
Introduction
Compositional data consists of observations
recording relative proportions in a system. The
sample space is a simplex, which has an
algebraic-geometric structure different from
that of real space, known as Aitchison
geometry of the simplex (Pawlowsky-Glahn
and Egozcue, 2001; Pawlowsky-Glahn et al.,
2015). A subcomposition is a subset of all
possible proportions. An example of composi-
tional data is the percentages of different
minerals in a rock specimen. For such a type of
data, a first obvious property is that, when
measured without error, the sum of the
proportions of all components, known as parts
in the compositional literature (in this case
minerals), adds up to 100 per cent. In some
other less frequent cases, such as the one of

our interest, the sum of all proportions is not
constant, requiring a slightly different
approach. When several specimens have been
collected and analysed over some geographical
area, usually there is the interest of analyzing
the fluctuations in composition both in
variable and geographical space.

The exact nature and properties of
compositional data have been a source of
prolonged misunderstanding and neglect.
Pearson (1897) published the first scientific
study pointing to peculiar statistical properties
when analysing ratio variables, not displayed
by multiple variables varying in real space.
However, his insights were mostly ignored for
more than half a century until Chayes (1960,
1962, 1971, 1975, and 1983) devoted serious
effort to advance the analysis of petrographic
data. Compositional data analysis, however,
would not take off until Aitchison (1982)
introduced the logratio approach and published
his monographs (1986). 

Owing to the different properties from
conventional multivariate data, the approach to
compositional data analysis has been to
convert the compositional variables to conven-
tional real variables. The development of
special statistics honoring the compositional
peculiarities has proven to be a demanding
endeavour showing no significant results. The
strategy of representing compositions using
logratio coordinates of the simplex (Mateu-
Figueras et al., 2011) makes possible the
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rigorous application of the standard methods of statistics,
thus avoiding development of a parallel branch of statistics.
The approach sometimes requires back-transforming the
results of the analysis in coordinates to the original composi-
tional proportions or concentrations. The literature sadly
contains numerous examples in which compositional data is
modelled implicitly under false assumptions, such that the
parts vary between −∞ to +∞, and that they obey Euclidean
geometry. The consequences of violating these assumptions
are rarely evaluated and go unchecked. In our case, we are
interested in applying the methods of geostatistics, which has
become the prevalent approach to mapping when taking into
account uncertainty. An early publication on the subject of
spatial estimation of compositional data is that of Pawlowsky
(1984), later expanded into a monograph (Pawlowsky-Glahn
and Olea, 2004). Developments in recent years, such as the
formulation of balances (Egozcue et al., 2003: Egozcue and
Pawlowsky-Glahn, 2005) (see Equation [3]), make it
advisable to revisit the subject. 

Geochemical surveys are one of the most common sources
of compositional data in the Earth sciences. Survey results
are reported as the chemical concentrations of several
minerals, oxides, chemical elements, or combinations thereof,
as measured in the laboratory. Analytical data that are
collected and reported is selective, never including all the
elements in the periodic table; therefore, the data available for
study covers only a subcomposition of the entire system. For
multiple reasons, the interest of the analysis concentrates
even further on a detailed account of only a few of the
compositional parts. This is the subject of our contribution.
The modelling of subcompositions requires additional
cautions not necessary for the modelling of whole systems
(Pawlowsky, 1984). The first caution is that reduction of
dimension implies some form of projection of the data-set
preserving the original proportions, a topic not addressed in
previous contributions, such as Tolosana-Delgado et al.
(2011). Consistent with the compositional approach, the
projection is preferred to be an orthogonal projection in the
Aitchison geometry of the simplex (Egozcue and Pawlowsky-
Glahn, 2005; Egozcue et al., 2011; Pawlowsky-Glahn et al.,
2015). The second point concerns the presentation of results
of cokriging. Interpolated maps of a single part, using the
units in which the original composition was expressed, are a
common interpretative tool that is not directly provided by a
compositional analysis. The way to obtain these single-part
maps from a compositional cokriging is also analysed for the
first time in a spatial context, following an analysis in the
nonspatial context (Pawlowsky-Glahn et al., 2013).

We borrowed a public domain data-set to practically
illustrate our methodology. We selected a survey of environ-
mental importance conducted in the 1990s as a joint effort by
the British Geological Survey and the Department of Public
Health Engineering of Bangladesh (British Geological Survey,
2001a, b). Many authors have modelled this Bangladesh
survey, none of whom took into account the compositional
nature of the data, e.g. Anwar and Kawonine (2012),
Chowdhury et al. (2010), Gaus et al. (2003), Hassan and
Atkins (2011), Hossain and Piantanakulchai (2013),
Hossain and Sivakumar (2006), Hossain et al. (2007),
Pardo-Igúzquiza and Chica-Olmo (2005), Serre et al. (2003),
Shamsudduha (2007), Shamsudduha et al. (2009), Yu et al.

(2003). Moreover, the data-set has the peculiarity that
instead of part per million, the concentrations are reported as
milligrams per litre, a practice shown below to require a
special final calibration to have the final results in the
original units of measurement.

Following the original environmental interest of the
survey, we selected arsenic and iron as the two chemical
elements of interest. The main objectives of our paper are to
(a) provide a summary review of cokriging for the stochastic
mapping of compositional regionalized variables; (b) present
and justify the multiple stages of preparation for composi-
tional data required for a proper spatial estimation, in
particular projection strategies for dimension reduction; (c)
provide a novel back-transformations approach required for
the display of results in the original units of concentration;
and (d) model the uncertainty in the mapping.

Methodology 

Aitchison geometry for compositional data 
Compositional data comprises parts of some whole.
Consequently, multiplication by a positive real constant does
not change the knowledge that can be extracted from the
data. Thus, the data can be modelled by equivalence classes
of vectors whose components are proportional (Barceló-Vidal
et al., 2001). These equivalence classes contain a represen-
tative for which their components add to a given constant κ >
0, allowing a general approach independently if the sum of all
parts is constant or not. All these representatives form the
sample space of compositional data, the D-part simplex, SD,
defined as

where κ is the closure constant, e.g. κ =106 in the case of
units of parts per million. All measurements done for the
same specimen define a vector of values.  In a tabulation, the
standard practice is to have data registered row-wise and
parts or variables column-wise.

The simplex, with the operations perturbation and
powering, and the inner product, called the Aitchison inner
product, is a D −1-dimensional Euclidean vector space
(Billheimer et al., 2001; Pawlowsky-Glahn and Egozcue,
2001). For the closure operation,

[1]

and the perturbation is defined as

with inverse operation or subtraction

powering is defined as

and the Aitchison inner product as

[2]

▲
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The corresponding squared distance

satisfies standard properties of a Euclidean distance (Martín-
Fernández et al., 1998), such as

The corresponding geometry is known as Aitchison
geometry, and the subscript a is used accordingly
(Pawlowsky-Glahn and Egozcue, 2001). The inner product
(Equation [2]) and its norm, llxlla = ,√〈x, x〉a, ensure the
existence of orthonormal bases. Orthonormal bases and their
respective coordinates are important, as standard methods
can be applied to the coordinates without restrictions or
constraints. This implies that all compositional results and
conclusions attained using coordinates do not depend on the
specific basis of the simplex used to model compositions in
coordinates. This is the core of the principle of working on
coordinates (Mateu-Figueras et al., 2011). 

In practice, user-defined, simple, specific bases of the
simplex can be used. The user defines a sequential binary
partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005, 2006)
that assigns a set of D−1 coordinates, called balances, to each
data location. Balances are normalized logratios of geometric
means of groups of parts, and they belong to the family of
isometric logratio (ilr) transformations (Egozcue et al.,
2003). Balances have expressions of the form

[3]

where gm(.) is the geometric mean of the arguments; y and z
are groups of parts determined in the SBP; and r and s are
the number of parts in y and z, respectively. Balances are
scale-invariant quantities. They are also orthogonal log-
contrasts (Aitchison, 2003, p. 85). As a consequence,
computation of balances does not change with the units of
the parts in the composition, or whether they are closed or
not. This is important for applications, like the one presented
in this contribution, where only some parts of the whole
composition not exactly adding to a constant are modelled.

The ilr transformation and its inverse, plus a basis
constructed using a SBP, have compact expressions useful for
computation. Consider a (D −1,D)-matrix Θ, with entries θij,
which can take the values +1, −1, 0. Each row of Θ encodes
one partition of the SBP. For the i-th row, θij = +1 points out
that xj belongs to the group of parts Gi +; similarly, θij = −1
indicates that xj is in the group of parts Gi−; θij = 0, meaning
that xj is not involved in the i-th partition. From the SBP code
Θ, the so-called contrast (D−1,D)-matrix Ψ is built up
(Egozcue and Pawlowsky-Glahn, 2005, 2006; Tolosana-
Delgado et al., 2008; Egozcue et al., 2011). If θij = 0, the
corresponding entry of Ψ, ψij , is also null. For θij = +1 and 
θij = −1 the values are, respectively:

where ri, si are the number of +1 and −1 in the i-th row of Θ.
The ilr transformation and its inverse are

[4]

where x, b are row-vectors, with D −1 and D components,
respectively; the logarithm, ln, and the exponential, exp,
operate component-wise; and (·)T denotes matrix 
transposition.

Orthogonal projections for compositions 
Projections are the main tool of dimension reduction in data
analysis. Dimension reduction of compositions is not an
exception. Orthogonal projections make sure that distances
between compositions are shorter in the projection than in
the original D components. Therefore, projections for
dimension reduction should be orthogonal (Egozcue and
Pawlowsky-Glahn, 2005). The simplest case consists in using
only some parts of a composition. This is an orthogonal
projection on a subcomposition. However, there are other
possible projections that do not correspond to this elementary
case. In general, projections are better described in terms of
coordinates and, particularly, using balances built up from a
SBP.

The rationale of a generic, orthogonal, projection is as
follows. A subspace of the simplex, ⊂ SD, is defined by a
set of d orthogonal, unitary, compositions e1, e2,…, ed, d ≤
D−1, which constitute a basis of the subspace. The projection
of x ∈ SD into the d-dimensional subspace is determined
by the inner product 〈x, ei〉a, i = 1,2,…,d. The orthogonal
projection of x on the subspace is

The basis of the subspace  , e1, e2,…, ed, can be
extended to a basis of SD, by adding a set of unitary
compositions, ed+1, ed+2,…, eD-1, such that they are mutually
orthogonal, and orthogonal to the basis of the subspace.
The coordinates of x in this basis are bi = 〈x, ei〉a, i = 1,2,…,
D−1. Evidently, projecting x on the subspace reduces to
making bi = 0 for i = d +1, d +2,…, D−1. In order to express
the projection in the simplex, the ilr-inverse transformation
(Equation [4]) is used. Denote the original ilr-coordinates,
arranged in the D−1-vector by b, and the ilr-coordinates after
the projection, bp. If Ψ is the contrast matrix corresponding to
the basis e1, e2,…, eD-1, the projected composition xp is
obtained as

[5]

The assumption is that there is a reference subcompo-
sition of interest and the projection to be carried out should
retain all relative proportions contained in the reference
subcomposition. The situation studied herein is a projection
on a subspace including the reference subcomposition and
other supplementary data. In general, any orthogonal
projection of compositions suppresses the units in which the
original composition was presented. There are scenarios in
which it is worthwhile to have the projection using the
original units. Consequently, it is worthwhile to study how to
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recover original units after an orthogonal projection, which
involves modelling some kind of total and the corresponding
projection.

After expressing a composition x ∈ SD in D − 1
coordinates, ignoring the rest, is equivalent to an orthogonal
projection of x, thus reducing the dimensionality of the
analysis. The choice of an orthogonal projection depends on
the problem to be studied, and on the interpretability of the
coordinates. The use of balances coming from a SBP is
encouraged, as they can lead to easily interpretable
coordinates.

Orthogonal projection on a subcomposition using
balances
In practice, the most frequent orthogonal projection is on the
subspace of a given reference subcomposition. Suppose that
this subcomposition is xs = [x1,x2,…, xd +1]. The subcom-
position is supposed to be made up of the first d +1 parts of
x. There is no loss of generality in this assumption, as the
parts in x can always be reordered by a convenient
permutation. An orthonormal basis for the subcomposition xs
is readily built up using a SBP. Let b1 be the balance
(coordinate) comparing the subcomposition xs to the other
parts in the composition, and bi, i = 2,…,d, be the balances
(coordinates) corresponding to xs. The SBP of xs can easily be
extended to the original composition. Regardless of the
extension of the SBP, balances bi, i = 2,…,d, of x are equal to
those corresponding to xs because balances are not affected
by the closure applied to compute xs. Thus, projecting on a
subcomposition is equivalent to keeping the balances
b2,b3,…, bd and setting the remaining balances to zero, i.e.
b1, = 0 and bd+1 = 0 ,…, bD–1 = 0, to form the vector of bp =
0. Table I illustrates how this projection works for an example
of D = 6 parts with d = 1, i.e. projection on a reference
subcomposition of two parts. The projection on the reference
subcomposition, [x1,x2], is obtained by setting b1 = 0 and
bj = 0 for j = 3, 4, 5. From bp the projected composition is
obtained using ilr-inverse in Equation [5] (Egozcue and
Pawlowsky-Glahn, 2005).

The strategy of projecting the reference subcomposition
may be not appropriate if some property from the comple-
mentary subcomposition is relevant and needs to be
preserved. The obvious way of doing this consists in using

the D−1 coordinates corresponding to the original
composition x with no reduction of dimension at all. An
intermediate possibility is considering both the coordinates of
the reference subcomposition and one or more balances
including parts in the complementary subcomposition. In the
present example, we have taken only two balances, b1 and
b2, to keep the presentation simple. Balance b2 corresponds
to the reference subcomposition [x1,x2], and balance b1
compares [x1,x2] vs. [x3,x4,…, x6]; although filtering out
details within each group, the balance b1 is an interesting
candidate to be preserved in the projection. Following the
example in Table I, using only b1 and b2 is equivalent to an
orthogonal projection from a five-dimensional space, ( 6),
into a subspace of dimension 2, which is a substantial
dimension reduction.

The reference subcomposition is

Using an SBP within xs the balances b2,b3,…, bd are
readily obtained. Also b1 corresponds to the partition of x
into the reference subcomposition and its complement, and
its expression is

[6]

The SBP of x is extended with an SBP of the comple-
mentary subcomposition, as illustrated with the example in
Table I. 

A useful projection is to preserve the values of the
balances corresponding to the reference subcomposition
b2,b3,…, bd and b1; other balances are set to zero. Denoting
by bp these projected balances, the ilr-inverse (Equation [5])
provides the projection (Egozcue and Pawlowsky-Glahn,
2005):

where gc is the geometric mean of parts within the
complement of the reference sub-composition; this geometric
mean is repeated D − d −1 times to have the D parts. The
geometric mean gc is a summary of the data within the
complementary subcomposition. Moreover, xp ∈

D, but it
spans only a (d + 1)-dimensional subspace. The vector xp can
be represented by its balances bp = [b1,b2,…, bd,0,…,0]
where the reduction of dimension appears effective.

Other balances amongst bd+1,bd+2,…, bD−1 can also be
preserved, producing orthogonal projections on subspaces of
larger dimension. The choice of these projections should be
related with the nature of the problem to be solved, and with
the relevance of the balances preserved. The proposed
selection of specific balances is here related to the character-
istics of the orthogonal projection, but subsequent operations
and modelling could be performed using any set of
coordinates.

Results in the original units after a projection 
Inverse transformed values are parts adding to 1. When the
parts add to a different constant, such as concentrations
adding to a million, the required scaling is trivial: all parts

▲
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Table I

Sign code of a SBP in S6 for a projection on the
reference subcomposition C[x1,x2]. The balance b2
compares x1 and x1; b1 compares the sub-
composition C[x1,x2] with the complementary
subcomposition. Further balances correspond to a
SBP within the complementary subcomposition

Balance x1 x2 x3 x4 x5 x6

b1 +1 +1 −1 −1 −1 −1

b2 +1 −1 0 0 0 0

b3 0 0 +1 +1 −1 −1

b4 0 0 +1 −1 0 0
b5 0 0 0 0 +1 −1



need to be multiplied by the constant. In cases, such as molar
concentrations or mg/l , the backtransformation to the
original units requires a more demanding scaling. Suppose
that a D-part composition x is expressed in some meaningful
units. For instance, in percentages, ppm, ppb, mg/l or the
like. Frequently, the fill-up component is omitted, and x
appears as a non-closed vector. A closure of x causes the
change of the original units. Also, after any orthogonal
projection, these units are lost. In the simplest case,
projection on a reference subcomposition, the result will be
expressed as proportions within the subcomposition as an
effect of the closure of the subcomposition. In some cases,
the analyst can be interested in having the final results in the
original units after projections such as those presented
above. If the original composition is large, the interest might
be in obtaining the parts in the reference subcomposition in
the original units. However, such a demand cannot be
satisfied in a strictly compositional framework. A kind of
total needs to be known. Totals can be defined in a variety of
ways (Pawlowsky-Glahn et al., 2013 and 2014), but some of
them are quite intuitive – for instance, the sum of parts in a
given subcomposition, or even a single part, using the
original units. In general, totals, denoted t, are positive
quantities with sample space + or a two-part simplex 2.
Following the principle of working in coordinates
(Pawlowsky-Glahn and Egozcue, 2001; Mateu-Figueras et
al., 2011) the total is modelled by its only coordinate in +,
or in 2 closed to a constant κt. In the first case the
coordinate is ln t; in the case of 2, the coordinate is propor-
tional to ln (t/(κt – t)) (the logit transformation of t). Here,
these coordinates are denoted generically by ϕ(t).

The following procedure is aimed at obtaining the original
units for the parts in the reference subcomposition. We
assume that the projection is defined by the balances
b2,b3,…, bd, of the subcomposition, plus b1 as defined
previously in Equation [6]. For this kind of projection, the
total, t = x1+ ... + xd+1, expressed in the original units, is a
useful choice, and will be used from now on. The total t can
be obtained from its coordinate using ϕ−1, i.e. if ϕ(t) = ln t,
ϕ−1 is the exponential function; if τ = ϕ(t) = ln (t/((κt – t))),
then t = ϕ−1(τ) = exp(τ)/[1 +exp(τ)]. The procedure to have
the projected parts xs ∈ 

d+1 in the original units has three
steps, with the two first ones corresponding to the projection:

1.  Find the balance-coordinates of x. Set some of them to
zero to perform the desired projection, thus obtaining
the projected balances bp

2.  Obtain xp, closed to some constant κ, applying the
inverse ilr-transformation to the projected balances bp

3.  Re-scale xp to the original units, using the total t, to
finally obtain the parts in xs in the original units.

The two first steps have been described in the previous
section. The third step is the calculation necessary to have
the concentrations in the original units in xp. The vector
containing the projected composition, scaled to the original
units, is

[7]

where the role of the total t appears clearly. The xu is a closed
composition when considering the original D-parts plus the

fill-up value; but the first parts xu1,…,xu,d+1, corresponding to
the reference subcomposition do not appear closed as a
subcomposition. On the other hand, the closure constant κ
does not appear explicitly in the scaling, as it cancels out
when dividing by ∑ixpi.

Cokriging
In our approach, the primary result of a spatial-compositional
analysis is a set of interpolated maps of balances. The
interpretation of these maps depends on the definition of the
particular balances chosen by the analyst. However, the
standard practice may require the analyst to generate a map
of the concentration of a single part using the original units,
e.g. in the following section, the illustrative example uses
milligrams per litre. Then, a procedure to translate the
results, expressed in balances, into a single element concen-
tration is also required.

Cokriging is a multivariate method for the simultaneous
interpolation of several regionalized variables. Obtaining
interpolated maps of D − 1 balances using cokriging may be a
hard task if D is a moderate to large number. To avoid such a
challenging task, attention can be centered in a reference
subcomposition containing d + 1 parts. Projections presented
previously reduce the number of variables to be cokriged in a
consistent way to d + 1 balances.

As pointed out in Myers (1983), cokriging should be
performed before any projection or dimensional reduction of
the data. Here we confront the tradeoff between the simplifi-
cation of cokriging and the loss of measurement units – μg/l
in our case – caused by the projection of the compositional
vector. In order to mitigate this loss, the alternative projection
is preferred. For the sake of simplicity, only d + 1 balances
will be cokriged. Additionally, interpolated values of the parts
in the reference subcomposition in the original units are also
required. As stated in the previous section, a total is also
needed, and its coordinate ϕ(t) should also be cokriged with
the mentioned d +1 balances. Therefore, cokriging involves d
+ 2 variables.

The balances b1,b2,…,bd+1 and ϕ(t) are transformed
variables which have no support restrictions: they can span
the whole real line, and they are no longer compositional or
positive variables. Ratios of parts of compositions are
frequently positively skewed, thus approximating lognormal
distributions. These distributions approach normal distrib-
utions when log-transformed (Mateu-Figueras et al., 2011).
Hence, standard multivariate techniques can be applied to
these log-transformations. In particular, cokriging can be
applied, and the properties of cokriging properly hold: best
(minimum variance) linear unbiased estimator.

To perform cokriging of the vector of these d + 2
variables, we use a matrix formulation of cokriging (Myers,
1982). Some advantages are:

➤ The components of the estimation vector are estimated
simultaneously instead of repeating d + 2 times the
undersampled formulation of cokriging, where the roles
of primary and secondary variables are interchanged

➤ The full variance-covariance of the estimates is
provided, while only the cokriging estimation variance
is obtained when each variable is estimated separately 

➤ Myers (1982) concludes that matrix formulation is
computationally advantageous and the cross-
semivariogram model is clearer. 

Cokriging of compositional balances including a dimension reduction and retrieval
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For clarity of notation in the remainder of this section,
non-random (column) vectors are denoted in lowercase and
boldface, and matrices are presented in boldface capitals.
Random variables are presented in capitals, and boldface if
they form a random (column) vector. Let Z = (Z1,Z2,…,Zm)
denote the vector of second order stationary random
functions modelling the variables of concern; here they are
(b1,b2,…,bd+1,ϕ(t)). The random vector Z is observed in the
set of n data locations uk, k =1, 2,...,n, normally expressed in
coordinates as northing and easting in the case of a bidimen-
sional spatial domain. The goal of cokriging is to estimate Z
at a location u0, Z(u0), using the linear estimator

[8]

where Γk is an (m, m)-matrix of weights. The weights Γk are
obtained by minimizing an estimation variance, conditional
to Z*(u0) being an unbiased estimator of the mean value of
Z(u0). A sufficient condition for Z*(u0) to be unbiased is
that 

[9]

(Myers, 1982), where I is the (m, m)-identity matrix.
Although there are different ways of defining the estimation
variance in the multivariate estimation case, the form

[10]

is computationally advantageous. Minimization of the
estimation variance (Equation [10]), subject to the
unbiasedness condition [9], determines the weights, Γk, by
solving the cokriging system of equations 

[11]

(Myers, 1982), where the number of equations is m·
(n + +1) and

with C
–
(ui uj) an estimator of the covariance matrix of Z(ui)

and Z(uj), and Λ
—

an (m, m)-matrix of Lagrange multipliers. 
The variance-covariance matrix of the estimator Z*(u0) is 

[12]

(Myers, 1982), where C
–
(0) = C

–
(ui uj) which does not depend

on ui under second order stationarity of Z.
The cokriging estimator Z*(u0) is a linear combination of

the observations Z(uk) whenever the observed variables are
real. However, if Z is taken as a raw composition, several
disappointing consequences follow (Pawlowsky, 1984). The
first one is that Z*(u0) is no longer a linear estimator, as the
linear combination in Equation [8] becomes nonlinear in the
simplex, (see section on Aitchison geometry for compositional
data) and ill-defined, as the non-convex combination of
compositions is not assured to be a composition (Pawlowsky-
Glahn et al., 1993). A second issue of concern is that the
unbiasedness property is lost because the centre of a random
composition is not the mean when the composition is taken
as a real vector (Aitchison, 1986; Pawlowsky-Glahn and
Egozcue, 2001, 2002). A third pitfall is that all covariance
matrices appearing in the cokriging equations ([11]−[12])
are spurious (Aitchison, 1986; Egozcue and Pawlowsky-
Glahn, 2011; Pawlowsky, 1984).

Application: As and Fe in the groundwaters of
Bangladesh

Available data

A well-known public-domain data-set is used to illustrate the
above methodology: groundwater geochemical analysis
conducted in the late 1990s in Bangladesh jointly by the local
Department of Public Health Engineering and the British
Geological Survey (2001a, b). The main objective of this
exercise is to illustrate the adequate mapping of composi-
tional data in general, not touching on other important and
related subjects such as the genesis of the concentrations and
the public health implications. The Bangladesh raw data
require some pre-processing to address the following issues:

(a)   There are indications in the British Geological Survey
(2001a) report, supported also by Yu et al. (2003),
that there is a systematic tendency of the As concen-
tration to decrease with depth. This fact implies that
proper modelling of the entire data-set requires a
three-dimensional modelling. The simpler two-
dimensional mapping of our interest thus requires
the subdivision of the complex system of aquifers
and aquitards into units without significant vertical
fluctuations in concentration. Inspection of the data
and the geology suggested that the aquifer between
7−41 m was sufficiently homogeneous for a two-
dimensional modelling. This is the subject of the
present application

(b)  Another issue is that some of the values are below
detection limit, that is, values greater than zero but
small enough to be below the analytical precision of
the laboratory. The detection limit for As is 0.5 μg/l
and 0.005 mg/l for Fe. All data values below
detection limits were replaced by an imputed value
using the methodology described in Olea (2008)

(c)  Four wells were discarded because all values were
below detection limit, an unlikely situation in nature,
which prompted the authors to suspect errors in the
collection or processing of the specimens.
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The original data-set consisted of 3416 records, each one
containing the concentration of 20 solutes in water (parts) in
milligrams per litre. Of the 20 parts analysed in the survey,
Co, Cr, Li, V, Cu, and Zn were not considered, as they present
serious problems related to values below detection limits and
to rounding in the measurement process. The arsenic values
were an exception in the sense that they were reported in
micrograms per litre, but were changed to milligrams per litre
for the purpose of modelling. The reader can visit the Internet
to view maps posting the data (British Geological Survey,
2001a).

Here, only the set of solutes (As, Al, B, Ba, Ca, Fe, K, Mg,
Mn, Na, P, Si, SO4, Sr) is considered. A data-set consisting of
14 solutes and 2096 data locations was thus retained for
further analysis.

Modelling
In the present development, available data corresponds to D
= 14 parts of a larger composition in milligrams per litre. An
analysis could be performed defining a fill-up value to the
total given by the units of measurement. This method would
require the analyst to know the density of water and the fill-
up variable would essentially be water, for example, as done
in Otero et al. (2005). Here, the fill-up part is ignored and
only data in x ∈ S 14 is modelled. The subcomposition (As,
Fe) is taken as the reference subcomposition. The available
compositions at the observation points are projected
following the approach developed previously, i.e. d = 1.

According to the emphasis by the British Geological
Survey (2001a), interest is centred on As and Fe; therefore,
the SBP was defined in a way that the first balance, b1,
reflects the relation of (As, Fe) versus the rest of parts, and
the second balance, b2, the relation of (As vs Fe). Following
Equation [3], they are computed as:

[13]

[14]

The remaining D − 2 = 12 balances were defined without
specific geological criteria. The following analysis does not
depend on the choice of these balances. The SBP used is
graphically displayed as the compositional dendrogram
(Thió-Henestrosa et al., 2008; Pawlowsky-Glahn and
Egozcue, 2011) shown in Figure 1, obtained with the
package CoDaPack (Comas-Cufí and Thió-Henestrosa, 2011).

The uppermost vertical bar, corresponding to the partition
(As, Fe) versus the rest of parts, is the largest because the
variance of b1 is the largest one. It is, in fact, 5.4805, while
b2 has a variance of 1.7401, which is the second largest
variance. Balances b3,b4,…,b13 are not necessary in the
following analysis, and are not included in the cokriging
system of equations.

Following the approach outlined previously, the total
considered for having the results in the same original units is
t = As + Fe (mg/l). The number of variables to be cokriged is
then d +2 = 3, i.e. b1, b2, ϕ(t). The balances b1 and b2 are
dimensionless, as in Equations [13] and [14] units
disappear, while the units of t are the original milligrams per
litre. The total variable t has compositional character because
it is the ratio t over the total mass (solute and water) per litre.
Frequently, the total mass, taken equal to κt =106 mg/l and
(t,106−t), is a composition in 2. In that case, the coordinate
ϕ(t) would be the logit transform of t, as mentioned
previously. However, taking κt =106 mg/l is inadequate, as it
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Figure 1—Compositional dendrogram corresponding to the sequential binary partition (SBP) of the 14 solutes in a Bangladesh survey (British Geological
Survey, 2001a). Vertical bars are proportional to the variances of each balance. The fulcrum, or point of contact of vertical and horizontal bars, is the
average balance. The horizontal box-plots correspond to the dispersion of each balance



Cokriging of compositional balances including a dimension reduction and retrieval

ignores the mass of solute (Otero et al., 2005). The
alternative of considering t as a variable in  + has been
chosen and, consequently, ϕ(t) = ln(t) is considered as the
corresponding coordinate to be used in the cokriging
modeling.

The parameters of semivariograms and cross-semi-
variograms used for cokriging are given in Table II, and are
displayed in Figure 2. Table III gives the eigenvalues for the
coefficient matrices in the linear coregionalization model used
in the inference of spatial correlation.

The study area was tessellated into a grid of locations
with a spacing of 1 km comprising 460 columns and 660
rows with 123 079 of the locations within the borders of
Bangladesh, covering the country with reasonable resolution.
Cokriging was applied using the linear coregionalization
models of Table II. The estimated maps of b1, b2, and ln (t)
are shown in Figure 3. Maps (a) and (b) in Figure 3 contain
the estimates balances after the projection of the whole
composition and the corresponding cokriging. However,
obtaining the results in the same original units (OU) of
arsenic and iron is performed using Equations [5] and [7],
which requires the cokriging results shown in map (c) of
Figure 3 corresponding to natural logarithm of the sum of the
two elements, both in the original units. 

Figure 4 shows the interpolation of both elements in their
original units (mg/l ). Despite its relevance, concentrations of
arsenic are quite low relative to the other elements in the

survey. So, for display, all values were multiplied by 1000 to
change units to µg/l , the standard form of reporting arsenic
concentrations in hydrochemistry. These maps show that the
compositional techniques are able to perform orthogonal
projections to reduce the dimension of cokriging, and to
express the results in the traditional form of maps of a single
solute in the original units (mg/l ).

▲
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Table II

Model parameters of nested semivariograms and
cross-semivariograms, all omnidirectional.

Nugget Spherical Exponential

Range (km) −−−− 65 140
Semivariogram of balance b1 3.5 0.90 3.5
Cross-semivariogram of and b1 and b2 0.75 0.35 0.77
Cross-semivariogram of and b1 and ln(t) 2.02 0.75 1.50
Semivariogram of balance b2 1.4 0.30 0.7
Cross-semivariogram of and b2 and ln(t ) -0.57 0.13 0.45
Semivariogram of balance ln(t ) 2.1 0.90 0.85

Table III

Eigenvalues of the matrices in the linear core-
gionalization model

First Second Third

Nugget 0.05 1.98 4.96
Spherical model 0.34 1.73 2.9
Exponential model 0.15 0.51 4.39

Figure 2—Spatial continuity for nested structures of semivariograms and cross-semivariograms: (a) b1; (b) b1 and b2; (c) b1 and ln t; (d) b2; (e) b12 and ln t; 
(f) ln t. For distances greater than 100 km, a drift can be observed



Uncertainty evaluation of As and Fe

Equation [12] is the variance-covariance matrix of the
estimators. If the analyst is willing to assume multinormality
of errors, the results can be used to assess uncertainty in the
modelling. In particular, three measures have been computed:
(a) the probability that As and Fe exceed a given threshold of
concentration in milligrams per litre; (b) confidence intervals
on As and Fe; and (c) validation of the coverage of the
computed confidence intervals.

The scheme of the general procedure is shown in 
Figure 5. For each point in the interpolation grid, 1000 joint
replications of (b1, b2, ln t) have been generated using the
Cholesky method (Davis, 1987), following a multivariate 

normal distribution with a mean equal to the three estimated
fields (Figure 3) and covariance V (see third step in the
work-flow, Figure 5). The simulation step corresponds to the
fourth step in Figure 5. The next step is the reconstruction of
the concentrations of As and Fe from the simulated triplets
(b1, b2, ln t). It consists of applying the ilr-inverse transfor-
mation to (b1, b2) (Equation [5]) to produce the closed
reference subcomposition (As, Fe). Then (fifth step in the
work-flow, Figure 5), using the simulated value of ln (t) =
ln(As+Fe), Equation [7] allows the analyst to obtain the
subcomposition in the original units (milligrams per litre).

The results from simulation are presented in several
maps. Figure 6 shows the probability of the content of As
exceeding 10, 50, and 100 μg/l. The first limit of 10 μg/l is

Cokriging of compositional balances including a dimension reduction and retrieval

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 115                                       JANUARY  2015 67 ▲

Figure 3—Maps of estimates for: (a) b1; (b) b2; (c) ln(As + Fe). In these maps and the maps in Figures 4, 6, 7, 8, and 9, the white denotes areas within
Bangladesh without estimation; the small darker area in the northwest corner is in Nepal and the one in the extreme southeast corner is in Myanmar

Figure 4—Map of estimated values in logarithmic scale (a) As; and 
(b) Fe
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the drinking water upper limit established by the World
Health Service (WHS); the limit of 50 μg/l is the limit used in
Bangladesh, and 100 μg/l is an arbitrary threshold that is 10
times the limit of the WHS and double the Bangladesh
recommendation. The maps in Figure 6 show a large
probability of exceeding the three limits of interest in more
than the 50% of the area of Bangladesh. Other statistics that
have been computed are the lower and upper limits of the
90% confidence interval on the mean value of As, the width
of the interval (upper limit minus lower limit), as well as the
median and standard deviation of the Monte Carlo distri-
bution of As (Figures 7 and 8, respectively).

In order to proceed to a validation of the model, the data-
set has been divided into two groups (Figure 9): a calibration
set (519 values) and a validation set (1577 values). For each
location in the validation set, the mean value of the triplet
(b1, b2, ln t) is predicted from the points in the calibration set

Figure 5—Methodology for assessing uncertainty evaluation by a Monte
Carlo approach

Figure 6—Map of the estimated probability that (a) As > 10 μg/l ; (b) As > 50 μg/ l ; and (c) As > 100 μg/ l

Figure 7—Limits of the 90% confidence interval on the estimated mean concentration of As, in logarithmic scale: (a) lower limit, and (b) upper limit



using the semivariograms (Table II); also the variance-
covariance matrix V is taken from the global analysis. Then,
a multivariate normal with these parameters is simulated
1000 times at each validation point. It produces triplets (b1,
b2, ln t), which can be used to obtain simulated values of As
and Fe. The probabilistic meaning of the α% Monte Carlo
confidence intervals have been validated exhaustively by
varying α from 0.01 to 0.99 and calculating the actual
coverage by using the validation set from the previous
validation exercise. The results are shown in Figure 10,
where the nominal coverage is compared with the actual
coverage. The results follow closely the 1:1 line, indicating
the good agreement between nominal and actual coverage.
The result confirms that, at least for the As concentration in
Bangladesh, the combined use of balances and assumption of
multinormality of errors is adequate. Considering that the
modelling is independent from the physical nature of the
analysed system, the modelling should work correctly for any
other spatial compositional data.

Discussion in terms of practical results
In a strict sense, our practical results are not comparable to
any of those from previous studies using the same
Bangladesh data, because of our decision to limit our
modelling within the depth range of 7−41 m below surface
and our imputation of values below the detection limits. The
original study set the cut-off at 150 m (British Geological
Survey, 2001a; Gaus et al., 2003), a practice followed by
most other authors mentioned toward the end of the
Introduction. Among the exceptions, Shamsudduha (2007)
restricted his study to depths up to 25 m. Hossain et al.
(2007) set the second shallowest cut-off behind ours at 
75 m. On the less consequential issue of replacement of
values below detection limit, again most authors followed the
lead of the original British Geological Survey Report (2001a)
of doing nothing – treating the detection limits as actual
measurements – or replacing them by half the value of the
detection limit. Instead, we used a method to extrapolate the
probability distribution of values below detection limit (Olea,
2008). Hossain et al. (2007) unilaterally assigned the value
1 part per billion (ppb) to all values below detection limit,
without noting or caring that 1 ppb is different from 1 μg/l .

Despite working with different subsets of the same
original data, maps of expected arsenic concentrations
produced applying different methods are remarkably similar,
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Figure 10—Nominal versus actual coverage of the confidence interval.
The coverage of the confidence interval based on the Monte Carlo
distribution follows closely the nominal value

Figure 8—Maps of As concentrations, in logarithmic scale: (a) range of the 90% confidence interval, and (b) median of the estimated mean concentration

Figure 9—Map of data subsets used for calculations (blue circles) and
validation (red crosses)
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as it is the case, for example, of our Figure 4a and the
equivalent Figure 6.4 in the original study (British Geological
Survey, 2001a, vol. 2, p. 83). Shamsudduha (2007)
addresses the issue of lack of sensitivity to estimation
methods by applying six different methods to the same data,
including ordinary kriging without any transformation of the
data, which has the potential of producing negative concen-
trations. This unacceptable inconsistency illustrates the
potential danger of avoiding the use of compositional
methods because, while non-compositional modelling
appears to provide reasonable results most of the time,
results may not always be coherent and optimal. At least at
the present time, exact number and location of problematic
estimates are impossible to predict. Unfortunately, there are
no analytical expressions available to assess differences in
results between compositional and noncompositional
approaches. Discussion of methodological assumptions and
comparison of numerical examples remain as the only
approaches to evaluate alternative methods.

In addition to the desire to have optimal estimates, the
main interest in applying stochastic methods to complex
systems is to obtain measures of uncertainty associated with
the modelling. There are several ways to display such
uncertainty, ways that are not always easy to compare, for
example, magnitude of potential errors or length of
confidence intervals. Hossain et al. (2007), applying ordinary
kriging to a logarithmic transformation of the data, made a
cross-validation by evenly splitting at random the data into
values used in the modelling and control points to compare
results. For a 10 μg/l threshold, they found that only 72.2%
of the wells were correctly predicted to be safe. Serre et al.
(2003) used a Bayesian maximum entropy approach to
prepare two traditional maps: one for the estimate and
another for their standard errors. Relative to our results, their
standard errors, on average, are one order of magnitude
smaller. Maps of probability of exceedance above selected
thresholds are one of the most useful displays in
geochemistry, a practice that had been abandoned by all
authors of publications after the release of the British
Geological Survey (2001a) report. The original study contains
probabilities of exceedance for 5, 10, 50, and 150 μg/l based
on disjunctive kriging of logarithmic transformations (British
Geological Survey, 2001a, vol. 2, p. 169). Our Figures 6a and
6b are the same type of maps for the second (As >10 μg/l)
and third thresholds (As >50 μg/l). Our probabilities are
significantly higher than those in the original report,
suggesting that avoiding the balance approach to mapping
compositional data seems to produce low probabilities of
exceedance, which in cases of toxic elements in groundwater
translates into false negatives – a dangerous situation in
which the population is given assurance of safe drinking
water when it may not, in fact, be safe. Our unique validation
of confidence intervals (Figure 10) gives us assurance that
our results are not an exaggerated claim about the possible
existence of high concentrations, but a closer approximation
to reality.

Conclusions 
Compositions are a special type of data about relative
proportions of variables in a system. All the parts of a
composition, if present, are non-negative. Frequently, they

are reported in such a way that they add to a constant to
insure that data can be compared independently of the
physical size of the specimens. In this case, the data values
are in a simplex; they are thus constrained and do not vary
over the whole real space. Consequently, statistical methods
valid for data varying over the whole real space are not
directly applicable to compositional data in a simplex,
including cokriging. 

Application of cokriging to compositional data requires as
a minimum a different representation of the data, i.e. a
representation in coordinates. This transformation moves the
compositional data from the simplex to the whole real space.
General purpose transformations, devised for other,
unconstrained, regionalized variables, are unsatisfactory for
compositional data because they do not properly handle the
relative proportions carried by the data. The ilr transfor-
mation attains this goal, in particular because it is scale-
invariant and subcompositionally coherent. Other transfor-
mations commonly used in compositional data analysis, such
as the alr (additive logratio) and the clr (centered logratio),
have not been considered. The alr leads to an oblique basis,
distorting the measures of error like the kriging variance,
when they are used as being orthonormal. The clr leads to a
generating system with singular covariance matrices.
Moreover, the use of ilr transformations to obtain coordinates
makes the work with orthogonal projections easy, thus
providing a way of supervised dimension reduction.
Orthogonal projections in the simplex (e.g. on a subcompo-
sition or defined through balances) allows generation of
results in the same units as the input data, even if the sum of
all parts do not add to a constant provided that some type of
total in the original units is available.

Cokriging is the best multivariate method to use in
producing estimates of compositional data at locations away
for observation sites. In combination with Monte Carlo
methods, under an assumption of multinormality of the
balances, it is possible to assess the uncertainty of the
estimators. Some theoretical advantages of the approach are: 

(a)  Scale-invariance and subcompositional coherence
(b)  Controlled dimension reduction using orthogonal

projections 
(c)  The possibility of having the results in the same

original units 
(d)  Modelling using balances can result in estimation

errors whose distribution can be assumed to be
approximately multinormal in the transformed space

(e)  Using Monte Carlo simulation to expand the
cokriging results, it is possible to assess the
uncertainty of the cokriging modelling.

Good conformance in confidence intervals indicates that
the modelling in general, and the multinormality assumption
in particular, are acceptable in this case. We have revisited
the mapping of a hydrochemical survey from Bangladesh.
We and the British Geological Survey applied different
transformations and estimation methods. Indications are that
the discrepancies are more significant in terms of assessing
uncertainty than in terms of mapping expected values. At
least in this comparative evaluation, the original study
obtained lower probabilities of exceedance, more likely
because of lack of adequacy of the transformations than
because of the differences in estimation methods.

▲
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