
Introduction
The semivariogram is a second-order moment
used in geostatistics for quantifying spatial
correlation. We assume a true underlying
semivariogram model, γ(h), which quantifies
the second-order spatial correlation of the
population of all values of a spatial (or region-
alized) random variable, Z(·); a semivar-
iogram, γ̂ (h), can be inferred from a set of
data values, z(ui), measured at the set of
(relatively sparse) locations {ui}. The
underlying semivariogram is defined as:

[1]

where h is a vector denoting the direction and
the Euclidean distance between a pair of
locations (e.g. Journel and Kyriakidis, 2004).
Although several approaches have been
proposed to estimate the semivariogram from
the available data, the most commonly used is
the unbiased estimator:

[2]

where N(h) is the number of pairs of data
values separated by the directional distance h
(e.g. Chilès and Delfiner, 2012). This estimator
is valid only if the increments (differences) of

the regionalized variable are second-order
stationary. When the sampling is regular, the
calculations are done for multiples of the
sampling interval. Otherwise, the distances are
grouped into appropriate classes and the
effective values of h are the centroids of these
classes. The discrete set of γ̂ (h) values is
called variously the sample, experimental, or
empirical semivariogram. Semivariogram is
also sometimes shortened to ‘variogram’ in the
literature.

For any distance, the ultimate aim is to
infer the underlying (or population) semivar-
iogram from a sample. The traditional solution
is to fit an analytical model to a set of γ̂ (h)
values. The type of model is restricted to those
that ensure positive definiteness of variance-
covariance matrices in subsequent
calculations, which ensures that the solution
exists and is unique when the matrix is used
in kriging equations. Commonly used semivar-
iogram models include the spherical,
exponential, and Gaussian (e.g. Olea, 2009).
To maximize consistency between models and
data, model parameters are obtained by fitting
the model equations to the experimental points
either (a) semi-manually with the assistance
of graphical software in which the goodness of
fit is decided visually, or (b) automatically by
using some sort of optimization method. It is
often the case that: (i) there are too few pairs
for a given distance, (ii) the empirical semivar-
iogram is noisy, and (iii) the data are not
normally distributed.

The objective here is to describe the results
of work conducted to overcome some of the
problems with the two-step approach of
calculating semivariogram values and fitting a
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model, in particular, to: (a) minimize discrepancies between
the underlying and the modelled semivariograms, (b) propose
a method that is resistant to data preparation errors and
robust to departures from normality, and (c) quantify the
uncertainty of the estimated model parameters. The results
are improvements over previous efforts (Pardo-Iguzquiza and
Olea, 2012) in the sense that: 

➤ The bootstrap semivariogram is proposed for inferring
the semivariogram model (i.e. semivariogram
parameters)

➤ A procedure is proposed for building confidence
intervals

➤ The bias, variance, and mean square error for the
semivariogram parameters are given for a synthetic
random field for which semivariogram parameters are
known

➤ The robustness and resistance of the proposed
approach are analysed.

Robustness and resistance
Equation [2] is a quadratic estimator. Consequently, although
theoretically unbiased, it shares all the problems of such
estimators, including sensitivity to (a) small sample sizes, 
(b) skewness in the sample distribution, and (c) presence of
outliers. We apply three techniques to mitigate the effect of
these factors.

Bootstrap
For a given sample size, n, the bootstrap allows the
generation of new samples of the same size. This is
accomplished by resampling the sample data-set with
replacement, producing multiple data-sets of size n. The new
data-sets tend to be all different because in any given
resampling some values will be sampled more than once and
some will not be sampled at all (e.g. Efron and Tibshirani,
1994). These new samples – called bootstrap samples or
resamples – are intended to mimic the results that would
have been obtained from other samples that could have been
drawn from the random field.

Given a sample of size n, the bootstrap is a method for
predicting the dispersion in results that would occur if all
possible samples of the same size n were drawn from the
population. The classical bootstrap steps for identically
distributed and independent values are:

1. Select at random and with replacement n values
from the available sample

2. Use the resample values to calculate any statistic of
interest, say, the mean, and store the results

3. Go back to Step 1 and repeat the process a large
number of times, at least 1000 times

4. Stop.

The set of values generated in Step 2 is the numerical
approximation of the variability in the parameter that would
be obtained by actually collecting multiple samples of size n.

If the data are spatially correlated then the bootstrap
resamples will not be independent and the assumption will be
violated. Therefore the application of the bootstrap to
spatially correlated data requires two additional steps. First,
the spatial correlation must be removed to satisfy the
requirement that the values are independent. Once the

resample is obtained, the spatial correlation must be re-
introduced (Solow, 1985; Pardo-Igúzquiza and Olea, 2012).
The effectiveness of the first step could be tested by the p-
values of a decorrelation test of normal scores as described in
Pardo-Igúzquiza and Olea (2012). However, this has not
been pursued further in the proposed approach.

For samples that include abnormally high values, the
bootstrap can produce other more typical resamples. By doing
so, the values of the parameter of interest, the semivariogram
in our case, will also be less extreme and closer to the
underlying value, which is the ultimate objective of any
statistical inference. The bootstrap filters extreme values by
exclusion. 

Normal score transformation
The normal score transformation is a bijection between the
sample distribution and a standard normal (Gaussian) distri-
bution (e.g. Olea, 2009). Given a sample of size n, it is
always possible to rank the values to obtain n quantiles. The
bijection is the operation by which the ith measurement in
the sample is assigned the value of the standard normal
distribution for the same ith quantile. Thus, for example, if
20.8 ranks 50 in a sample of size 200, its normal score
transformation is –0.675.  Most formulations in statistics are
either strictly valid for normal distributions or behave better
when the sample is normal. The normal score transformation,
for example, minimizes the influence of values in the high
tail of a positively skewed distribution by scaling the entire
sample distribution. The transform reduces the impact of
outliers by rescaling to a normal distribution.

The median
The median is the value that divides a sample into two
classes of low and high values, each with the same number
of measurements. Thus, the median is completely insensitive
to changes in observation ranking that do not result in a
move from one class to the other. For example, if the median
is 45.5 and an observation of 60.9 is erroneously coded as
609, the error has absolutely no effect on the median. If
instead, it is miscoded as 6.09, the median does change, but
only slightly, to the nearest value below 45.5, say, 44.8. The
resistance of the median to these types of changes or to true
abnormally high values contrasts significantly with the
sensitivity of quadratic statistics (e.g. Cox and Pardo-
Igúzquiza, 2001), such as the variance or the semivariogram,
particularly to changes in the upper tail of a distribution.
Thus, the median buffers the results from outliers.

In a loss function context, the median is the moment that
minimizes the sum of absolute errors. In contrast, the mean
minimizes the sum of quadratic errors (Klugman et al.,
2012).

More than thirty years ago, Armstrong and Delfiner
(1980) explored the possibility of estimating the semivar-
iogram in terms of quantiles, but their work has largely been
ignored. Other approaches to robust and resistant calculation
of semivariograms can be found, inter alia, in Cressie and
Hawkins (1980), Cressie (1984), and Dowd (1984).

Performing a fitting to the median of squared differences
instead of directly to the empirical semivariogram reduces the
sensitivity of the semivariogram modelling to erratic fluctu-
ations. We still use Equation [2] to generate values of an
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empirical semivariogram as there is no point in using the
median for this purpose. The difference here is that the
modelling does not stop there. We use the generalized
bootstrap to generate multiple empirical semivariograms. The
median is used as a measure of central tendency for the set of
all bootstrap empirical semivariograms for which the fitting is
done.

Algorithm
Conformance of the empirical semivariogram with the
underlying semivariogram is a necessary condition for the
semivariogram model to follow the underlying semivar-
iogram. The general idea is to post-process (filter) the
traditional estimator resulting from the application of
Equation [2] to remove all the noise that ordinarily causes
the empirical semivariogram to deviate from the underlying
semivariogram. In this regard, our proposal differs from that
of Armstrong and Delfiner (1980) in which the estimator is
replaced by the median and the results are corrected  to
obtain the mean experimental semivariogram.

The algorithm is iterative in the sense of the Kirkpatrick
et al. (1983) solution to the classical travelling salesman
problem and the simulated annealing of Deutsch and Journel
(1998). It comprises two loops, an inner one to generate
multiple resamples and an outer one to obtain median
semivariograms, as many as necessary to reach convergence.
The method stops either when a maximum number of
iterations has been reached or the discrepancy between the
semivariogram models in the last two iterations is below a
threshold. Our approach determines a distance increment to
model empirical semivariograms and makes use of two types
of analytical models, one for the attribute (B) and another
one for its normal scores (A). The iterative steps are:

1. Read in the data
2. Set the number of resamples, the distance interval,

the stopping value, and the maximum number of
iterations

3. Select the analytical type of the semivariogram
model both for the attribute and the normal scores

4. Transform the attribute measurements to normal
scores

5. Use a sample of size n to calculate the empirical
semivariogram

6. Automatically fit a semivariogram model of type A,
which becomes the starting model

7. Use the normal score semivariogram model to
calculate the covariance model for all pairs of data
locations

8. Apply the Cholesky decomposition to spatially
decorrelate the original normal scores to generate a
new set of independent normal score values

9. Take a bootstrap resample of the decorrelated values
10. Run a test to check that the normal scores are

indeed decorrelated and store the p-value
11. Make the resample spatially correlated by inverting

the Cholesky method
12. Calculate the empirical semivariogram for the

normal scores and store the results
13. Back-transform the values to their original space
14. Calculate the empirical semivariogram for the

resample and store the results

15. Go back to Step 9 if the minimum number of
resamples has not been reached. Otherwise,
continue to the next step

16. For every distance, take the median value of the
estimated semivariogram for the normal scores and
for the attribute and then fit corresponding semivar-
iograms of type A and B. If this is the first pass, go
back to Step 7. Otherwise, continue

17. If Gi and Gi+1 are the last two semivariogram
models of type B, calculate

[3]

and compare it to the stopping value. If the
maximum number of iterations has not been
reached and the integral is larger than the stopping
value, go back to Step 7. Otherwise, stop; Gi+1 is
the semivariogram model for the attribute.

In general, the analytical expression for the semivar-
iogram of the attribute and that of its normal scores may be
different and certainly unknown (Stefanou et al., 2004). The
algorithm can be simplified for the case when the semivar-
iogram of interest is for the normal scores or for normally
distributed values.

The normal scores in Steps 8 and 9 are perfectly
decorrelated if, and only if, the semivariogram used to define
the correlation matrix is exactly the underlying semivar-
iogram (Hoeksema and Kitanidis, 1985). If the user is
interested in investigating the mathematical goodness of
alternative semivariogram models, the p-value offers an
adequate criterion for comparisons.

Case study

Exhaustive sample
A simulated realization of a Gaussian random field is used as
an exhaustive sample at a finite number of experimental
locations. The advantage of using a synthetic example is that
the underlying semivariogram parameters are known and
thus the performance of the estimators can be compared in
terms of bias, variance, and mean square error. Furthermore,
the simulated realization is guaranteed to follow the imposed
model, whereas a natural phenomenon will do so only in an
approximate manner. Figure 1 shows a realization of a
second-order stationary, zero-mean, Gaussian random field
with an exponential semivariogram with range 10 units,
nugget variance 0.3, partial sill of 0.7, and thus total variance
of 1.0. The realization in Figure 1 comprises a grid of 128 ×
128 locations with unit grid sides in the X and Y directions.
All 16 384 values on the grid were used to calculate the
exhaustive experimental semivariogram for the realization
shown in Figure 2, together with the model fitted to it:  

which is the exact theoretical model used to generate the
simulation. 

In practice, of course, an exhaustive sampling is not
possible and, in most geoscience applications, the total
sample volume is significantly less than 1% of the total
volume from which the measurements are taken. For
example, a quartz-vein hosted gold deposit extending over an
area of 900 m × 300 m and a vertical extent of 150 m would

Robust and resistant semivariogram modelling using a generalized bootstrap
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typically be sampled for reserve estimates on a drilling grid of
30 m (along strike) × 15 m (across strike). Assuming that
each drill-hole is 150 m in length and that the diameter of the
core is 10 cm, the total sample volume represents 0.002% of
the total orebody volume. The proportion of samples does, of
course, have to be tempered by the range of spatial
correlation and the nugget effect to account just for the
independent amount of information in the sample, thus
reducing even further the sample representativity. In the
synthetic simulated example reported here for demonstration
purposes, we have considered primarily samples of size 50,
which are: (a) 0.3% of the total possible number of samples
that could be taken, and (b) on average, 18 units away from
the nearest neighbour, or 60% of the effective range of 30
units. The analysis included samples up to size 200 in some
cases.

Assessment of the new estimator
In order to assess the algorithm, a larger number of samples,
M, is generated by random sampling from the exhaustive
grid of values in Figure 1. For this work we chose 200 
(M = 200) for the total number of samples, and 50 (n = 50)
for the size of each sample. We specify the semivariogram
model as exponential, and compare a conventional model-
fitting method to the bootstrapped fitting method. The
traditional procedure is to find the exponential model
parameters by fitting the model to the experimental semivar-
iogram. Our method calculates the bootstrapped median
semivariogram parameters for the exponential model. We
then compare the two methods using measures of bias,
variance, and mean square error.

For the ith sample, a given semivariogram model
parameter θ is estimated and the estimated value is denoted
θi

*. The mean and variance of the estimated parameter values
are given by:

[4]

[5]

The bias (B) and mean square error (MSE) are estimated as:

[6]

and

[7]

respectively.
Bias, variance, and mean square error are used to assess

the performance of the median semivariogram estimator with
respect to conventional estimator (ordinary least-squares
fitting of the exponential semivariogram model to the experi-
mental variogram) for several situations of interest. We focus
on the most usual semivariogram parameters in the so-called
basic Matheron representation: range, nugget variance, and
total variance.

The results of 1, 5, 10, and 30 iterations for a base case
are shown in Tables I−III for the three parameters nugget
variance, total variance, and range. The decrease in mean
square error is different for the different parameters and it is
concluded that most of the gain is obtained from the first
iteration.

Resistance to outliers was checked by comparing the
results using samples from Figure 1 with the results from a
contaminated sample. Two contaminations have been used:
(a) 10% contamination from a Gaussian distribution with
zero mean and variance 10, and (b) adding a single outlier of
fixed value 7, which is seven times the standard deviation
from the mean. The results are shown in Tables IV to VI for
the three parameters of an exponential semivariogram. For
the first contamination the bootstrap estimator produces a
reduction in the mean square error with respect to ordinary
least squares (OLS) for all three parameters. For the second
contamination the reduction is smaller, although the contami-
nation model is somewhat naïve. 

▲
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Figure 1—Simulated realization of a Gaussian random field of 128 by
128 nodes with nugget variance of 0.3, total variance of 1.0, and an
exponential semivariogram of range 10 units (i.e. practical range of 30
units)

Figure 2—Exhaustive experimental semivariogram of the complete
128×128 data-set for the four main geographical directions. The best fit
is obtained with the true values of the underlying model

B = θ
—* – θ

MSE = B2 + σθ*
2



Robustness with respect to departure from the Gaussian
distribution was tested by comparing the results obtained
when sampling from the Gaussian random field in Figure 1
with those obtained when sampling from the highly skewed
chi-squared field resulting from squaring the Gaussian
random field. The distribution is skewed as shown in 
Figure 3, and the range of the exponential covariance is
halved so that the new target range is five units of distance.

The results are shown in Tables VII to IX, from which it can
be seen that the median semivariogram estimator has a mean
square error that is smaller than that the OLS estimates, but
the improvement is not as great as in the Gaussian case.

Robust and resistant semivariogram modelling using a generalized bootstrap
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Table I

Results for the range parameter for 200 samples of
size 50. The true value of the range is 10. Mean, bias,
variance, and mean square error (MSE) for the OLS
fitting and the fitting to the median of the bootstrap
distribution

Range Mean Bias Variance MSE

Conventional experimental 11.42 1.42 44.396 46.412
Bootstrap 1 iterations 11.89 1.89 29.078 32.678
Bootstrap 5 iterations 10.93 0.93 24.370 25.531
Bootstrap 10 iterations 10.84 0.84 25.623 26.337
Bootstrap 30 iterations 11.72 1.72 26.23 29.206

Table II

Results for the nugget variance parameter for 200
samples of size 50. The true value of the nugget is
0.3. Mean, bias, variance. and mean square error
(MSE) for the OLS fitting and the fitting to the
median of the bootstrap

Nugget variance Mean Bias Variance MSE

Conventional experimental 0.25 -0.05 0.085 0.088
Bootstrap 1 iterations 0.16 -0.14 0.030 0.049
Bootstrap 5 iterations 0.15 -0.14 0.037 0.059
Bootstrap 10 iterations 0.13 -0.17 0.028 0.057
Bootstrap 30 iterations 0.15 -0.15 0.028 0.051

Table III

Results for the total variance parameter for 200
samples of size 50. The true value of the total
variance is 1.0. Mean, bias, variance, and mean
square error (MSE) for the OLS fitting and the fitting
to the median of the bootstrap distribution by using
one iteration, five iterations, ten iterations, and thirty
iterations

Total variance Mean Bias Variance MSE

Conventional experimental 1.04 0.04 0.054 0.056
Bootstrap 1 iterations 1.00 0.00 0.043 0.043
Bootstrap 5 iterations 0.98 -0.02 0.048 0.049
Bootstrap 10 iterations 0.96 -0.04 0.041 0.043
Bootstrap 30 iterations 1.00 0.00 0.040 0.040

Table V

Results for the nugget variance parameter for the
OLS and the median bootstrap methods applied to
the outlier contaminated data using 200 samples of
size 50. The true value of the nugget is 0.3. In (1),
10% of the values are drawn from a zero-mean
normal distribution with variance 10. In (2), a fixed
outlier value of 7 was added to each realization

Nugget variance Mean Bias Variance MSE

(1) Experimental 0.64 0.34 0.924 1.041
Bootstrap 1 iteration 0.26 -0.04 0.138 0.139
(2) Experimental 0.43 0.13 0.600 0.617
Bootstrap 1 iteration 0.18 -0.12 0.041 0.055

Table VI

Results for the total variance parameter for the OLS
and the median bootstrap methods applied to the
outlier contaminated data using 200 samples of size
50. The true value of the total variance is 0.3. In (1),
10% of the values are drawn from a zero-mean
normal distribution with variance 10. In (2), a fixed
outlier value of 7 was added to each realization

Total variance Mean Bias Variance MSE

(1) Experimental 1.96 0.96 0.528 1.455
Bootstrap 1 iteration 1.77 0.77 0.401 1.003
(2) Experimental 2.07 1.07 0.155 1.313
Bootstrap 1 iteration 1.58 0.58 0.130 0.469

Table IV

Results for the range parameter for the OLS and the
median bootstrap methods applied to the outlier
contaminated data using 200 samples of size 50.
The true value of the range is 10. In (1), 10% of the
values are drawn from a zero-mean normal distri-
bution with variance 10. In (2), a fixed outlier value of
7 was added to each realization

Range Mean Bias Variance MSE

(1) Experimental 7.49 -2.51 42.257 48.532
Bootstrap 1 iteration 9.70 -0.30 20.027 20.027
(2) Experimental 8.13 -1.87 46.405 49.902
Bootstrap 1 iteration 12.24 -2.24 18.494 23.512
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Table X shows the results of a sensitivity analysis of the
type of analytical model. All results were obtained assuming
the correct exponential model. The method showed some
discrimination power for automatically predicting the model
type.

Discussion

Number of samples
For small sample sizes, the new method is an improvement
relative to fitting values to γ̂ (h) from Equation [2], but the
improvement declines as the number of samples increases.
For 100 data values (or 0.6% of the total possible samples in
our case study) the improvement is less than 3% and the
results are not significantly different. Nevertheless, there are
many important applications that are confined to small data-
sets (tens of values) and for which the median bootstrap
estimator offers significant improvements. In addition, as
noted earlier, in most geoscience applications a sample of
0.6% of the total mass to be sampled is, in fact, a relatively
large sample. For the gold orebody example cited earlier, a
sample proportion of 0.6% would require a drilling grid of 
5 m × 2.5 m or 36 times more drill-holes, which would be
economically unfeasible.

Comparing different semivariogram parameters for
the same model
Equation [3] allows the comparison of semivariogram models
by redefining Gi and Gi+1 as the underlying model and an
estimated model. For the case of the exponential model, 
Table XI shows the results for the same 200 samples used to
prepare Tables I−III.

The median bootstrap estimate performs better than the
conventional estimate for sample sizes of less than 100. For
the 200 samples, the bootstrap models give smaller discrep-
ancies in 116 cases; the total discrepancy is 652.0 against
827.5 for the conventional model fitting and the mean misfit
at a distance of half the range (i.e. five units of distance)
decreases from 0.50 to 0.31. Thus, using the previous
criterion, the model fitted by the bootstrap method is signifi-
cantly better than the model fitted directly to the values
obtained from Equation [2].

Robustness
Robustness with respect to departure from normality is
perhaps the best property of the new estimator because,
when working with true experimental geoscience data,

▲
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Table VII

Results for the range with respect to robustness
against non-normality using 200 samples of size 50.
The true value of the range is 5

Range Mean Bias Variance MSE

(1) Experimental 6.92 1.92 40.636 44.636
Bootstrap 1 iteration 8.79 3.79 22.020 36.441
Bootstrap 5 iterations 8.43 3.43 20.721 32.503
Bootstrap 10 iterations 8.68 3.68 17.818 31.397
Bootstrap 30 iterations 8.47 3.37 19.171 31.212

Table VIII

Results for nugget with respect to robustness
against non-normality using 200 samples of size 50.
The true value of the nugget is 1.02

Nugget variance Mean Bias Variance MSE

(1) Experimental 0.59 -0.01 0.916 0.916
Bootstrap 1 iteration 0.25 -0.35 0.160 0.281
Bootstrap 5 iterations 0.26 -0.76 0.158 0.741
Bootstrap 10 iterations 0.28 -0.73 0.176 0.714
Bootstrap 30 iterations 0.26 -0.76 0.199 0.773

Table IX

Results for total variance with respect to robustness
against non-normality using 200 samples of size 50.
The true value of total variance is 2.0

Total variance Mean Bias Variance MSE

(1) Experimental 2.04 0.04 0.897 0.898
Bootstrap 1 iteration 1.82 -0.18 0.718 0.749
Bootstrap 5 iterations 1.79 -0.21 0.758 0.803
Bootstrap 10 iterations 1.75 -0.24 0.635 0.696
Bootstrap 30 iterations 1.79 -0.20 0.705 0.745

Table X

Sensitivity to the type of analytical model.  Out of
200 resamples, the number of times discrepancy
with underlying semivariogram was best in terms of
minimal sum of square errors

Sample size Exponential Gaussian Spherical

50 100 99 1
100 116 61 23

Figure 3—Histogram of the chi-squared field from squaring the
realization shown in Figure 1



although the underlying probability density function is
almost always unknown, the presence of skewed histograms
is the norm rather than the exception. 

Resistance

The median bootstrap estimator is resistant with respect to
contamination (Tables IV−VI). This is a significant practical
advantage as abnormally high values are common in
geoscience data and particularly in grade values for mineral
deposits. Outliers can significantly and adversely affect the
method of moments semivariogram estimator and, for this
reason, there is reluctance to using it for analyses and
estimations (Krige and Magri, 1982). 

Uncertainty evaluation

A fundamental objective of any inference method should be
to provide the uncertainty of the estimated parameters,
especially for small data-sets for which the uncertainty may
be large and, consequently, the use of estimated parameters
may be meaningless. The most practical way of specifying the
uncertainty in an inference problem is by providing
probabilistic interval estimates for the parameters. That is,
instead of single values, provide an interval containing the
true underlying and unknown parameters with a given level
of probability. This can be easily obtained from the proposed
procedure by fitting a model to each of the 1000 bootstrap
samples and then obtaining percentile bootstrap intervals
from the bootstrap distribution of the estimated parameters.
The median of this bootstrap distribution produces results
similar to, but slightly worse than, results from fitting a
model to the median semivariogram, and thus this procedure
is used only for estimating the uncertainty in the form of
percentile confidence intervals. Figure 4 shows the results of
an experiment in which the achieved coverage of these
confidence intervals was calculated and compared with their
nominal coverage. The results show that for low nominal
coverage (less than 40%), the achieved coverage is close to
the nominal values for the nugget and the range. For high
values of the nominal coverage (greater than 65%), the
achieved coverage is close the nominal coverage for the total
variance parameter and the coverage is overestimated (i.e. on
the safe side) for the nugget variance and range parameters.

Sensitivity to type of analytical model
All results were obtained by assuming the correct exponential
model. In a real case study, however, in general the type of
model is unknown. Particularly for small data-sets, the
significant scatter of the experimental values provides scope
for assuming different analytical models. In addition to
estimating the underlying parameters, we tested the
capability of the methodology to predict the correct functional
form of the semivariogram. The testing was limited to three
basic choices: exponential, spherical, and Gaussian. Table X
shows the number of times each model produced the best
result, defined as the best fit to the set of points defining the
resulting median semivariogram. In this case at least, the
method showed limited discrimination power, indicating that
it was insufficient to rely on an automatic prediction of the
model type. This ability, however, improved with the sample
size.

Conclusions
A new approach to modelling the semivariogram estimator
has been proposed: the median bootstrap semivariogram. The
new method is an improvement on the conventional approach
of directly fitting a model to a few empirical semivariogram
values. According to an evaluation based on a synthetic
exhaustive sample, the improvement is significant mainly for
small sample sizes (with n less than 100, or 0.6% of the total
possible samples, for the demonstration example). The new
estimator has proved to be resistant to slight contamination
of the sample distribution and significantly robust to
departures from normality. Although further research is
required on mathematical proofs, the results are encouraging
for incorporating the estimator in computer implementations
in which a large number of automatic fittings are required as,
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Table XI

Discrepancies according to Equation [3] for the
same samples of size 50  in Tables I−III, where h is
the lag distance

Conventional Bootstrap 1 
experimental iteration

Number of times with lowest misfit 84 116
Total misfit 827.522 651.998
Mean misfit for h = 5 0.504 0.314
Mean misfit for h = 4 0.425 0.258
Mean misfit for h = 3 0.338 0.202
Mean misfit for h = 2 0.243 0.143
Mean misfit for h = 1 0.134 0.078

Figure 4—Nominal coverage versus the achieved coverage for the
confidence intervals calculated by bootstrap. The achieved coverage
for a nominal coverage of 90% (vertical dashed red line) is 91.5% for
total variance, 94.5% for nugget variance, and 100% for the range. The
overestimation of coverage is on the safe side of providing an
uncertainty slightly larger than it should be
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for example, when applying moving window statistics in
remote sensing, contouring, and other global applications of
geostatistics.
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