
The risk management process is interwoven
with shadowy forces which usually influence
the outcome of a project, some being negative
and some positive. This paper attempts to shed
some light on the effects of the negative risk
events and the positive risk events and their
subsequent outcomes (Yang, Tay, and Sam,
1995). 

The ISO 31000 standard, ANZ4360
standard, and some risk professionals have
acknowledged the existence of risk drivers
(Standards Australia and Standards New
Zealand, 2009) and their influence on the
outcome of risk events. 

If we scrutinize the behaviour of these risk
drivers we can observe two types of outcomes,
namely, the harmful impacts (Hodder and
Rigs, 1994) and the beneficial effects (Furash,
1995). Furthermore, it can be inferred
(Luckmann, 2014) that both these forces need
consideration during the risk management
process because of their opposing character-
istics.

The intent of this paper is to define these
drives of risk (Alberts and Dorofee, 2009) and
to show how to control those forces that
beneficially influence the outcome (Simister,
1994).

With that in mind, our immediate attention
is to find an adequate and effective means to
measure and control the two risk types,
namely, the risk detrimentors (negative risk
drivers) and the propitious attractors (positive
risk drivers).

Therefore, this paper lays emphasis on
examining those factors that have harmful
and/or beneficial effects on the project
objectives.

Gaius Plinus Secondus (AD 23-79), stated in
his ‘Natural History’, ‘Solum certum nihil esse
certi’ (the only certainty is that there is
nothing certain). Peter L. Bernstein in his book
‘Against the Gods: The Remarkable Story of
Risk’ describes the history of risk and how
risk was through time (Troy, 1995). The
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history of risk starts with a Hindu-Arabic numbering system
that reached the West in the beginning of the 13th century,
and could be described as the root of the modern conception
of risk as it is known today. The first study of risk began
during the Renaissance period. This was the time when
people broke free from previous ways of doing things and
accepted challenges to open new doors. New discoveries were
made, the Earth’s resources exploited, and new innovations
emerged.

In 1654, when the Renaissance was at its peak, Chevalier
de Méré, a French nobleman with a taste for both gambling
and mathematics, challenged the famed mathematician Blaise
Pascal to solve a puzzle about how to divide the stakes in an
incomplete game of chance between two players, one of
whom is ahead. The puzzle was set forth by Lucas Pacioli, an
Italian monk, some 200 years earlier. Pacioli was the inventor
of the double entry bookkeeping system, and he also tutored
Leonardo da Vinci in the multiplication tables.

The puzzle had confounded mathematicians since the day
it was posed by Pacioli, but it was taken seriously up by the
Chevalier de Méré. Not even the brilliant Pascal could solve it.

Pascal has to turn to another famous mathematician,
Pierre de Férmat, for help and the outcome of a joint project –

what could be considered a seventeenth-century version of
the game of ‘Trivial Pursuit’ – was the discovery of the theory
of probability. With their solution, Pascal and Férmat created
the first practical art of the modern world. Their audacious
intellectual leap allowed people for the first time to make
forecasts and decisions with the help of numbers. In one fell
swoop, the instruments of risk management that had served
from beginning of the human history – the stars, the snake
dances, the human sacrifices, and genuflections – were
rendered obsolete. The modern investor’s mantra, the
tradeoff between risk and reward, could now become the
centerpiece of the decision-making process.

Pascal and Férmat made their breakthrough during a
wave of innovation and exploration so powerful that it has
been unmatched even in our own era. As the years passed,
mathematicians transformed probability theory from a
gambler’s toy into a powerful instrument for organizing,
interpreting, and applying information. As new ideas came
along, better quantitative techniques of risk management
were developed that could serve as the foundation of modern
risk management theory.

By 1725 the English government was financing itself
through the sale of life annuities, which were developed by
competing mathematicians devising tables of life
expectancies. Also in 1725, Swiss mathematician Jacob
Bernoulli posited the law of large numbers and the process of
statistical inference.

In 1730, the French mathematician Abraham De Moivre
discovered the standard deviation and proposed the structure
of normal distribution.

A few years later in 1738, Daniel Bernoulli, Jacob’s
Bernoulli nephew, defined expected utility. Even more
importantly, he propounded the idea that ‘the utility resulting
from any small increase in wealth will be inversely propor-
tionate to the quantity of goods previously possessed’. With
that innocent-sounding assertion, Bernoulli combined
measurement and intuition into one quantitative concept, hit
upon the idea of risk aversion, and laid the groundwork for
the basic principle of portfolio management in our own time.

In 1754 an English minister, Thomas Bayes, made a
striking advance that demonstrated how to make better
informed decisions by mathematically blending new
information into old information. Bayes’s theorem focused on
the intuitive judgment we have about the probability of some
event and how we try to understand how to alter those
judgments as actual events unfold.

Another discovery, regression to the mean, was made by
the English amateur statistician Francis Galton in 1875.
Whenever we make any decision based on the expectation
that matters will return to ‘normal’, we are employing the
notion of regression to the mean.

In 1952 Harry Markowitz, a young graduate from
Chicago University, demonstrated the application of
quantified diversification to portfolio management
(Luckmann, 2001). This explained why ‘putting all one’s
eggs in one basket’ is a very risky strategy and why diversifi-
cation is a much better risk aversion technique. Markowitz’s
theory quickly revolutionized corporate finance business
decisions, including those made on the Wall Street Stock
Exchange.
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Figure 1—Positive and negative risk components

Figure 2—Classification of risk drivers 



In 2008, PMI (USA) in ‘A Guide to the PMBoK’ (Fourth
Edition) introduced the concepts of positive and negative
risk, and finally on 15 November 2009 the International
Standards Organization (ISO) in Geneva, Switzerland
introduced the definition of the positive and negative risk
events in the ISO 31000 standard.

� An effect of uncertainty on objective
� Objectives can have different aspects (such as financial,

health and safety, and environmental goals) and can
apply at different levels (such strategic organization-
wide, project, product and process)

� Risk is often characterized by reference to potential
events (par. 2.17 of ISO 31000) and consequences
(2.18) or a combination of these

� Risk is often expressed in terms of a combination of
these consequences of an event (including changes in
circumstances) and the associated likelihood (2.19) of
occurrence

� Uncertainty is the state, even partial, of deficiency of
information related to, understanding or knowledge of
an event, its consequence, or likelihood.

� An event can be one or more occurrences, and can have
several causes

� An event can consist of something not happening
� An event can sometimes be referred to as an incident

or accident
� An event without consequences (2.18) can also be

referred to as a ‘near miss’, ‘incident’, ‘near hit’, or
‘close call’.

� Propitious attractor can be one or more attractors acting
together, or can be a set of forces acting on a risk
(conducive) event beneficially

� A force or set of forces always acting in the upside
direction

� Propitious attractor always acting in the opposite
direction to risk detrimentors. 

� Risk detrimentor can be one or more detrimentors, or
can be a set of forces acting together

� A force or set of forces always acting in the downside
direction

� Risk detrimentors always acting in the opposite
direction to propitious attractors.

� Conducive event always results in beneficial outcome
� Conducive event can be driven by one or more

propitious attractors.

� Negative risk events always produce a negative
outcome

� Negative risk event can be driven by one or more risk
detrimentors.

Eratosthenes (276 BC -194 BC), Greek astronomer, the
‘Father of Measurements’, calculated the Earth’s circum-
ference around 240 BC.

Eratosthenes used the lengths of shadows to figure out
how high in the sky the Sun was in a certain place on a
certain day. He knew of another place where there was no
shadow at all on the same day, which meant that the Sun
was straight overhead. He measured the distance between
the two places, and then used geometry to calculate the
radius.

‘As far as the propositions of mathematics refer to reality,
they are not certain; and as far as they are certain, they do
not refer to reality.’ Albert Einstein, Nobel Prize winner.

‘Although this may seem a paradox; all exact science is
based on the idea of approximation. If a man tells you he
knows a thing exactly, than you can be safe in inferring that
you are speaking to an inexact man.’ Bertrand Russell, Nobel
Prize winner.

There are just three reasons why people think that something
cannot be measured (Hubbard, 2010). Each of these reasons
is actually based on misconceptions about different aspects of
measurement:

The definition of measurement itself is widely
misunderstood. If one understands what ’measurement’
actually means, a lot more things like conducive events and
propitious attractors become measurable.

The thing being measured is not well defined; some sloppy
and ambiguous language gets in the way of measurement.

Positive risk management: hidden wealth in surface mining

1029VOLUME 115                    �
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Many procedures of empirical observation are not well
known. If people were familiar with some of these basic
methods, it would become apparent that many things thought
to be immeasurable are not only measurable but may already
have been measured.

A quantitatively expressed reduction of uncertainty based on
one or more observations.

The origin of probability theory lies in physical observations
associate with game of chance.

The probability of an event is the number of outcomes
favorable to the event, divided by the total number of
outcomes, where all outcomes are equally likely.

The calculation of the probability (Ash, 2008) of
occurrence must employ the use of data as a critical part of
the methodology.

The probability of occurrence is one of the two critical
aspects that determines whether a risk is worthy of
management (Yang, Tay, and Sum, 1995) or control.

The importance of the Monte Carlo risk measurement is
the replacement of single-point deterministic values in a
project plan with ranges to reflect uncertainty (Grey, 1995).

Any type of project plan includes fixed values for each
element, task or activity, describing the duration, costs, or
resources level and allowing the overall project duration, cost,
or resources requirement to be simply determined.

The Monte Carlo method is a technique for analysing
phenomena by means of computer algorithms that employ, in
an essential way, the generation of random numbers. 

The Monte Carlo simulation is performed by taking
multiple random iterations through the risk model, sampling
from input ranges. Each iteration generates one feasible
outcome for the project, calculated from a sample of values
drawn from the input data.

Multiple iterations produce a set of results reflecting the
range of possible outcomes for the project, which reveal the
best-case scenario, the worst case, and all circumstances
between.

Results are usually presented in a form of an S-curve, a
plot of the range of possible outcomes against the cumulative
probability of attaining a 

In 1948 Claude Shannon published a paper titled ‘A
Mathematical Theory of Communication’ which laid
foundation for information theory.

Shannon proposed a mathematical definition of
information as the amount of uncertainty reduction in a
signal, which he discussed in terms of the ‘entropy’ removed
by a signal.

To Shannon, the receiver of information could be
described as having some prior state of uncertainty. That is,
the receiver already knew something and the new
information merely removed some, not necessarily all, of the
receiver’s uncertainty.

The receiver’s prior state of knowledge or uncertainty can
be used to compute such things as the limits to how much
information can be transmitted in a signal, the minimal
amount of signal to correct for noise, and the maximum data
compression possible.

In 1951 Solomon Kullback and Richard Leibrer
introduced minimum cross-entropy principle (MinEnt). The
Kullback-Leibrer measure is a purely mathematical concept
that defines an oriented measure of distance between two
probability distributions.

The Kullback-Leibrer (K-L) information divergence
(better known as information gain or relative entropy) can be
used as a measure of the information gain in moving from a
prior distribution to a posterior distribution.

For discrete probability distributions P and Q, the K–L
divergence of Q from P is defined as:

In words, it is the expectation of the logarithmic
difference between the probabilities P and Q, where the
expectation is taken using the probabilities P. The K-L
divergence is defined only if P and Q both sum to 1 and if

�
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Figure 4—Risk measurements schedule

Figure 5—Illustration of the Kullback-Leibler (K-L) divergence for two
normal Gaussian distributions (Adapted from Kullback and Leibler,
1951. On information and sufficiency)



for all i (absolute continuity).
If the quantity 0 ln 0 appears in the formula, it is

interpreted as zero because,

For distributions P and Q of a continuous random
variable, K-L divergence is defined to be the integral. 

where p and q denote the densities of P and Q.
More generally, if P and Q are probability measures over

a set X, and P is absolutely continuous with respect to Q,
then the K-L divergence from P to Q is defined as

In 1957 Edwin Jaynes introduced maximum entropy
principle (MaxEnt), which is the method of statistical
inference when information about a problem is presented in
terms of averages, such as mean or variance.

Central to the MaxEnt thesis is the principle of maximum
entropy, which states that given certain ‘testable information’
about a probability distribution, for example particular
expectation values, but which is not in itself sufficient to
uniquely determine the distribution, one should prefer the
distribution that maximizes the Shannon information
entropy. 

This is known as the Gibbs algorithm, having been
introduced by J. Willard Gibbs in 1878 to set up statistical
ensembles to predict the properties of thermodynamic
systems at equilibrium. It is the cornerstone of the statistical
mechanical analysis of the thermodynamic properties of
equilibrium systems.

A direct connection is thus made between the equilibrium
thermodynamic entropy STh, a state function of pressure,
volume, temperature, etc., and the information entropy for
the predicted distribution with maximum uncertainty
conditioned only on the expectation values of those variables: 

kB, Boltzmann's constant, has no fundamental physical
significance here, but is necessary to retain consistency with
the previous historical definition of entropy by Clausius
(1865).

However, the MaxEnt school argues that the MaxEnt
approach is a general technique of statistical inference, with
applications far beyond this. It can therefore also be used to
predict a distribution for ‘trajectories’ over a period of time
by maximizing.

This ‘information entropy’ does not necessarily have a
simple correspondence with thermodynamic entropy, but it
can be used to predict features of non-equilibrium thermo-
dynamic systems as they evolve over time.

This uncertainty reduction point of view is what is critical
to business. Major decisions made under a state of
uncertainty, such as whether to approve large information
technology (IT) projects or new product development, can be
made better, even if just slightly, by reducing uncertainty.
Such an uncertainty reduction can be worth millions.

So a measurement does not have to eliminate uncertainty
after all. A mere reduction in uncertainty counts as a
measurement and possibly can be worth much more than the
cost of a measurement.

Two round concrete lined shafts of 5 m and 6 m diameter
restarted the sinking operation process; the principal shaft PA
from the 182 m level and the auxiliary shaft PX from the 141
m level.

Due to a fatal accident the shaft sinking operation was
terminated by Court order, except for dewatering of the
principal and auxiliary shafts to avoid flooding.

As a result of the recommendations made by the accident
investigating commission, the Court allowed the resumption
of shaft sinking operations in both shafts.

However, over a year of delays and new safety measures
imposed by the Court order made a severe impact on the
shaft sinking operational performance.

Three months after the shaft sinking operation was resumed,
the performance was significantly below that prior to the
accident. Therefore, it was necessary to commission a team of
risk specialist to assess and review the project risk
management on site.

The risk model of the underlying dynamics of the risk
detrimentors and propitious attractors was constructed to
depict their influence on the risk events.

This risk model was developed by CBS Australia. The
purpose of this model was to accommodate the lowest WBS
levels to create suitable base, thus enabling more accurate
identification of the risk drivers and propitious attractors.

On the work package level, threat drivers and propitious
attractors were identified more accurately and measured
exactly.

The centrepiece of this model was an introduction of
three-dimensional approaches to measurement of the risk
events, where the value to lose (VTL) was balanced with the
value to gain (VTG).

In order to enhance the risk assessment process the
coefficient of ignorance calculation and the factor of
remaining uncertainty were also used to enhance the risk
measurement and control.

Risk events on component, task, and work package levels
were simulated using Palisade Software @RISK 6.2, based on
the Monte Carlo method (Schuyler, 1994).

Positive risk management: hidden wealth in surface mining
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The integrated risk assessment model is depicted in
Figure 6. 

Identification of risks encompassed (Frigenti and Kitching,
1994) the process of finding, recognizing (Hulett, 2013) and
describing both risk events on the four risk breakdown
structure (RBS) levels. Threat drivers (risk detrimentors) and
opportunity drivers (propitious attractors) were accurately
identified (Luckmann, 2014) on the lowest RBS level. The
risks events on the first RBS level (element level) are depicted
in Table I. 

The risk events from the second RBS level (task level) are
presented in Table II.

The risk events description on the third RBS level
(activity level) are given in Table III. 

The risk events (threats) description on the fourth RBS
level (work package level) is given in Table IV. 

The risk conducive events (opportunities) description on
the fourth RBS level (work package level) are given in 
Table V.

Risk events (negative and positive) were subjected to
analysis on the fourth level of the risk breakdown structure
(RBS).

The risk analysis on the first RBS level, the element level,
provided number of negative risk events and positive risk
events in the project.

Risk analysis on the second RBS level, the task level,
clearly indicated the magnitude of the value to lose (VTL) and
extent of the value to gain (VTG).

Risk analysis on the third RBS level, the activity level,
ascertained the size of VTL and VTG and depicted the set of
risk drivers and the set of propitious attractors.

Analysis of risk drivers (Alberts and Dorofee, 2009) and
risk events on the fourth RBS level, the work package level,
depicted the risk drivers and risk events and described
(Luckmann, 2014) how those drivers and events were
measured by the use of Monte Carlo simulation method.

Propitious attractors and favourable events analysis on
the fourth RBS level, the work package level, portrayed the
propitious attractors and favourable events and how those

attractors and favourable events were measured. Application
of the Monte Carlo simulation method indicated where the
random numbers were generated by the Fibonacci generator
(pseudo random generator).

�
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Figure 6—Expected beneficial value

Table II

List of risk events on the task level

Risk# RBS Task Risk event

A1 WPSO1 Drilling Time overrun
A2 WPSO2 X-Charging Time overrun
A3 WPSO3 Evacuation Time overrun
A4 WPSO4 Ventilation Time overrun
A5 WPSO5 Mucking Time overrun
A6 WPSO6 Grillage Time overrun
A7 WPSO7 Concreting Time overrun

Table I

List of risk events on the element level

Risk# RBS Element Risk event

A WPSO Sinking operation Schedule overrun
B WPWS Work stoppages Schedule overrun
C WPEF Equipment failure Schedule overrun
D WPRA Research activities Schedule overrun
E WPCC Court constrain Schedule overrun

Table IV

List of risk events on the work package level

Risk# Risk events (threats)

B1.1.1T Setting of opening of plastic sleeve
B1.1.2T Opening of plastic sleeve
B1.1.3T Inserting explosive stick
B1.1.4T Setting to close plastic sleeve
B1.1.5T Closing

Table V

List of conducive events on the work package level

Risk# Risk conducive events (opportunities)

B1.1.1CE Improved setting of opening
B1.1.2CE Improved opening of plastic sleeve
B1.1.3CE Improved inserting explosive stick
B1.1.4CE Improved setting to close plastic sleeve
B1.1.5CE Improved closing plastic sleeve with explosive stick

Table III

List of risk events on the activity level

Risk# RBS Activity Risk event

A2.1 WPSO2.1 Open plastic sleeve Time overrun
A2.2 WPSO2.2 Bring explosive Time overrun
A2.3 WPSO2.3 Insert explosive Time overrun
A2.4 WPSO2.4 Close plastic sleeve Time overrun
A2.5 WPSO2.5 Bring detonators Tme overrun
A2.6 WPSO2.6 Insert detonators Time overrun
A2.7 WPSO2.7 Connect detonators Time overrun



The risk drivers at the pessimistic zone and propitious
attractors at the optimistic (propitious) zone are depicted in
Figure 7. 

The risk-negative events and risk-positive events (Aven,
2011) were evaluated on the fourth RBS level by the use of
Monte Carlo simulation techniques.

In both cases VTL and VTG were computed. The risk
model for the Monte Carlo simulation is given in Figure 8. 

The threat drivers were simulated by Monte Carlo random
generators (Luckmann, 2001) and the propitious attractors
were subjected to application of the Fibonacci random
generator (Froot, Scharftein, and Stein, 1994).

The coefficient of remaining uncertainty (Kapur and
Kesavan, 1992) was simulated and results are presented in
Figure 9. 

Twelve favourable risk events (positive) and twelve
propitious attractors were identified as economically viable
and to be beneficially exploited. It was recommended that the
client create the beneficial response plan (BRP) and
implement it.

Seventeen negative risk events and seventeen risk
detrimentors were posing serious impact on the shaft sinking
operation, and generation of a risk response plan (RRP) was
recommended. These negative risk events were mitigated and
the magnitude of the risk detrimentors was substantially
decreased.

Rising costs and fierce competition in the global market
require incessant search for new opportunities and novel
approaches to risk management.

From this case study, it becomes evident that risk
detrimentors acting on the negative risk events can be
measured, controlled, and mitigated.

The results also indicated that a new unexploited source
of project time and cost savings lies inherently in the positive
risk (favourable events).

The propitious attractors and favourable events can also
be measured and beneficially exploited.

The examples presented in this paper demonstrate the
potential opportunities that can be exploited by putting in
place positive risk methods to tap an entirely unexploited
domain in the project risk management.

The author would like to thank the client and the project
team for allowing CBS Australia consultants access to
conduct this complex information-gathering exercise on all
the aspects of the shaft sinking operation.

The author takes this opportunity to thank CBS Australia
staff for the intellectual and conceptual contributions to
conducting measurements in difficult shaft-sinking
conditions.

Special thanks to CBS Australia’s International
Consultants for their diligence, outstanding professional
performance, and intellectual contribution.
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Figure 7—Risks drivers at propitious zone 

Figure 8—Risk measurements: positive events (green) and negative risk
events (red)

Figure 9—Entropy coefficient of ignorance
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