
Introduction
One of the key usages of geostatistics has long
been the prediction of the spatial structure of
orebodies. This is used for the evaluation of
resources and/or reserves and for further
planning of the mining and beneficiation
process schedule. For most applications, and
until quite recently, metal grade has been
regarded as the central property of study and
the main objective has been to distinguish
between ore and waste. However, recently
other properties have come into focus through
better analytical methods, such as automated
mineralogy (see e.g. Fandrich et al. 2007), and
new geostatistical methods considering more
complex information, such as kriging of
compositions (Pawlowsky-Glahn and Olea,
2004). Two ores with the same chemical
composition can have totally different

mineralogies and microfabrics, which will
result in different recoveries, energy
requirements, or reagent consumptions, thus
yielding very different mass streams. An ore is
thus no longer understood as represented by a
single value element, but through a complex
microfabric (Hagni, 2008). This perspective
allows quantitative insight into relevant
properties of different ore and gangue minerals
(Sutherland and Gottlieb, 1991), potentially
containing poison elements or phases (e.g.
Houot, 1983) that modify the efficiency of
downstream processing steps or require
additional treatment. 

Accordingly, processing choices have
become more complex. Grade-based studies
allow a mere ‘beneficiate-or-dump’ decision.
With the advent of these analytical and
methodological advances, it is possible to
better adapt processing to the ore mined due to
a more profound understanding of the
processing required. For instance, good
knowledge of microfabric properties can reduce
energy consumption, if overgrinding is
avoided, which also results in improved
recovery by avoiding losses due to poor
liberation (Wills and Napier-Munn, 2006).
Similarly, accurate information on mineral
composition may permit the specification of a
cut-off in any separation technique (magnetic,
electrostatic, or density-based), optimally
weighting recovery and further processing
costs. Or depending on the proportion of fines
generated during milling, desliming might or
might not be necessary. Finally, different
concentrations of chemicals might be needed
for an optimal flotation process as a function
of the composition of the concentrate. These
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are simple examples of the possible adaptive choices that
could be implemented in several steps of the process chain, if
the necessary ore feed properties were known. Actually, the
complexity of the interactions between the several processes
is such that the best processing stream might not be an
intuitive one, requiring the solution of large combinatorial
problems. Such considerations will become a requirement in
the near future, due to the lower margins imposed by a
globalized economy.

In most current mining operations, ore is blended to a
homogeneous quality based on geostatistical prediction, to
ensure optimal performance of a beneficiation route that has
been empirically optimized, but that remains mostly constant
throughout the mine life.  Geometallurgy (Jackson et al.,
2011) aims to produce higher overall gains by adapting the
processing to the predicted ore quality of the block currently
being processed.

The aim of this paper is to demonstrate the use of geosta-
tistics in such a complex processing situation, with particular
regard to the following key issues.

➤ The relevant microfabric information is not captured by
a single real number, but typically involves nonlinear
and multivariate scales. This is illustrated by analysing
compositional data, where a direct application of
standard geostatistics can lead to artefacts, including
negative concentrations and dependence of predictions
on irrelevant components. For example, a non-
compositional cokriging of a mineral composition
applied to a system that includes both value and waste
minerals cannot be transformed in a simple way into an
optimal unbiased prediction of the subcomposition of
value minerals only (Tolosana-Delgado, 2006), so that
waste components separated in the first processing
steps have a lasting influence all along the processing
chain. These problems are analogous to the well-
known order relation problems of indicator kriging
(Deutsch and Journel, 1992; Carle and Fogg, 1996)

➤ The prediction is used for a nonlinear decision problem,
involving geological uncertainty and a processing
model.  In this context, a decision based on unbiased
estimates of the relevant properties is no longer
optimal.

To illustrate how geostatistics must be applied in such a
situation, an example from a mined-out iron ore orebody is
used. Since no systematic adaptive processing has been
applied during the exploitation of the mine, a ‘toy’ example
will be used to illustrate possible classes of processing
choices and their effect in the geostatistical treatment. A
simple processing decision set is presented here, to keep the
discussion focused on the methodological geostatistical
aspects. Readers should be aware that realistic decision sets
will be much more complex.

Interpolation of geometallurgical data

Kinds of geometallurgical data

Several kinds of data may be collected to characterize the
materials to be mined and beneficiated. Each of these kinds
of data has its own scale, that is, a way to compare different
values. Typical geometallurgical scales are the following:

➤ Positive quantities, such as the volume of an individual
crystal or particle, or its density, its hardness, or the
area or major length of a given section

➤ Distributions, which describe the relative frequency of
any possible value of a certain property in the material.
The most common property is size: grain size or
particle size distributions, either of the bulk material or
of certain phases are the typical cases

➤ Compositional data, formed by a set of variables that
describe the importance or abundance of some parts
forming a total. These variables can be identified
because their sum is bounded by a constant, or by their
dimensionless relative units (proportions, ppm,
percentage, etc.). Typical compositions include
geochemistry, mineral composition, chemical
compositions of certain phases, and elemental
deportment in several phases. If the composition of
many particles/crystals of a body is available, one can
also obtain its compositional distribution. A systematic
account of compositions can be found in Aitchison
(1986) and van den Boogaart and Tolosana-Delgado
(2013).

➤ Texture data, representing crystallographic orientations
and their distributions, for instance the concentration
(i.e. inverse of spread) of the major axis orientation
distribution of a schist

➤ More complex data structures can be generated by
mixing the preceding types, for example a mean
chemical composition can be characterized for each
grain-size fraction, or a preferred orientation can be
derived from each mineral type.

All these scales require a specific geostatistical treatment.
For instance, classical cokriging of a composition seen as a
real vector leads to singular covariance matrices (Pawlowsky-
Glahn and Olea, 2004), and even if corrected for this
problem, predictions can easily have negative components in
minerals with highly variable overall abundances. Putting
such predictions into processing models is not sensible.
Therefore, ad-hoc geostatistical methods honouring the
special properties of each of these scales have been
developed. Geostatistics for positive data (Dowd, 1982;
Rivoirard, 1990) is well established. Textural data-sets have
been studied by van den Boogaart and Schaeben (2002),
while one-dimensional distributional data-sets were treated
by Delicado et al. (2008) and Menafoglio et al. (2014).
Compositional data geostatistics was studied in depth by
Pawlowsky-Glahn and Olea (2004) and Tolosana-Delgado
(2006), and is applied here.

Some of these kinds of data are not additive, in the sense
that the average property of a mining block is not the integral
over the property within the block. For instance, the
arithmetic mean of mass composition within a block is not
the average composition of a block if the density varies
within the block, or when some components are not
considered, a problem known as subcompositional
incoherence (Aitchison, 1986). The lack of additivity is
particularly important for spatial predictions of the properties
of mining blocks or selective mining units (SMUs). The
proposed method will require only that the property – or more
precisely its effect through processing – is computable from a
simulation of a random function describing the variation of
the property within the block. 

▲
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An additional difficulty to be considered in a general
framework of geometallurgical optimization is stereological
degradation. Many kinds of data available are measured from
2D sections by automated mineralogy systems (Mineral
Liberation Analyser (MLA), QUEMSCAN, EBSD, EMP, etc.),
while the relevant target properties are actually their 3D
counterparts. Some of these 2D data types are nevertheless
unbiased estimates of their 3D properties. Modal mineralogy
will belong to this category if it is computed from proportions
of grain area of each mineral type with respect to the total
area translated into volume ratios of that mineral with respect
to the total volume. For many other properties, one should
consider the possible 3D to 2D stereological degradation
effects, in addition to all other considerations presented in
this work. 

To avoid introducing the extra complexity derived from
stereological reconstruction, this paper focuses on the use of
compositional information for geometallurgical characteri-
zation, that is, modal mineralogy and chemical composition.
Due to the lack of a reference deposit with mineralogical data
at a sufficiently fine spatial resolution, the mineralogy was
reconstructed from the chemical data. However, in future
projects where adaptive processing is planned, it is likely that
automated mineralogy will be routinely applied and direct
measurements of mineralogy are expected to be the rule, not
the exception.

Compositional data
Compositional data consists of vectors x =[x1, x2,…, xD] of
positive components that describe the relative importance of
D parts forming a total. Compositions are characterized by
the fact that their total sum is either an artefact of the
sampling procedure, or it can be considered irrelevant.
Because of this irrelevance, it is legitimate to apply the
closure operation

[1]

to allow for comparison between compositions.
The most typical compositions in geometallurgy are

chemical composition and mineral composition. These
compositions can be defined on the same body, and one
might require transforming one into the other. If the chemical
and mineralogical compositions of a block are assumed to be
represented by xc and xm, having Dc and Dm components
respectively, and each of the minerals is assumed to have a
known stoichiometry in the chemical components considered,
then the stoichiometry can be realized as a matrix transfor-
mation. If the stoichiometry is placed in the columns of a Dc

× Dm matrix T, then T maps any mineralogical composition
to a chemical composition:

[2]

Inverting this equation is called unmixing, and is a part of
the broader class of end-member problems (Weltje, 1997).
The relation in Equation [2] can be inverted only in the case
when Dc = Dc and no chemically possible reactions exist
within the system of minerals under consideration (i.e., T is
a square matrix and its columns are linearly independent
vectors). For Dc > Dm, Equation [2] may not have an exact
solution, and one must resort to a least-squares estimate,

x^m= (Tt· T)−1 Tt · xc, to find the x^m that best approximates
xm. When Dc < Dm, the system will have infinitely many
solutions and not all of these will be mineralogically
meaningful. Note that these cases do not ensure that the
recast composition has positive components. Tolosana-
Delgado et al. (2011b) present an algorithm for estimating
mineral compositions compatible with observed chemical
compositions in all three cases, an algorithm that can also
account for varying mineral stoichiometry and ensures that
results are positive. For the purpose of this paper, we
consider the same number of chemical components as end-
members, related through the transfer matrices specified in
the section ‘Geochemical data and mineral calculations’. Note
that in the case Dc = Dm, results can be strongly dependent
on the stoichiometry assumed, in which case it could become
safer to further treat the geochemical information. On the
other hand, the advent of automated mineralogy systems
may soon render these calculations unnecessary.

The end-member formalism applies a multivariate
analysis framework prone to some fundamental problems of
compositions, such as the so-called spurious correlation
(Chayes, 1960) induced by the closure operation (Equation
[1]). Aitchison (1982, 1986) analysed this difficulty system-
atically and proposed a strategy for the statistical treatment
of compositional data-sets based on log-ratio transfor-
mations. The idea is transform the available compositions to
log-ratios, for instance through the additive log-ratio
transformation (alr):

[3]

and apply any desired method to the transformed scores
Those results that admit an interpretation as a composition
(for instance, predicted scores) can be back-transformed with
the additive generalized logistic function (agl). The agl is
applied to a vector of D − 1 scores, ξ = [ξ1, ξ2, …, ξD−1], and
delivers a D-part composition: 

[4]

where the closure operation C from Equation [1] is used. This
strategy has the advantage of capturing the information
about the relative abundance (i.e. abundance of one
component with respect to another, their ratio) in a natural
way (Aitchison, 1997, van den Boogaart and Tolosana-
Delgado, 2013). Another advantage of working on the alr-
transformed scores is that, without any need of further
constraints, all results represent valid compositions. This was
not the case with Weltje’s (1997) end-member algorithms,
where the final results might present negative components.
On the side of the disadvantages, the log-ratio methodology
cannot deal directly with components of zero or below the
detection limit, and some missing data techniques must be
applied, prior to or within the end-member unmixing or (geo)
statistical treatment (Tjelmeland and Lund, 2003; Hron et al.,
2010; Martín-Fernández et al., 2012). It is often proposed to
impute the zeroes by some reasonable values, often a
constant fraction of the detection limit. However, for geomet-

Improving processing by adaption to conditional geostatistical simulation

15The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 115          JANUARY  2015 ▲



Improving processing by adaption to conditional geostatistical simulation

allurgical optimization purposes, this imputation by a
constant value should be avoided, because it leads to reduced
uncertainty scenarios; multiple imputation offers a much
better framework accounting for that extra uncertainty
(Tjelmeland and Lund, 2003).

Using the log-ratio approach it is possible to define a
multivariate normal distribution for compositions (Aitchison,
1986; Mateu-Figueras et al., 2003), with density

[5]

where μ and ∑ are the mean vector and covariance matrix of
the alr-transformed random composition X (uppercase
indicates the random vector, and lowercase a particular
realization). Given a compositional sample {x1, x2,…,xN},
unbiased estimates of these parameters are provided by the
classical formulae applied to the log-ratio transformed scores:

[6]

The mean vector estimate can be back-transformed to the
compositional centre, cen[X]=agl(μ^), which is an intrinsic
property of X, not depending on the alr transformation used
to calculate it (taking a different denominator would produce
the same compositional centre).

Regionalized compositions
Following the principle of working on alr-transformed scores,
the classical multivariate geostatistical framework can be
applied to compositions (Pawlowsky-Glahn and Olea, 2004;
Tolosana-Delgado, 2006; Boezio et al., 2011, 2012; Ward
and Mueller, 2012; Rossi and Deutsch, 2014). In this section
the relevant notation is introduced and several particularities
are clarified that arise from the nature of compositional data.
Assume that an isotopic compositional sample is available
{x(s1), x(s2),…, x(sN)} at each of a set of locations {s1, s2,…,
sN} within a domain E, and for each location sα denote by
ξ(sα) = alr(x(sα)) the corresponding alr-transformed
composition. Then as with the covariance in Equation [6],
experimental matrix-valued alr-variograms can be estimated
by conventional routines as semivariances of increments of
log-ratio-transformed data. 

A linear model of coregionalization Γ(h) (Journel and
Huijbregts, 1978; Wackernagel, 2003) is fitted to the experi-
mental alr variogram, expressed as

[7]

where K denotes the number of structures. For each structure
k, 1≤ k ≤ K, the function gk is an allowable semivariogram
model function and the matrix Bk is its associated positive
semi-definite covariance matrix. Alternative ways exist for
estimating the LMC and ensuring its validity without using 

any specific alr transformation (Tolosana-Delgado et al.,
2011a; Tolosana-Delgado and van den Boogaart, 2013). As
usual, a covariance model C can be linked to the variogram
through C(h) = C(0)− Γ(h) (Cressie, 1993), assuming
second-order stationarity of the log-ratios.

Once a valid LMC for the alr variables is available, kriging
estimates can be computed. As in the case of classical
multivariate geostatistics, estimates of the alr variables can
be made at unsampled locations using the covariance
structure defined in Equation [7]. For example, the local
neighbourhood simple cokriging estimate ξ *SK(s0) at location
s0 is given by

[8]

where μ^ is the mean of the alr-transformed data, Wα (s0) is
the matrix of weights derived from the simple cokriging
system (e.g., Myers, 1982), and n(s0) is the number of data
locations forming the local neighbourhood relevant to
predicting x(s0). The kriging estimates ξ *(sα) need to be
back-transformed to a composition. A simple approach for
doing so is to use the agl transformation, which provides a
slightly biased back-transform of the results; an alternative
method is to apply Gauss-Hermite quadrature to compute an
estimate of the expected value of the composition, assuming
that it has a normal distribution (Equation [5]) specified by
the cokriging predictor and its cokriging variance. In
estimation procedures, that option would be preferable, and
the interested reader is referred to Pawlowsky-Glahn and
Olea (2004) or Ward and Mueller (2012) for details.
However, simulation is more relevant for the goals of this
paper, as it allows at the same time an upscaling of the
output to block estimates.

In what follows it is assumed that the compositional data
does not show gross departures from joint additive logistic
normality (Equation [5]). In practice, this happens to be more
restrictive than one would think, and a transformation to
normal scores is required prior to simulation. The current
accepted geostatistical workflow includes applying a normal-
score transform to each variable separately (in this case, to
each alr-transformed score). Although this guarantees only
marginal normality and not joint normality, until recently
there were no practical alternative methods that deliver a
multivariate jointly normal data-set. Stepwise conditional
transformation (Leuangthong and Deutsch, 2003) is not
practical for high-dimensional data-sets, and the projection
pursuit multivariate transform (Barnett et al., 2014), a recent
approach that promises to remedy this shortfall, could not be
implemented here as it appeared only during the review
process.

For simulation, the turning bands algorithm (Matheron,
1973; Emery, 2008; Lantuéjoul, 2002) is particularly efficient
in a multivariate setting as it can be realized as a set of
univariate unconditional simulations based on the LMC fitted
to the alr or normal-score transformed data and only a single
cokriging step is required. 

Assuming that the LMC for the data is given by Equation
[7], each structure is simulated separately making use of the
spectral decomposition of the corresponding coefficient
matrix Bk = AkAk

t of the LMC. A Gaussian random field can
be simulated by putting

▲
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[9]

where Uk is a vector random field with D−1 independent
components for each k, 1≤ k ≤ K. Because of the
independence of the components, the simulation of the
random field Y reduces to the simulation of K univariate
Gaussian random fields, Uk, 1≤ k ≤ K. These are simulated
separately using the turning bands algorithm and then re-
correlated via Equation [9]. This produces at each location s
and at each data location a simulated vector y(s) with the
specified spatial correlation structure. Then, simple cokriging
(Equation [8]) of the residuals ε(sn) = y(sn)− ξ(sn) at the
sample locations sn, 1≤ n ≤ N, is used to condition the
realizations through ξ(s0) = y(s0) + ε*(s0) for each location s0
of the simulation grid. Finally, an agl (and/or a Gaussian
anamorphosis) transformation is applied to back-transform
the conditioned vectors to compositional space, x(s0) =
agl(ξ(s0)).

Monte Carlo approximation to compositional block
cokriging
A common problem of geostatistics applied to any extensive
variable with a non-additive scale is the lack of a universal
model of change of support – that is, a way to infer the
properties of a large block from much smaller samples. For
positive data, for instance, Dowd (1982) and Rivoirard
(1990) offer methods for estimating the average grade value
within a block, mostly assuming a certain preservation of
lognormality between the samples and the blocks. For the
other geometallurgical scales, geostatistical simulation offers
a general computationally-intensive solution, albeit not an
impossible one with modern computers and parallel code.
This is illustrated here again for a compositional random
function. 

Assuming that the random function X(s) can be defined
at any differential block du, its average within a block v
centred at the position s is

with |v| denoting the block volume, and Ξ(s) = alr(X(s)) the
alr-transformed random function. Block cokriging would 

deliver an estimate of
1

|v| ∫
v

Ξ(u)du, which is not a good 

stimate of Xv(s) due to the nonlinearity of the alr-transfor-
mation. Instead of block cokriging, the block is discretized
into M equal-volume units, and the corresponding point-
support random function is simulated at their centres. If there
are J realizations, then for each j, where 1≤ j ≤ J, averaging
over the units within the block results in an estimate

[10]

where ξ(j)(um) denotes the alr vector at location um ∈ v, 1≤ m
≤ M drawn in the j-th simulation. This approach has the
further advantage of also delivering information about the
distribution of xv(s), not just an estimate of its central value, 

[11]

Tolosana-Delgado et al. (2014) propose to simulate these
alr vectors using the LU decomposition method (Davis,
1987), which is able to produce a large number of
replications with minimal cost (large J), but can handle only
a limited number of locations (small N + M). This is
convenient for obtaining independent estimates of each
block, as only simulation within it is needed. Alternatively, if
the block estimates are intended to guide global choices, as is
the case here, the use of a global simulation like the turning
bands algorithm is preferable.

Modelling optimization problem

Processing model
Within the framework of Coward et al. (2009) distinguishing
between primary variables (intrinsic properties of the natural
materials) and response variables (results of human manipu-
lations of the material), the block mean composition Xv(s)
can be understood as a primary variable, while the benefit or
gain G(Xv(s), C(s)) is the ultimate response variable, a
function of the primary properties of the block s and of all
choices C(s) taken during its processing. From this point on,
the block support taken will be assumed to correspond to the
processing unit, i.e. that volume that may be assumed to
behave additively as a homogeneous mass through the
process chain. Moreover, the true primary properties are
usually not available, because they were interpolated/extrap-
olated from nearby information or because they are not
measurable at all (like size distribution information, affected
by stereological distortion). In these cases, one has only
estimates, nearby observations, or even indirect or proxy
measurements of the target primary properties, jointly
denoted as Z. Many of the kinds of geometallurgical data
discussed earlier are direct proxies for primary variables, with
the notable exception of data on particle properties (which
already depend on which kind of breakage was applied, and
are therefore response variables). The choice C(s) may
denote a complete decision tree, with a complex combination
of multiple sub-choices. As such, it might encode the
processing sequence (like whether or not to include an extra
flotation step) and operational parameters (like the cut-off
density selected for density separation), but it can also be a
simple on/off choice of processing the material or dumping it
as waste.

Once the processing options have been determined for a
block v centred at location s, the option yielding the largest
gain must be found. A typical approach would be to replace

the true material property Xv(s) in the gain function by its 

unbiased estimate Xv
*(s|Z) based on the available data Z, i.e. 

the estimate with E[Xv
*(s|Z) – Xv(s)] = 0. This has been

shown to be a poor decision rule (van den Boogaart et al.,
2011). Given that Xv(s) is uncertain, that naïve approxi-
mation would be equivalent to assuming 
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which is identically true only if either Xv(s) is a known
constant, or the gain G(Xv(s), C(s)) is a linear function of
Xv(s). Given that the gain function is usually piecewise
defined (see the ‘Illustration example’ section) and that
recovery portions are bounded by 0 and 1, one cannot expect
linearity to hold.

Maximizing the expected gain
According to van den Boogaart et al. (2013), the best choice
CZ(s) for processing the block at location s given the data Z
is computed by maximizing the expected gain with respect to
the available decisions conditional on the data:

[12]

This requires computing the conditional expectation of
the gain given the data for each possible choice, readily
available from J conditional simulations {Xv

( j)(s), 1≤ j ≤ J}
obtained from Equation [10], through a Monte Carlo approxi-
mation:

[13]

Having computed the gain for each choice, one can then
select the choice yielding the largest gain. 

Decision-making in mining is rarely based exclusively on
the properties of the individual blocks. Rather, many choices
are global decisions, i.e. non-adaptive choices that affect the
entire domain E. This requires maximizing 

which can also be estimated within the same framework by
Monte Carlo approximation of the gain

with the domain E = UB
b=1 v(sb) discretized into B blocks, each

centred at a location sb, 1≤ b ≤ B. This category of global
choices includes the setting of quality thresholds, blending
strategies, design throughput, or the block extraction
sequence. These aspects are not treated in this paper.

Illustration example

Geological description
The data-set used comes from a high-grade iron ore deposit
(K-pit deposit, see description by Angerer and Hagemann,
2010) hosted by banded iron formations of the Archean
Koolyanobbing Greenstone Belt, Western Australia, located
360 km east of Perth in the Southern Cross Province of the
Yilgarn Craton. The greenstone belt strikes northwest and is
approximately 35 km long and 8 km wide. It is composed of a
folded sequence of amphibolites, meta-komatiites, and
intercalated metamorphosed banded iron formation (BIF;
Griffin, 1981). The K-deposit occurs where the main BIF

horizon, striking 300° and dipping 70° NE, is offset by
younger NNE-striking faults (Angerer and Hagemann, 2010).
The resource of the K-deposit consists of different
mineralogical and textural ore types, including hard high-
grade (>55% Fe) magnetite, haematite, and goethite ores and
medium-grade fault-controlled haematite-quartz breccia 
(45-58% Fe) and haematite-magnetite BIF (45-55% Fe).

Three domains, 202 (west main domain), 203 (east main
domain), and 300 (haematite hangingwall) were selected as
they can be considered reasonably homogeneous from a
mineralogical point of view: the iron-rich facies is dominated
by haematite in all of them, with minor contributions from
magnetite or goethite/limonite.

Geochemical data and mineral calculations
Six parameters were considered for analysis: Fe, LOI, Mn,
SiO2, P, and Al2O3, as well as the residual to 100% not
accounted for by these. The residual should be considered
equal to the mass contribution of the remaining elements not
reported here: for example, oxygen from the various Fe and
Mn oxides, or OH and Ca from apatite. Thus, the number of
original components is Dc =7. Table I summarizes the main
characteristics of this data-set.

The chemical compositions were converted to mass
proportions of the following Dm = 7 mineralogical-
petrological reference material types as end-members
(amalgamated then in four types):

➤ Haematite (Hm), taking all the Fe in the chemical
composition, and as much of the residual as required
for haematite (Fe2O3)

➤ Deleterious (Dl), adding up two contributions:
– Mn oxides, whose mass proportion was computed

using all Mn and the necessary oxygen from the
residual in a molar proportion of 1:4 (giving a
mass proportion of 1:0.0751)

– Apatite, with an ideal composition Ca5(PO4)3(OH),
where again the mass proportion of P was
increased by removing the necessary mass from
the residual (to account for Ca, O, and OH)

➤ Shales (Sh), again with two contributions:
– The whole LOI mass contribution (because

goethite/limonite contribution to Fe is negligible in
the chosen domains), and

– All Al2O3, together with a 1:1 mass proportion of
SiO2 (equivalent to 10:6 in molar proportion, i.e. an
Al-rich material type)

➤ Silica (Qz), equal to the residual SiO2 not attached to
shales

➤ Residual, equal to the remaining residual not attributed
to any of the preceding classes. This can be
disregarded, because it is assumed to be inert and it
represents an irrelevant small mass input to the
system. 

Table II summarizes the transfer matrix from material
types to geochemistry. The proportions of the four types can
be computed from the (generalized) inverse of the transfer
matrix. None of the resulting four main components was
negative, and the residual disregarded component always
dropped to zero (accepting an error of ±2%). Material type
proportions obtained are shown in Figure 1, and Table II
summarizes their statistics also.

▲

18 JANUARY  2015                                VOLUME 115     The Journal of The Southern African Institute of Mining and Metallurgy



Improving processing by adaption to conditional geostatistical simulation

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 115                                       JANUARY  2015 19 ▲

Table I

Statistics of the geochemical variables and of the reconstructed mineral/material type composition, globally and
by domains. All statistics in %
Variable Count Min. Q25 Q50 Q75 Max. Mean Std. Dev.

Al203 2209 0.023 0.263 0.483 0.87 25 0.8788 1.711
Fe 2209 18.04 60.333 62.793 64.667 69.521 61.8764 4.6289
LOI 2209 0.005 3.837 5.187 7.33 23.747 5.7004 2.5098
Mn 2209 0.001 0.019 0.033 0.063 1.694 0.0557 0.0936
P 2209 0.003 0.075 0.109 0.156 0.663 0.1217 0.0656
SiO2 2209 0.17 0.97 1.757 3.897 46.58 3.5668 4.8294

Variable Domain Min. Q25 Q50 Q75 Max. Mean Std. Dev.

Al203 202 0.027 0.22 0.367 0.623 23.46 0.6897 1.5897
Fe 202 27.68 60.7 62.947 64.478 68.9 62.0145 4.255
LOI 202 0.005 3.88 5.253 6.92 23.747 5.5312 2.2218
Mn 202 0.003 0.02 0.03 0.053 0.75 0.0442 0.0516
P 202 0.006 0.088 0.12 0.165 1.097 0.1339 0.0747
SiO2 202 0.1 1 2.1035 5.7 46.58 4.4162 5.6017

Al203 203 0.023 0.263 0.5225 0.903 25 0.988 1.9535
Fe 203 11.3 60.943 63.5365 65.413 69.521 62.2792 5.5877
LOI 203 0.197 3.6485 4.877 6.7685 20.837 5.3836 2.4268
Mn 203 0.001 0.015 0.027 0.053 1.694 0.0576 0.1212
P 203 0.002 0.061 0.095 0.14 0.418 0.1083 0.0632
SiO2 203 0.17 0.783 1.41 2.787 36.678 2.8725 4.1914

Al203 300 0.283 0.63 0.862 1.19 10.3 1.1215 1.0714
Fe 300 33.81 59.023 60.356 62.377 68.3 60.5123 3.0431
LOI 300 1.1 6.3815 8.889 10.4435 12.393 8.27 2.6539
Mn 300 0.008 0.047 0.073 0.107 0.253 0.0795 0.0439
P 300 0.029 0.092 0.1385 0.1965 0.382 0.1491 0.0728
SiO2 300 0.6 1.5 1.853 2.55 27.09 2.4992 2.379

Variable Count Min. Q25 Q50 Q75 Max. Mean Std. Dev.

Haematite 2209 0.3066 0.8292 0.872 0.9073 0.9805 0.8586 0.0763
Quartz 2209 0.0002 0.0091 0.0179 0.0455 0.5501 0.0411 0.0595
Shale 2209 0.0018 0.0628 0.0864 0.123 0.5776 0.0978 0.0539
Deleterious 2209 0.0002 0.0014 0.0021 0.0031 0.0243 0.0025 0.0017

Variable Dom Count Min. Q25 Q50 Q75 Max. Mean Std. Dev.

Haematite 202 969 0.3225 0.8322 0.8724 0.9021 0.9625 0.8554 0.0753
Quartz 202 969 0.0002 0.0103 0.0267 0.0753 0.5501 0.0562 0.0719
Shale 202 969 0.0018 0.0587 0.0777 0.1035 0.5267 0.0861 0.0457
Deleterious 202 969 0.0002 0.0015 0.0022 0.003 0.014 0.0024 0.0013

Hematite 203 954 0.0002 0.0012 0.0018 0.0028 0.0243 0.0023 0.0021
Quartz 203 954 0.3066 0.8405 0.8899 0.9192 0.9805 0.8691 0.0812
Shale 203 954 0.0006 0.0072 0.0133 0.0295 0.4558 0.0312 0.0487
Deleterious 203 954 0.0118 0.062 0.0842 0.1189 0.5776 0.0973 0.0583

Haematite 300 286 0.0007 0.002 0.0031 0.0041 0.0066 0.0031 0.0013
Quartz 300 286 0.4178 0.8106 0.8314 0.8617 0.9695 0.8343 0.052
Shale 300 286 0.005 0.0136 0.0175 0.0237 0.2584 0.0232 0.0225
Deleterious 300 286 0.0247 0.1139 0.1432 0.1633 0.3222 0.1394 0.0423

Table II
Conversion tables from material type to geochemistry considering Dc=Dm= 7 classes (top) and from
geochemistry to material type amalgamating and removing non-relevant classes (bottom). Zeroes are kept as 
empty cells for clarity

Haematite Deleterious Shale Silica Rest
MnO2 Apatite Type 1 Type 2

Al2O3 1.000
Fe 1.000
LOI 1.000
Mn 1.000
SiO2 0.589 1.000
P 1.000
Rest 0.430 0.075 2.291 1.000

Al2O3 Fe LOI Mn SiO2 P

Haematite 1.000
Deleterious 1.000 1.000

Shale 1.589 1.000 − 0.589
Silica 1.000
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Devised toy processing
Although the K-deposit was exploited without any processing
beyond crushing and (eventually) screening, in this contri-
bution a reasonable selection of processing choices was
assumed for BIF-hosted iron ores (Houot, 1983; Krishnan
and Iwasaki, 1984), with the aim of illustrating what can be
expected from the proposed geostatistical method of geomet-
allurgical adaption.

Selective mining units (SMUs) are considered to be
volumes of 12×12×6 m3. If an SMU is considered econom-
ically interesting, it is processed as follows (Figure 2). First,
the SMU is extracted, transported, and crushed by a primary
crusher. This represents fixed costs of Q0. Here it is assumed
that all material containing more than 88% haematite will be
a lump product, i.e. particle size greater than 6.3 mm and less
than 31.5 mm. An SMU with an average haematite content
greater than 88% (i.e. more than 60% Fe), is considered to be
in this lump category. Otherwise, the product is sent for
further grinding (costing an extra Qf), and will be considered
as fines. Usually, the definition of lump depends on other
geometallurgical properties (hardness and grain size), but for
the sake of simplicity this has not been taken into account
here.

Material that is not considered to be lump can be
processed through a desliming process, depending on the
proportion of shale. If desliming is switched in, the amount of
shale is assumed to be reduced by 15%, with the rest of the
components unchanged. Desliming costs are Qd monetary
units per volume washed, independent of the actual amount
of shale. Thirdly, the product is fed to a separation process
(for instance, flotation), devised to remove quartz: 100% of
the quartz, together with 10% of shale and 30% of haematite
and deleterious components, is sent to the tailings.
Separation costs per unit of material recovered are denoted as
Qs. The product must then be classified into high-grade fines
(more than Th = 85% haematite in the product), low-grade
fines (haematite with Tl = 80% or more), or waste. The
different products are sold at different prices: I0 for lump, Ih
for high-grade fines, Il for low-grade fines, and zero for
waste. 

Table III summarizes the quantities used for these
monetary values. The prices and the partition coefficients

considered for each phase through desliming and separation
were chosen to enhance the contrast between the proposed
methodology and the classical one. The calculations proposed
here can be adapted to current market prices by changing
these constants.

▲
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Table III

Costs of each processing stage and selling prices of
the products

Process Cost Units

Q0 Extraction and crushing 70 $/t (of block)
Qf Grinding and milling 25 $/t (of feed)
Qd Desliming 0.05 $/m3 (of feed)
Qs Separation 0.02 $/ton (of feed)

Product Price Units

I0 Lump (Hm>88%) 150 $/t (of product)
Ih Fines (Hm>85%) 140 $/t (of product)
Il Fines (Hm>80%) 130 $/t (of product)

Figure 1 – Scatterplot diagrams of calculated mineral proportions of deleterious, haematite, quartz, and shale

Figure 2—Chosen processing scheme. Note that although the choices
appear to be sequential in this diagram, actually the route taken by
each block mass is pre-established from the beginning



The first choice is to process or dump the block. If
processed, the following costs will be incurred. Denoting the
original block composition in terms of the four components
[Hm, Dl, Sh, Qz] by Xv (the spatial dependence is dropped
here for the sake of simplicity), and considering ideal
densities of each of these materials respectively as ρHm = ρDl
= 3.5 t/m3 and ρSh = ρQz = 2.5 t/m3 within a vector ρ = [ρHm,
ρDl, ρSh, ρQz], the cost of crushing and transporting a block of
unit volume is Q0 Xv · ρt, using the dot product notation for
product of matrices. Note that the result is in this case a
scalar value. The second choice is to sell the processed block
as the category ‘lump’ or further process it. Selling as lump
produces an income of I0 Xv · ρt if the material fulfils the
quality requirements. The gain of selling it as lump is thus

[14]

If the product is not sold as lump, it must be further
ground, which represents a cost of Qf Xv · ρt. The following
choice is to apply a desliming process, which costs Qd. Its
effect is to modify the mass proportions to Xd = Xv 

* [1, 1, 1, 0.85], where * denotes the direct product (i.e.
component-wise product of the two vectors). Note that this is
analogous to a filter, i.e. a process where the partial output
concentration is obtained by keeping a known different
portion of each input component. Then, a separation process
is applied, which represents a similar filter to a vector of
masses Xs = Xv * [0.7, 0.7, 0, 0.9] with cost Qs Xv · ρ

t if no
desliming was applied, or to Xds = Xd * [0.7, 0.7, 0, 0.9]
costing Qs Xs · ρt if desliming was switched in. Finally, one
must choose the quality at which the product is desired to be
sold, choosing between high (XsHm ≥ Th =85%) and low
qualities (Tl = 80% ≤ XsHm < Th = 85%). If no desliming
was applied, this produces four options:

[15]

[16]

being Qsep = (Q0 + Qf + Qs) Xv · ρ
t ; or if desliming was

necessary

[17]

[18]

where Qsepdesl = (Q0 + Qf ) Xv · ρt + Qd + Qs Xs · ρt. Note that
all these costs, incomes, and gains are expressed for blocks
of unit volume, so that they should be multiplied by 12 · 12 ·
6 m3 if one wishes to refer them to an SMU.

Results
Following the geostatistical procedure for compositions
outlined before, the alr transformation was applied (Equation
[3]) to the material composition Dl-Hm-Qz-Sh, taking shale
as common denominator. To better approach the required
normality in simulation algorithms, alr variables were
converted to normal scores via a normal scores transform,
and the variograms of the resulting scores were estimated
(Figure 3) and modelled with an LMC (Equation [7])
consisting of a nugget and two spherical structures, i.e. using
a unit variogram

with the first range a = 52 m in the plane (and an anisotropy
ratio vertical/horizontal of 23/52) and the second range a =
248 m in the plane (and an anisotropy ratio
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Figure 3—Variograms (experimental as dots, models as thick solid line) of the normal scores of alr-transformed mineral composition, taking Shale as
common denominator. Upper triangle of diagrams show the downhole direction, lower triangle of diagrams show the isotropic variogram on the horizontal
plane (after a global rotation _+Z 160° +Y -10° +X 45°)
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vertical/horizontal of 94/248). Table IV reports the sill
matrices B1 (linked to the nugget), B2, and B3 of this model.
Note that a global rotation along +Z 160° –Y 10° +X 45°
(mathematical convention) was applied.

An SMU grid was constructed such that no block was
more than 50 m away from a sample location. Each of the
resulting 33 118 blocks was discretized into 4 × 4 × 2 = 32
points, oriented along the natural easting-northing-depth
directions. The SMU grid and the underlying point grid are
described in Table V. Using a turning bands algorithm, 100
non-conditional simulations were obtained and conditioned
via simple cokriging. The conditioning step was succeeded by
the application of the Gaussian anamorphosis and the agl
transformation (Equation [4]) to obtain values for the four-
material composition, which were then averaged in
accordance with Equation [10]. This provided 100
realizations of the average composition for each block. 
Figure 4 shows the scatter plots of mean values of block
averages of these simulations after applying Equation [11]. 
A comparison with the spread of the original data (Figure 1)
shows a satisfactory agreement of both sets, and that the
obtained block average estimates show similar constraints as
the original data. 

Two methods for decision-making are compared in what
follows. First, for each block Equations [14]–[18] were
applied using the block averages X*

v(s|Z) computed
previously. Then, each block was treated with the choice that
produces the largest gain out of the five options available.
Figure 5 (right) shows a selection of ZY sections of the
domain, where the colour of each block depends on the
treatment chosen according to this average unbiased

▲

22 JANUARY  2015                                VOLUME 115     The Journal of The Southern African Institute of Mining and Metallurgy

Table IV

Sill matrices of the variogram model used

B1 alr(Dl) alr(Hm) alr(Qz)

alr(Dl) 0.4300 0.1292 −0.0166
alr(Hm) 0.1292 0.4035 0.0950
alr(Qz) −0.0166 0.0950 0.1704

B2 alr(Dl) alr(Hm) alr(Qz)

alr(Dl) 0.4204 −0.0898 −0.0154
alr(Hm) −0.0898 0.0281 0.0711
alr(Qz) −0.0154 0.0711 0.5184

B3 alr(Dl) alr(Hm) alr(Qz)

alr(Dl) 0.1496 0.2824 0.1113
alr(Hm) 0.2824 0.5684 0.3000
alr(Qz) 0.1113 0.3000 0.3112

Table V

Prediction grid used

Locations Easting Northing Depth

min 740520.5 6590057.5 126.5
Δ 3 3 3

nodes 197 131 102

blocks Easting Northing Depth

Δ 12 12 6
nodes 57 40 56

Figure 4—Scatterplot diagrams of interpolated block proportions of deleterious, haematite, quartz, and shale 



estimate. This represents the approach of choosing the
treatment on the basis of the best available unbiased estimate
of the primary properties. 

Secondly, the gain was calculated for each simulation and
then averaged via Equation [13]. For each block, the option
yielding the largest average gain was chosen. This represents
the proposed approach of maximizing the conditionally
expected gain. Figure 5 (left) shows also the same sections of
the domain, using the same set of colours but now defined
according to the proposed criterion. Table VI summarizes the
two choices for each block (after the unbiased estimate and
after the proposed criterion). From Figure 5 and Table VI, it is
immediately obvious that the proposed criterion promotes a
much more thorough exploitation of the deposit, prescribing
more treatment and suggesting selling part of it at lower
prices.

Finally, for each of the 100 simulations, the gains for the
entire domain were computed using both approaches. These
are compared in Figure 6, where it is clear that the proposed
criterion always delivers a larger gain than the unbiased 

estimator criterion. Figure 6 also shows histograms of the
gain (and loss) contribution of each individual block for three
selected ranked simulations (representing a poor deposit, an
average deposit, and a rich deposit, all three scenarios
compatible with the available data). These histograms show
that the individual gains are very different, typically: a large
gain (around 2.5 · 105), a minimal gain (>0), a minimal loss
(<0), and moderate-large losses (two subgroups, around −2 ·
105 and −3 · 105). The histograms show that, with respect to
the unbiased estimator choice, the best choice primarily
reduces the large losses (increasing slightly the minimal
losses) and slightly increases the large gains. 

Discussion

The results suggest that mean block unbiased estimates
deliver poor choices because of the asymmetry of the gain
function. A synthetic example might explain why this
happens. If one considers all blocks for which the estimated
haematite average content is slightly above the lump 
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Table VI

Number of blocks showing each possible combination of choices, according to the unbiased estimator or
according to the best choice proposed; ’nothing’ is the choice taken when all other five options yield a negative
gain

Unbiased choice
Best choice Nothing Lump High High deslime Total

Nothing 8280 1 75 379 8735
Lump 250 6717 791 2 7760
High 2832 44 640 0 3516
High deslime 3866 115 3659 123 7763
Low 204 0 629 331 1164
Low deslime 1362 1 949 1868 4180
Total 16794 6878 6743 2703 33118

Figure 5—Selected ZY sections of the orebody with estimated unbiased and best choices for each block: sell as lump (green); sell as high quality, without
(red) and with (orange) previous desliming; and sell as low quality, without (blue) and with (cyan) previous desliming 
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threshold (Hm>88%), then the unbiased choice would
immediately consider all of them as lump, but each could be
sold only if its real haematite content was greater than 88
wt%. This means that, depending on the uncertainty on the
real haematite content, some of the blocks will actually fall
below the threshold, and cannot be sold at the expected price
(thus incurring non-realized gains). In contrast, if all blocks
are considered whose estimated haematite content is slightly
below the threshold, then all of them will be sold at the ‘high-
quality’ price, and those whose real haematite content would
qualify them as ‘lump’ will be sold at this lower price. In
other words, the effects of these two errors (‘high quality’
taken as ‘lump’, and ‘lump’ taken as ‘high quality’) do not
compensate one another, and the result is a net loss with
respect to that predicted by plugging the unbiased estimate
into the gain function. With more thresholds and more
decisions this effect accumulates, producing systematic losses
in each classification step.

The proposed criterion essentially minimizes the loss,
often by reducing the threshold at which the product is
considered economic. In that way, though more ‘high quality’
is classified as ‘lump’ and extracted but not sold (thus
resulting in some loss), also more ‘lump’ is properly classified
and sold at the higher price, (more than just compensating
the potential losses). The same can be seen in the prediction
of low-quality blocks: the optimal criterion proposes to
process many blocks for which the estimated average
haematite content is slightly below the threshold of minimal
quality (Hm>80%), because those of them that are above the
threshold will pay for the extra costs of processing those that
are actually below the defined threshold. In real applications,
this concept would be used for the whole deposit, in order to
look for those quality thresholds (fixed to 88%, 85%, and
80% here) that after blending each quality class would
maximize the global gain. This global optimization was left
for further research, to keep the discussion simpler, but
readers should be aware that optimizing blending is one of
the most important choices in terms of global impact on the
gain.

The modification of the threshold can also operate in the
other direction, as it depends on the uncertainty attached to
each estimate, and the differences between gains and losses
for each misclassification. This can be inferred from two
aspects seen in Figure 5. First, desliming a block that
according to its average value would not require desliming is
considered by the unbiased criterion as a waste of money,
thus almost no block is deslimed here; on the other hand, the
proposed criterion switches in desliming if its expected cost is
less than the expected increment of gain that we will obtain
by reducing the chances of a bad classification. The net result
is that desliming is much more frequently prescribed by the
best criterion than by the unbiased choice. Secondly, several
blocks are considered of high quality by the unbiased choice,
while the optimal choice classifies them as low quality; these
blocks typically lie far from the central part of the orebody
(i.e. far from the data). Their actual composition is thus
highly uncertain. In both cases, the optimal choice takes a
conservative decision, preferring a lower but more certain
income since this promises a higher overall gain.

A thorough uncertainty characterization is thus the key to
proper adaptive processing. In other words, ‘second-order
reasoning’ – so typical of linear geostatistical applications –
does not suffice: having a kriging estimate and a kriging
variance might be sufficient to describe the uncertainty
around the mean value, but it does not provide a good
characterization of the whole distribution. According to van
den Boogaart et al. (2013), the optimization based on the
conditional expectation can be proven to be optimal, but a
correct prediction of this conditional expectation by Monte
Carlo simulation requires correct modelling of the conditional
distribution. The key to good adaptive processing is thus a
good geostatistical model for the primary geometallurgical
properties of the ore and a correct processing model. 

Conclusions
To properly select the best option for adaptive processing of
each SMU block, the use of unbiased estimates of the average
block properties is not a suitable criterion. This criterion
always overestimates the real gain that can be obtained from
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Figure 6—(Upper plot) Scatterplot of the real gains that might be obtained applying the best choice proposed here against a choice based on unbiased
estimates of the block properties; reference diagonal line shows equal gains with both options; (lower plots) individual gains for each processed block
according to the two criteria, for three particular simulations (marked as filled circles on the scatterplot)



the block, because high-quality products that are classified as
low quality are sold at the lower prices, and low-quality
products classified as high quality cannot be sold at the
higher price that was predicted. This is analogous to  the
well-known conditional bias. 

To determine the best processing options for each block,
it is necessary to calculate the conditional expectation of the
gain of processing the block with each option, and then to
choose the option that maximizes that expectation. This
criterion takes into account the uncertainty on the real values
of the material primary properties of each block around the
estimated values of these properties, given all the available
data. The final adaptive rules obtained tend to have slightly
lower thresholds than the pre-established quality thresholds.
The idea is to take all really high-quality products as such
and compensate with the losses produced by misclassified
lower quality products.

In a geostatistical framework, conventional geostatistical
simulation can be used to provide the required calculations of
the expected gain. A particularly important condition here is
that the distribution of the block primary properties is
properly estimated on their whole sample space, because the
strong nonlinearity of the gain functions places high
importance on parts of the distributions far from the central
value. For this reason, an in-depth assessment of the scale of
the primary properties, inclusion of all relevant co-
dependence between variables available, and ensuring quasi-
normality of the analysed scores are necessary. 

In summary, geometallurgy (understood as adaptively
processing the ore based on a geostatistical prediction)
requires all aspects of geostatistics: attention to nonconven-
tional scales, nonlinear transforms, change of support, and
geostatistical (co)simulation. The key is a geostatistical
model that takes into account the particular scale of each
microfabric property or group of properties, and all cross-
dependencies between them. These aspects often require
some assessment on the natural scale of each parameter
considered, and the use of co-regionalization, cokriging, or
cosimulation to adequately capture the spatial co-dependence
between all variables. 

Finally, it is worth stressing that the task is not to
estimate the primary properties themselves, but the expected
gain of processing each block through each geometallurgical
option available given the whole uncertainty on the true
value of the primary properties. This is a stochastic,
nonlinear, change-of-support problem, which is solved by
averaging the gains over Monte Carlo geostatistical
simulations of the primary geometallurgical variables. 
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