences of engineers and designers and
enable them to communicate with one another (Singh, 1999).

An RMR classification system, also known as a
geomechanics classification system, was first proposed in
1973 and later modified based on new experiences (tunnel
projects) and changing standards. Despite the changes made
over the years, the system remains the same in principle
(Bieniawski, 1989).

The RMR system has been used in many tunnel projects
as one of the main indicators for defining the support or
excavation classes (Stille and Palmstrom, 2003).

Bieniawski developed a Rock Mass Rating (RMR) system
based on six parameters: (1) the uniaxial compressive
strength of intact rock (UCS), or test point load strength
index; (2) the Rock Quality Designation (RQD); (3) the joint,
or discontinuity, spacing (JS); (4) the joint condition (JC),
including its filling, aperture, alteration, persistence and
roughness; (5) the groundwater condition (GW); and (6) the
joint orientation (JO). He assigned numerical rating values for
all these parameters. Based on the value of the RMR,
Bieniawski divided the whole universe of rock masses into
five classes and then assigned a stand-up time for each class
(Hudson and Harrison, 2005).

The sum of the rating that corresponds to the five main
parameters is referred to as the ‘basic RMR’ (Figure 1).
However, the total RMR is obtained by adjusting the basic
RMR to account for the influence of the joint orientation on a
specific excavation face. 

Like many other classification systems currently being
used in engineering geological practice, the RMR often
involves criteria whose values are assigned in linguistic
terms. Practitioners and educators are familiar with the
difficulty of capturing and communicating the experience and
underlying assumptions of experts when trying to express
the various states or levels of a classification criterion in
linguistic terms. What do experts actually mean when they
use terms related to approximation and possibility? How can

we ensure that these terms mean the same thing in every
instance and to every practitioner or expert? How can we
utilize this fuzziness in expert opinion and the decision-
making process? A fuzzy set approach reveals not only the
basis for the experts’ evaluations; it also makes them more
objective, particularly through the process of setting
functional expressions for the way in which the assigned
values are perceived, believed, supported, or confidence in
the values is assigned. In RMR processes, subjective (or non-
random) uncertainties result from: (a) use of qualitative
(linguistic) terms (as the input value for some criteria) whose
meanings vary from one expert to another; (b) predetermined
and sharp class boundaries, whereas the rock mass quality is
gradational in nature; (c) prescribed rating (or weighting)
scales representing the contribution (importance) of each
criterion to the overall quality of the rock mass (assuming the
overall quality is characterized perfectly by the criteria being
used, and in all geological settings and applications); and (d)
the reliability of the input value (quantitative and linguistic)
for each criterion. Fuzzy set theory enables a soft
classification approach to account for these uncertainties by
allowing the expert (of a rock engineering project and/or a
particular engineering geological environment) to participate
in this process in several ways. A number of researchers have
described the uses of fuzzy sets for rock mass classification.
For instance, Hamidi (2009) has applied fuzzy set theory to
rock engineering classification systems that analyse RMR and
RME. Basarir (2007) has presented a fuzzy logic-based
rippability classification system that highlights the limitations
of blasting, direct ripping, and a rippability classification
system in general. Furthermore, Jalalifar (2011) has predicted
the rock mass rating using fuzzy logic while paying special
attention to the discontinuities and groundwater conditions;
he established the RMR by considering underground water
from a non-fuzzy and fuzzy standpoint. Finally, Samimi
Namin et al. (2004) used fuzzy logic to propose a method for
investigating the changes in the strength and support system.

Fuzzy mathematics permits the ‘uncertainty’ surrounding the
assessment of parameters to be included. Also, the
application of this technique in rock mass classification is
straightforward and direct, because fuzzy numbers may be
assigned easily to the parameters in a rock mass
classification scheme (Hudson and Harrison, 2005).

Fuzzy set theory is a generalization of ordinary or
classical set theory. It consists of mathematical tools
developed to model and process incomplete and/or gradual
information, ranging from interval-valued numerical data to
symbolic and linguistic expressions (Dubois and Prade,
2000). 

We briefly summarize the findings by Ross (1995) and
Klir et al. (1997) below to facilitate the discussion of fuzzy
rock mass classifications.

Fuzzy theory started with the concept of fuzziness, and
Zadeh (1965) first expressed it in the form of fuzzy sets.
Fuzzy set theory provides the means for representing
uncertainty using set theory. A fuzzy set is an extension of
the concept of a crisp set. A crisp set allows only full
membership or no membership to every element in a universe
of discourse, whereas a fuzzy set allows for partial
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Figure 1—RMR classification for characterization and design purposes
(Aydin, 2004)



membership. The membership or non-membership of an
element x in the crisp set A is represented by the
characteristic function of μ(A), which is defined by 
Equation [1]:

[1]

Fuzzy sets generalize this concept to partial membership
by extending the range of variability of the characteristic
function from the two-point set {0, 1} to the whole interval
[0, 1]:

[2]

where U refers to the universe of discourse defined for a
specific problem. If U is a finite set U = {x1, x2,…, xn}, then a
fuzzy set A in this universe U can be represented by listing
each element and its degree of membership in the set A as:
μA(x) = {μA(x1)/x1, μA(x2) / x2, …, μA(xn) / xn}. 

An element of the variable can be a member of the fuzzy set
through a membership function that can take values in the
range of 0 to 1. The membership function (MF) is determined
by people with experience. The membership functions have
different shapes: triangular, trapezoidal, piecewise-linear,
Gaussian, bell-shaped, and so forth. In this study, triangular
and trapezoidal membership functions are used (Figure 2).
Points a, b and c in the triangular MF represent the x
coordinates of the three vertices of μA(x) in a fuzzy set A: 
(a: lower boundary and c: upper boundary, where the
membership degree is zero, b: the centre, where membership
degree is 1). When an element belongs to a definite set, the
fuzzy membership model (gradual membership degree) gives
the fuzzy sets flexibility for modelling commonly used
linguistic expressions, such as ‘the uniaxial compressive
strength of rock is high’ or ‘low water inflow’, which are
frequently used in rock engineering classification systems.

The Fuzzy Inference System (FIS) is a well-known computing
system that is based on the concepts of fuzzy set theory,
fuzzy if–then rules, and fuzzy reasoning (Ross, 1995).
Several types of FIS have been employed in different
applications. The most common models are the Mamdani
fuzzy model, the Takagi– Sugeno–Kang (TSK) fuzzy model,
the Tsukamoto fuzzy model, and the Singleton fuzzy model

(El-Shayeb et al., 1997). Among the aforesaid models, the
Mamdani model is used most often for algorithms. The
Mamdani fuzzy algorithm takes the following form (Iphar
and Goktan, 2006):

where x1 and x2 are the input variables, Air and Bi are
linguistic terms, r = 1, 2, …, i are fuzzy sets, i is the output
variable, and k is the number of rules. Figure 3 provides an
illustration of a two-rule Mamdani FIS, which derives the
overall output ‘z’ when subjected to two crisp inputs, ‘I’ and
‘y’ (Jang et al., 1997). The ‘x’ and ‘y’ inputs represent the
crisp values. For a set of disjunctive rules, the following
equation gives the aggregated output for ‘k’:

where μCk, μAk, and μBk are the membership functions of
output ‘z’ for rule ‘k’, input ‘x’, and input ‘y’, respectively. It
has a simple graphical interpretation, as shown in Figure 3.

In Figure 3, the symbols A1 and B1 refer to the first and
second fuzzy antecedents of the first rule, respectively. The
symbol C1 refers to the fuzzy consequent of the first rule and
A2 and B2 refer to the first and second fuzzy antecedents of
the second rule, respectively, C2 refers to the fuzzy
consequent of the second rule. The minimum membership
value for the antecedents propagates through to the
consequent and truncates the MF for the consequent of each
rule. Then, the truncated MFs for each rule are aggregated. In
Figure 3, the rules are disjunctive so the max aggregation
operation results in an aggregated MF that is comprised of
the outer envelope of the individually truncated membership
forms from each rule. If a crisp value is needed for the
aggregated output, an appropriate defuzzification technique
should be employed to the aggregated MF (Ross, 1995).
There are several defuzzification methods, including the
Centroid of Area (COA), or Centre of Gravity, method, the
Mean of Maximum method, and the Smallest of Maximum
method (Grima, 2000). In Figure 4, the COA defuzzification
method is used to obtain the numeric value of the output. 

Uncertainty determination in rock mass classification when using FRMR Software
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Figure 2—Triangular, trapezoidal, and bell-shape membership functions Figure 3—The Mamdani FIS (El-Shayeb et al., 1997)
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In this study, we apply the COA method to the
defuzzification process because the calculations are easy to
perform. The COA defuzzification method in a continuous
domain is defined by the following equation:

where ZCOA is the crisp value for the z output and μA(z) is the
aggregated output membership function. 

The main problem when classifying the RMR is that we do
not have a clear idea of the relationship between the levels of
the abovementioned parameters, especially near the
boundary conditions. In general, we can say that classifying
the parameters in this way does not take into account the
ambiguity of the boundary conditions because this kind of
classifying is based on classic sets. For the most effective
parameters in classifying the rock mass and expressing the
quality of rock mass, the RQD should be between 0 and 100
and the rock mass divided into five levels: ‘Very Bad’, ‘Bad’,
‘Average’, ‘Good’, and ‘Very Good’. The different levels
express the quality of the rock mass. The percentage of RQD
specifies the boundaries of these levels (see Table I) 

According to Table I, the RQD cannot be divided in this
way near the boundary. For example, if the RQD is 89%, it is
assigned to the ‘Good’ level, whereas when the RQD is 90%,
it is assigned to the ‘Very Good’ level.

Table II shows that all RQDs that are at the same level
have the same effect on the RMR. In other words, we expect
that if the RQD increases, the RMR will also increase. This is
not true when classifying the RQD using the Bieniawski
classification system. 

The Fuzzy Rock Mass Rating (FRMR) software tool classifies
rock mass in indefinite situations. This software acts in three
ways: semi-fuzzy, complete fuzzy, and quality fuzzy, as a
means of specifying the RMR.

When the initial parameters are completely correct and
reliable, and the area being examined does not change a
great deal, the semi-fuzzy option shows good results 
(Figure 5).

The second, or complete fuzzy option, should be used
when the area changes a great deal, when the measurements
are not done carefully, or when there is not enough input
data to represent the whole area (Figure 6).

With the last option, quality fuzzy, there is no need for
any input and the user specifies the quality of each input
parameter and the ultimate RMR is a known beforehand. This
option is useful for obtaining an entire view of the RMR
without spending a great deal of time and money (Figure 7).

�
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Table II

Rating of RQD when using a fuzzy set

Levels Very Bad Bad Average Good Very Good

RQD 0–25 25–50 50–75 75–90 90–100
Score 3–7 8–12 13–16 17–19 20

Table I

Rating of RQD during RMR classification

Levels Very Bad Bad Average Good Very Good

RQD 0–25 25–50 50–75 75–90 [90–100
Score 3 8 13 17 20

Figure 4—Various defuzzification schemes for obtaining a crisp output
(Jang et al., 1997)

Figure 5—Semi-fuzzy option in FRMR

Figure 6—Complete fuzzy option in FRMR



Unlike crisp (ordinary) sets, fuzzy sets have no sharp or
precise boundaries. As a result, the degree of membership
A(x) of elements x to a fuzzy set A depends upon their
positions (or compatibility) with respect to the centre (or the
central concept). An element’s position within a fuzzy set is
determined by the degree of belief (or support) that the
element belongs to that set. Thus, a fuzzy set is uniquely
characterized by a membership function that expresses this
support between 0 and 1.

Although Bieniawski’s rock mass classification system
often involves criteria whose values are assigned in
membership, sharp class boundaries are a subjective
uncertainty in rock mass classification. Fuzzy set theory
enables a soft approach to account for these uncertainties.
Actually, fuzzy sets make them more objective, particularly
through the process of constructing membership functions.
Because it is difficult to assign a number to the RMR
parameter in the boundary zone between the classes, a fuzzy
set can be used. An applied fuzzy set is shown in Table III.  

Table III shows adjusted ratings and new floors, which
are related to the ‘point load strength index’ and the ‘UCS’. 

The parameters have been divided into seven categories:
(1) Very, Very Bad (VVB), (2) Very Bad (VB), (3) Bad (B),
(4) Average (A), (5) Good (G), (6) Very Good (VG), and (7)
Very, Very Good (VVG). The rating for each parameter can be
obtained by using Table III. We used the related fuzzy sets to
obtain the membership degree of each parameter. The fuzzy
diagrams used for this model have been determined based on
personal experience.

The fuzzy diagrams for the ‘UCS’ and the ‘point load
strength index’ are presented in the Figures 8 and 9.

Table IV shows the adjusted and rated new levels that are
related to the other parameters.  

Figures 10 through 17 show the fuzzy diagrams for the
‘RQD’, ‘spacing joint’, ‘filling’ (hard rock), ‘filling’ (soft rock),
‘aperture’, ‘roughness’, ‘persistence’, and ‘water condition’.

For the classification, we have divided the parameters
into five floors: (1) ‘Very Bad’ (VB), (2) ‘Bad’ (B), (3)
‘Average’ (A), (4) ‘Good’ (G), and (5) ‘Very Good’ (VG). 

Based on the fuzzy set diagram of the RQD (Figure 11),
in order to calculate the rating of RQD, 75% of the
membership degree with a value of 0.5 needs to belong to
class A and G and the membership degree with a value of
zero must belong to the other classes (VB, B, VG). The fuzzy
RQD is calculated as follows:

0*3(Very Bad)+0*8(Bad)+0.5*13(Average)+
0.5*17(Good)+0*20(Very Good)=15
The rating of RMR shown in Table V has been obtained

in two ways: firstly, using classic RMR (Bieniawski, 1989);
and secondly, using RMR fuzzy sets.

When a mistake is made in determining the value of
RMR, the solution involves one of two options:

(1) Determining the type and amount of maintenance
necessary

(2) Determining the time of installation and maintaining
stability.

Uncertainty determination in rock mass classification when using FRMR Software
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Table III

Uniaxial compressive strength and point load index and the point’s classification in the RMR

Parameter VVB VB B A G VG VVG

Point load strength index - - 1-2 2-4 4-6 6-8 8-10 >10
Uniaxial strength <5 5–25 25–50 50–100 100–150 150–200 100–200 >250
Rating 1 2 4 7 10.5 12 13.5 15

Figure 7—Quality fuzzy option in FRMR

Figure 8—Fuzzy set diagram of the UCS

Figure 9—Fuzzy set diagram of the point load strength index
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Table IV

The RQD, discontinuity conditions, groundwater status, and classification ratings for the RMR

Parameter Very Bad Bad Average Good Very Good

RQD <25 25-50 50-75 75-90 90-100
Rating 3 8 13 17 20

JOINT SPACING (cm) <6 6-20 20-60 60-200 >200
Rating 3 8 10 15-19 20

PERSISTENCE (m) >20 10-20 3-10 1-3
Rating 0 1 2 4 6

APERTURE (mm) >5 1-5 0.1-1 <0.1 0
Rating 0 1 4 5 6

ROUGHNESS 0-2 2-4 4-6 6-10 >10
Rating 0 1 3 5 6

FILLING Soft filling Hard filling Without filling
>5mm <5mm >5mm <5mm

Rating 0 2 2 4 6

ALTERATION Crushed Much alteration Moderate alteration Little alteration Without alteration
Rating 0 1 3 5 6

WATER CONDITION Flowing Dripping Wet Damp Completely dry
Rating 0 4 7 10 15

Figure 10—Fuzzy set diagram of the RQD

Figure 11—Fuzzy set diagram of the spacing

Figure 12—Fuzzy set diagram of the filling (soft rock)

Figure 13—Fuzzy set diagram of the filling (hard rock)

Figure 14—Fuzzy set diagram of the aperture

Figure 15—Fuzzy set diagram of the persistence



To determine the RMR in the Gol-e-Gohar mine and use it
for different purposes, such as determining the geotechnical
parameters of the rock mass or the stability of the slope, it is
important to first ascertain that the RMR for the different
mineral walls and waste material is calculated separately. 

Table VI shows the calculations for each part of the mine
(Shahriar et al., 2003).

The main elements of a fuzzy algorithm are the input–output
sets and the if–then rules. With this software tool, the
Mamdani FIS was applied to the input parameters to select an
appropriate RMR. The model includes nine input variables:
(1) the UCS or point load strength index; (2) the RQD; (3) the
spacing of the discontinuities; (4) the aperture of the
discontinuities; (5) the filling of discontinuities; (6) the
alteration; (7) the condition of the groundwater; (8) the
persistence of the discontinuities; and (9) the roughness of
the discontinuities. In general, the model includes three
output variables: (1) the FRMR basic diagram and its
membership; (2) the basic FRMR; and (3) the adjustment
FRMR. The FRMR diagram includes eight levels: VVB, VB, B,
A, G, VG, VVG, and E. These are shown in Figure 18. 

In the model, triangular and trapezoidal membership
functions were developed for the input variables because of
their simplicity. For the input variables, the homogeneity of
discontinuities was selected as a crisp set due to its
qualitative nature and the lack of a sharp boundary for
classification. 

The other stage of the FIS involves constructing the if–
then rules. The RMR rating system has nine main
parameters, each including five levels (except for the aperture
diagram). The permutation of the input parameters with the
different levels is equal to 1 562 500. The number of if–then
rules is 1 562 500 ((5^8)*4). 

The overall structure of the Mamdani fuzzy inference is
shown in Figure 19.
The rule for FIS is as follows. If 

� UCS is B
� RQD is VG
� JS is M
� Aperture is VB
� GW is G
� Persistence is G

Uncertainty determination in rock mass classification when using FRMR Software
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Table V

Classic RMR and RMR based on the fuzzy sets

Input parameters Description Classic RMR RMR fuzzy sets

Point load test 4.5 (MPa) 12 7*0.2+10.5*0.8=9.8

RQD %75 17 13*0.5+17*0.5=15

Joint spacing 9.6 (cm) 8 8*0.8+3*0.2=7

Water condition Damp 10 10

Roughness 2 0*0.5+1*0.5=0.5

Persistence 2 6*0.2+4*0.2=5

Aperture 3 20 1

Filling 7 (mm)-hard rock 4

Alteration None 6

Total 67 58.3

Figure 16—Fuzzy set diagram of the roughness

Figure 17—Fuzzy set diagram of the water condition

Table VI

Input parameters and RMR walls in Gol-e-Gohar mine

Waste Ore
Walls West East South North West East South North

Point load test 2.3 2.3 2.3 2.3 3.2 3.2 3.2 3.2
RQD 50 50 50 50b 80 80 80 80
Joint spacing 57 57 57 57 85 85 85 85
Persistence 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
Aperture 2 2 2 2 2 2 2 2
Roughness 4.2 4.2 4.8 4.8 4.2 4.2 4.8 4.8
Filling (mm) Soft (4.5) Soft (4.5) Soft (4.5) Soft (4.5) Hard (5.5) Hard (5.5) Hard (5.5) Hard (5.5)
Alteration Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate
Water  condition Wet Damp Wet Damp Wet Damp Wet Damp
Rating 49.9 52.9 50.5 53.5 58.9 61.9 59.5 62.5
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� Roughness is G
� Filling is VG, and
� alteration is VG, then 
� SCORE is G.

The last stage of the FIS is to select the defuzzification
method. Aggregating two or more fuzzy output sets yields a
new fuzzy set in the basic fuzzy algorithm. In most cases, the
result, which is in the form of a fuzzy set, is converted into a
crisp result via the defuzzification process. In this study,
therefore, the COA method is employed for the defuzzification
process because it is easy to perform the calculations with
this method. The fuzzy set diagrams that have been used for
this type of software are shown in Figures 20–28. 

�
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Figure 18—Fuzzy set diagram of the FRMR

Figure 19—Mamdani fuzzy inference for the FRMR

Figure 21—Fuzzy set diagram of the joint spacing

Figure 20—Fuzzy set diagram of the UCS (MPa)

Figure 23—Fuzzy set diagram of the RQD

Figure 22—Fuzzy set diagram of the groundwater

Figure 25—Fuzzy set diagram of the filling (mm)

Figure 24—Fuzzy set diagram of the roughness

Figure 27—Fuzzy set diagram of the aperture (mm)

Figure 26—Fuzzy set diagram of the persistence (mm)



The example provided above makes this software option
more clear. Table VII shows the entrance parameters.

According to Figure 28, when the RQD is 75% it belongs
to two levels: ‘A’ and ‘G’. Table VII shows the level of the
other entrance parameters. 

According to the number of levels for the entrance
parameters, eight rules (permutation of the input parameters
with different levels) should be considered. Figure 29 shows
the calculations for the fuzzy inference model.

1. If the (UCS is A) and the (RQD is A) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is VG) and the (roughness is G) and the
(GW is VG), then the (FRMR is G)

2. If the (UCS is A) and the (RQD is G) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is VG) and the (roughness is G) and the
(GW is VG), then the (FRMR is VG)

3. If the (UCS is A) and the (RQD is A) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is G) and the (roughness is G) and the
(GW is VG), then the (FRMR is G)

4. If the (UCS is A) and the (RQD is G) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is G) and the (roughness is G) and the
(GW is VG), then the (FRMR is VG)

5. If the (UCS is G) and the (RQD is A) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is VG) and the (roughness is G) and the
(GW is VG), then the (FRMR is VG)

6. If the (UCS is G) and the (RQD is G) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is VG) and the (roughness is G) and the
(GW is VG), then the (FRMR is VG)

7. If the (UCS is G) and the (RQD is A) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is G) and the (roughness is G) and the
(GW is VG), then the (FRMR is G)

8. If the (UCS is G) and the (RQD is G) and the (spacing is A)
and the (filling is more than 5) and the (aperture is A) and
the (persistence is G) and the (roughness is G) and the
(GW is VG), then the (FRMR is VG).

Figure 30 shows an example of the plan view for the
boreholes. To show the ability of the software to predict the
rock mass classification, the RMR is calculated in two stages.

First, 23 boreholes from a single area during the first
stage are used, and then the number of boreholes from the
same area is increased to 80.

The input parameters and final RMR results are presented
in Table VIII. 

Table VIII shows that the number of holes during the first
stage is much less than the number of holes during the
second stage. The RMR for the region is calculated using the
system proposed by Bieniawski (1989), which is different
from the real RMR for the region. During the first stage, we
used the semi-fuzzy part of the software and calculated the
RMR as 72. During the second stage, we used the complete
fuzzy part of the software and calculated the RMR as 73.
According to the size of the region and dispersion amount of

Uncertainty determination in rock mass classification when using FRMR Software
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Table VIII

Input parameters and RMR for two stages

First stage Second stage

RQD 61 58
UCS 139 153
Joint spacing 190 133
Water condition VG VG
Roughness 10 3
Aperture 0.5 4
Persistence 7 18
Alteration VG VG
Filling Hard rock, less than 5 (mm) Hard rock, less than 5 (mm)
RMR basic 72(“VG”) 73(“VG”)

Table VII

RMR parameters for the GeG mine

Input levels

UCS 100 A,G
RQD 75 A,G
Spacing 44 A
Filling 8 > 5
Aperture 3 A
Persistence .4 VG,G
Roughness 7 G
GW .03 VG
Alteration 2 VG 

Figure 29—Fuzzy inference rule based on the FRMR overview

Figure 28 —Fuzzy set diagram of the alteration
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the rock mass, the previously mentioned number of holes
could represent the region. Finally, we used the complete
fuzzy option. The RMR basic value was 73 during the second
stage and belonged to the ‘VG’ level. During the first stages,
the RMR basic value could be considered representative of
the whole region if it is calculated while considering the
complete fuzzy part and by comparing the results (the RMR
basic value for the second stage certifies this fact).

Rock engineering classifications are an integral part of
empirical approaches to design in rock engineering. Despite
their widespread use, the practical applications of the systems
have some limitations, which may lead to their misuse. Since
the geotechnical risk analysis for the face considered in this
paper is based upon the experience of the geotechnical
engineer in charge, computerized assistance is essential in
aiding the judgment of the engineer so that the decision can
be normalized and the analysis procedure automated. This
type of analysis also needs to overcome the problems of
uncertainties, imprecision, and vagueness when estimating
the parameters. The fuzzy algorithms are used here to find a
feasible solution to this problem; nonetheless, some points
have to be re-considered, such as the definition of the classes
for the input and the results as well as the reasoning rules.
This work is difficult and requires the input of various
experts and specialized engineers in the field of geotechnical
engineering. It was our main concern in this paper to present
the methodology of fuzzy reasoning for the quantification of
risk. We have discovered that this method is applicable to our
case and could be adapted to other cases and sites. 
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