
Introduction
Professor Danie Krige has played, and
continues to play, an important role in the
historical development of mathematical
statistics and the mathematical geosciences.
His MSc thesis (Krige, 1951a) contained new
ideas including the use of regression analysis
to extrapolate from known gold assays to
estimate mining block averages. This was the
first application of ‘kriging’, which is a
translation of the term ‘Krigeage ’ originally
coined by Georges Matheron, who remarked in
1962 that use of this word was sanctioned by
the [French] Commissariat à l’Energie
Atomique to honour work by Krige on the bias
affecting estimation of mining block grades
from sampling in their surroundings, and on
the correction coefficients that should be
applied to avoid this bias (Matheron, 1962, 

p. 149). Later, Matheron (1967) urged the
English-speaking community to adopt the term
‘kriging’, which now is used worldwide.

Krige (1951b) also published his original
ideas on the use of mathematical statistics in
economic geology in a well-known paper in the
Journal of the South African Institute of
Mining and Metallurgy, which was translated
into French (Krige, 1955) in a special issue of
Annales des Mines. It was followed by a paper
by Matheron (1955), who emphasized the
‘permanence’ of lognormality in that gold
assays from smaller and larger blocks all have
lognormal frequency distributions with
variances decreasing with increasing block
size. Matheron discusses ‘Krige’s formula’ for
the propagation of variances of logarithmically
transformed mining assays, which states that
the variance for small blocks within a large
block is equal to the variance for the small
blocks within intermediate-size blocks plus the
variance of the intermediate-size blocks within
the large block. This empirical formula could
not be reconciled with simple applications of
mathematical statistics to blocks of ore,
according to which the variance of mean block
metal content is inversely proportional to block
volume. However, it constitutes a characteristic
feature in a spatial model of orebodies
previously developed by the Dutch mining
engineer de Hans de Wijs (1948, 1951),
whose approach helped Matheron (1962) to
formulate the idea of ‘regionalized random
variable’. Also in South Africa, the
mathematical statistician Herbert Sichel 1952)
had introduced a maximum likelihood
technique for efficiently estimating mean and
variance from small samples of lognormally-
distributed, stochastically independent
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(uncorrelated) gold assays. Later, Krige (1960) discovered
that a small but significant improvement of this approach
could be obtained by using a three-parameter lognormal
distribution.

Rather than using autocorrelation coefficients, as were
generally employed in time series analysis under the
assumption of existence of a mean and finite variance,
Matheron (1962) introduced the variogram as a basic tool for
structural analysis of spatial continuity of element concen-
tration values. This is because the variogram allows for the
possibility of infinitely large variance, as would result from
the de Wijsian model for indefinitely increasing distances
between sampling points. Aspects of this model were adopted
by Krige (1978) in his monograph ‘Lognormal-de Wijsian
Geostatistics for Ore Evaluation’ summarizing earlier studies
including his successful application for characterizing self-
similar gold and uranium distribution patterns in the
Klerksdorp goldfield (Krige, 1966a).

Personally, I have had the privilege of knowing Danie
Krige as a friend and esteemed colleague for more than 50
years. As a graduate student at the University of Utrecht I
had studied Krige’s MSc thesis on microfilm at the library in
preparation of an economic geology seminar on the skew
frequency distribution of mining assays. This resulted in a
paper (Agterberg, 1961) that was read by Danie, who wrote
me a letter about it. After I had joined the Geological Survey
of Canada (GSC) in 1962, he visited me in Ottawa with his
wife and a colleague on the way to the 3rd APCOM meeting
held at Stanford University in 1963. APCOM is the acronym
of Applications of Computers and Operations Research in the
Mineral Industries. Before the birth of the International
Association for Mathematical Geology, APCOMs provided the
most important forum for mathematical geoscientists. Danie
persuaded GSC management that I should attend the 4th
APCOM, hosted by the Colorado School of Mines in 1964. I
also participated in discussions of two of Danie’s SAIMM
papers (Krige and Ueckermann, 1963; Krige, 1966b) on value
contours and improved regression techniques and two-
dimensional weighted moving average trend surfaces for ore
evaluation (Agterberg, 1963; 1966). I visited Danie and his
family three times in Johannesburg. His great hospitality
included joint visits to the Kruger National Park and the
wildlife reserve in Krugersdorp, in addition to descents into
deep Witwatersrand gold mines.

In the following sections, the model of de Wijs will be
discussed with its application by Danie Krige to the
Witwatersrand goldfields. Another application is to worldwide
uranium resources. First, frequency distributions and spatial
correlation of element concentration values in rocks and
orebodies will be considered, and this discussion will be
followed by a review of multifractal theory and singularity
analysis. Finally, block-variance relations of element concen-
tration values are briefly reviewed from the perspective of
permanence of block frequency distributions. The objectives
of this paper are (1) to draw increased attention to recent
developments in developments of multifractal theory, (2) to
highlight various generalizations of the original model of de
Wijs and approaches commonly taken in geostatistics as
applied to ore reserve estimation, and (3) to illustrate how
singularity analysis can be used to help determine the nature
of nugget effects and sampling errors.

The model of de Wijs
The model of de Wijs (1948, 1951) is based on the simple
assumption that when a block of rock with an element
concentration value x is divided into two halves, the element
concentration values of the two halves are (1+d)·x and 
(1-d)·x regardless of the size of the block. The coefficient 
d > 1 is the index of dispersion. The ratio (1+d)/(1-d) can be
written as η > 1. The process of starting with one block that
is divided into halves, dividing the halves into quarters, and
continuing the process of dividing the smaller blocks
repeatedly into halves results in a log-binomial frequency
distribution of the element concentration values. This model
has the property of self-similarity or scale-independence. It
can be readily generalized in two ways:

➤ In practical applications, there is generally a lower limit
to the size of blocks with the same index of dispersion
as larger blocks. Below this limit, d usually decreases
rapidly to zero; this limitation is accommodated in the
three-parameter model of de Wijs (Agterberg, 2007a)
that has an effective maximum number of subdivisions
beyond which the hypothesis of a constant index of
dispersion does not apply

➤ The idea of cutting any block into halves with constant
value of d is not realistic on a local scale (e.g., d does
not stay exactly the same when halves become
quarters). However, this problem is eliminated in the
random-cut model for which the coefficient d is
replaced by a random variable D with variance that is
independent of block size (Agterberg, 2007a). The end
products of constant dispersion and random-cut models
are similar. 

The log-binomial frequency distribution of element
concentration values (x) resulting from the model of de Wijs
has logarithmic variance:

[1]

where n represents the number of subdivisions of blocks.
This is the original variance equation of de Wijs (1951).
Frequency density values in the upper and lower tails of the
log-binomial distribution are less than those of the
lognormal. The log-binomial would become lognormal only if
n were increased indefinitely. Paradoxically, its variance then
also would become infinitely large. In practical applications, it
is usually seen that the upper tail of a frequency density
function of element concentration values is not thinner, but
thicker, and extending further than a lognormal tail. Later in
this paper, models that generate thicker-than-lognormal
upper tails will be considered.

Matheron (1962) generalized the original model of de
Wijs by introducing the concept of ‘absolute dispersion’ here
written as A = (ln η)2 / ln 16. It leads to the more general
equation

[2]

where σ2 (ln x) represents logarithmic variance of element
concentration values x in smaller blocks with volume v
contained within a larger block of rock with volume V.
Equation [2] was used by Krige (1966a, 1978), as will be
illustrated in the next section.

▲
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The Witwatersrand goldfields
Figure 1 is a classic example of the relationship between
logarithmic variance and block size for Witwatersrand gold
values as derived by Krige (1966a). The gold occurs in
relatively thin sedimentary layers called ‘reefs’. Average gold
concentration value is multiplied by length of sample cut
across reef, and the unit of gold assay values is expressed as
inch-pennyweight in Figure 1 (1 inch-pennyweight = 3.95
cm-g). Three straight-line relationships for smaller blocks
within larger blocks are indicated. Size of reef area ranged
from 0.1 to 1 000 million square feet. Consequently, in
Krige’s application, scale-independence applies to areal
domains with side lengths extending over five orders of
magnitude. Clearly, the logarithmic variance increase is
approximately in accordance with Equation [2]. In this paper,
discussions will be restricted to the top line in Figure1, which
applies to the distribution of original assay values within
larger blocks. Variance-size relations for the other two lines
in Figure 1 are discussed by Krige (1966a). 

There are two minor departures from the simple model of
Equation [2]. The first of these departures is that a small
constant term (+20 inch-pennyweights) was added to all gold
values. This reflects the fact that, in general, the three-
parameter lognormal model provides a better fit than the two-
parameter lognormal (Krige, 1960). As will be discussed in
more detail later in this paper, this departure corresponds to a
narrow secondary peak near the origin of the normal
Gaussian frequency density curve for logarithmically
transformed gold assay values, and can be explained by
adopting an accelerated dispersion model. The second
departure consists of the occurrence of constant terms that
are contained in the observed logarithmic variances plotted in
Figure 1. These additive terms are related to shape
differences of the blocks with volumes v and V, as will also
be discussed later in this paper.

Worldwide uranium resources
A second example of application of the model of de Wijs is as
follows. The log-binomial frequency distribution model was
used in mineral resource evaluation studies by Brinck (1971,
1974). A comprehensive review of Brinck’s approach can be
found in Harris (1984). The original discrete model of de
Wijs was assumed to apply to a chemical element in a very
large block consisting of the upper part of the Earth’s crust
with known average concentration value ξ, commonly set
equal to the element’s crustal abundance or ‘Clarke’.

Chemical analysis is applied to blocks of rock that are
very small in comparison to the large block targeted for
study. Let n = N represent the maximum number of
subdivisions of this very large block. Suppose that the
element concentration values available for study: (1)
constitute a random sample from the population of 2N small
blocks within the large block, and (2) show an approximate
straight line pattern on their lognormal Q-Q plot. The slope
of this line then provides an estimate of σ from which η (and
d) can be derived by means of the original variance formula
of de Wijs. Brinck (1974) set 2N equal to average weight of
the small block used for chemical analysis divided by total
weight of the environment targeted for study.

Figure 2 (modified from Brinck, 1974) is a worldwide
synthetic diagram for uranium with average crustal
abundance value set equal to 3 ppm and dispersion index 
d = 0.2003. This diagram is equivalent to a cumulative
frequency distribution plot with two logarithmic scales. Value
(ppm U) is plotted in the vertical direction and weight (tons
U) is plotted in the horizontal direction. All weight values are
based on cumulative frequencies calculated for the log-
binomial distribution and are fully determined by the mean
and coefficient of dispersion. The diagram shows curved lines
of equal metal content. In 1971 it was, on the whole,
profitable to mine uranium if the cost of exploitation was less
than US$6.00 per pound U3O8. Individual orebodies can be
plotted as points in Figure 2. In 1971 such deposits would
have been mineable if their point fell within the elliptical
contour labeled $6.00. The other elliptical contours are for
uranium deposits that would have been more expensive to
mine.

Frequency distributions and spatial statistics
Multiplicative cascade processes that generate spatial
frequency distributions of chemical concentration were
preceded by generating process models, as will be discussed
next.

Theory of proportionate effect
The theory of proportionate effect was originally formulated
by Kapteyn (1903) and later in a more rigorous manner by
Kolmogorov (1941). It can be regarded as another type of
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Figure 1—Logarithmic variance of gold values as a function of reef area
sampled. The variance increases linearly with area if the area for gold
values is kept constant. The relationship satisfies the model of de Wijs
(based on Krige, 1966a)

Figure 2—Uranium resources and inferred potential reserves as
estimated by the program MIMIC (Brinck, 1974). Numbers along
diagonal refer to largest possible deposits for given values of xD and d.
Dollar values refer to estimated average exploitation costs
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application of the central limit theorem of mathematical
statistics. Suppose that a random variable X was generated
stepwise by means of a process that started from a constant
value X0. At the i-th step of this process (i = 1, 2, …, n) the
variable was subject to a random change that was a
proportion of some function g(Xi-1), or Xi – Xi-1 = εi· g(Xi-1).
Two special cases are g(Xi-1) = 1 and g(Xi-1) = Xi-1. If g
remains constant, X becomes normal (Gaussian) because of
the central limit theorem. In the second case, it follows that:

[3]

This generating process has the lognormal distribution as
its end product. There is an obvious similarity between
generating processes and the multiplicative cascade processes
to be discussed later in this paper in the context of fractals
and multifractals.

The starting point of the preceding discussion of the
generating process also can be written as dXi = g(Xi)·εi,
where dXi represents the difference Xi – Xi-1 in infinitesimal
form. Often an observed frequency distribution can be
reduced to normal (Gaussian) form. In Figure 3 a lognormal
curve is plotted on normal probability paper. An auxiliary
variable z is plotted along the horizontal axis. It has the same
arithmetic scale as x, which is plotted in the vertical direction.
The variable x is a function of z or x = G(z). The slope of
G(z) is measured at a number of points giving the angle φ.
For example, if z = x = 20 in Figure 3A, φ = φ1, and:

[4]

If, in a new diagram (Figure 3B), tan φ is plotted against
x, we obtain a function F(x) that represents g(Xi) except for a
multiplicative constant which remains unknown. This
procedure is based on the general solution of the generating
process that can be formulated as: 

[5]

under the assumption that Z is normally distributed.
The function g(Xi) derived in Figure 3B for the lognormal

curve of Figure 3A is simply a straight line through the

origin. This result is in accordance with the origin theory of
proportional effect. However, the method can produce
interesting results in situations where the frequency distri-
bution is not lognormal. Two examples are given in Figure 4.
The original curves for these two examples (Figure 3) are on
logarithmic probability paper. They are for a set of 1000
Merriespruit gold values from Krige (1960), and a set of 84
copper concentration values for sulphide deposits that
surround the Muskox intrusion, District of Mackenzie,
northern Canada (Agterberg, 1974) as a rim. The results
obtained by the graphical method are shown in Figure 4B.

The generating function g(Xi) for Merriespruit is
according to a straight line, the extension of which would
intersect the X-axis at a point with negative abscissa α = 
≈ 55. This is equal to the constant added to pennyweight
values by Krige (1960). Addition of this small constant term
(55 inch-dwt) to all Merriespruit gold assays has the effect
that the straight line in Figure 4B passes through the origin.
The departure from lognormality is restricted to the
occurrence of a small secondary peak near the origin. The
second example (Muskox sulphides) gives a function g(Xi)
that resembles a broken line. It would suggest a rather abrupt
change in the generating process for copper concentration
after the value Xi = ≈  0.5%. The influence of Xi on dXi may
have decreased with increasing Xi.

▲
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Figure 3—Graphical construction of F(x), which is proportional to the
tangent of the slope of x = G(z) representing the theoretical lognormal
distribution plotted on arithmetic probability paper (Agterberg, 1974,
Figure 33)

Figure 4—Left side. Two frequency distributions that depart from the lognormal model plotted on logarithmic probability paper. Example of 1000 gold
values from Merriespruit gold mine is after Krige (1960; see also Sichel, 1961), and 84 copper values from the Muskox intrusion (Agterberg, 1974). Right
side. Method of Equation [5] resulted in two types of F(x): the one for the Merriespruit mine is approximately a straight line that would intersect the x-axis
at a point with abscissa of about -55 (value used in Krige, 1960, for the same data-set). Function F(x) for Muskox copper values would suggest a change in
the generating process after 0.5% Cu (Agterberg, 1974, Figure 34)



The usefulness of a graphical method of this type is
limited, in particular because random fluctuations in the
original frequency histograms cannot be considered carefully.
However, the method is rapid and offers suggestions with
respect to the physicochemical processes that may underlie a
frequency distribution of observed element concentration
values.

Accelerated dispersion model
The model of de Wijs has the property of self-similarity or
scale-independence. In his application of this model to gold in
the Klerksdorp goldfield, Krige (1966a) worked with approxi-
mately 75 000 gold determinations for very small blocks. In
Figure 1 it was illustrated that there are approximate straight
line relationships between logarithmic variance and logarith-
mically transformed size of reef area for gold. Validity of the
concept of self-similarity was also illustrated by means of
moving-average gold value contour maps for square areas
measuring 500 ft and 10 000 ft on a side. The contours of
moving-average values obtained by Krige (1966a) for these
squares show similar patterns of gold concentration contours
in both areas, although one area is 400 times as large as the
other. 

The original assay values satisfy a three-parameter
lognormal distribution, because of which a small value was
added to all assays to obtain approximate (two-parameter)
lognormality. Originally, the following variant of the model of
de Wijs was developed (Agterberg, 2007b) because, in a
number of applications of the lognormal in resource studies,
the high-value tail of the frequency distribution was found to
be thicker and longer than log-binomial and lognormal tails.
Suppose that the coefficient of dispersion (d) in the model of
de Wijs increases as follows with block concentration value
(x):

[6]

where d0 represents the initial dispersion index at the
beginning of the process, and b is a constant. This
accelerated dispersion model produces thicker and longer
tails than the lognormal frequency distribution (Agterberg,
2007b). Additionally, it yields more very small values, thus
producing a secondary peak near the origin of the frequency
density function similar to Merriespruit.

Figure 5 is the result of a two-dimensional computer
simulation experiment with d0 = 0.4, n = 14, and p = 0.01. In
total, 214 = 16 384 values were generated on a 128 × 128
grid. The generating process commenced with a single square
with element concentration value set equal to 1. This square
was divided into four quadrants of equal size with values
(1+d)2, (1+d)(1-d), (1-d)(1+d), and (1-d)2 in a random
configuration (Agterberg, 2001). The process was repeated
for each square until the pattern of Figure 5 was obtained.
Because p is small, most element concentration values after
14 iterations are nearly equal to values that satisfy the
original model of de Wijs. Exceptions are that the largest
values, which include (1+d)14 = 316, significantly exceed
values that would be generated by the original model, which
include (1+d0)14 = 111 (cf. Agterberg, 2007b, Figure 6).
Likewise, the frequencies of very small values that are
generated exceed those generated by the ordinary model of
de Wijs. 

Sill and nugget effect
Geostatistical studies are commonly based on a semivar-
iogram fitted to element concentration values from a larger
neighbourhood. Generally, these models assume the
existence of a ‘nugget effect’ at the origin, and a ‘range’ of
significant spatial autocorrelation with a ‘sill’ that
corresponds to the variance with respect to regional mean
concentration value (see e.g. Journel and Huijbregts, 1978, or
Cressie, 1991). It is well known that the ‘nugget effect’ is
generally much larger than chemical determination errors or
microscopic randomness associated with ore grain
boundaries. This second source of randomness arises
because chemical elements are generally confined to crystals
with boundaries that introduce randomness at very small
scales. In general, the preceding two sources of local
randomness have effects that rapidly decline with distance.

Suppose γ(h) represents the semivariogram, which is half
the variance of the difference between values separated by
lag distance h. Semivariogram values normally increase when
h is increased until a sill is reached for large distances. If
element concentration values are subject to second-order
stationarity, γ(h) = σ2·(1- ρh) where σ2 represents variance
and ρh is the autocorrelation function. The sill is reached
when there is no spatial autocorrelation or γ(h) = σ2. If
regional trends can be separately fitted to element concen-
tration values, the residuals from the resulting regional,
systematic variation may become second-order stationary
because the overall mean in the study area then is artificially
set equal to zero. In most rock types such as granite or
sandstone, randomness of chemical concentration is largely
restricted to the microscopic scale and sills for compositional
data are reached over very short distances. The nugget effect
occurs when extrapolation of γ(h) towards the origin (h→0)
from observed element concentration values yields estimates
with γ(h) > 0 (or ρh < 1). Often, what seems to be a nugget
effect arises when there is strong local autocorrelation that
cannot be detected because the locations of samples subjected
to chemical analysis are too far apart to describe local
continuity.

Self-similarity and multiplicative cascade models
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Figure 5—Realization of accelerated dispersion model for d0 = 0.4, 
N = 14, and p = 0.01. Vertical scale is for 4 + log10 (value) (Agterberg,
2007b, Figure 5)
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Matheron (1989) has pointed out that in rock sampling
there are two possible infinities if the number of samples is
increased indefinitely: either the sampling interval is kept
constant so that more rock is covered, or the size of the study
area is kept constant whereby sampling interval is decreased.
These two possible sampling schemes provide additional
information on sample neighbourhood, for sill and nugget
effect respectively. In practice, the exact form of the nugget
effect usually remains unknown, because extensive sampling
would be needed at a scale that exceeds microscopic scale but
is less than scale of sampling space commonly used for ore
deposits or other geological bodies.

If the model of de Wijs would remain applicable for n →
∞, the variance would not exist and it would not be possible
to estimate the spatial covariance function. This was the main
reason that Matheron (1962, 1989) originally advocated
using the variogram, because this tool is based on differences
between values that are distance h apart and the existence of
a finite variance is not required. Independent of Matheron,
Jowett (1955) also advocated use of the variogram instead of
the correlogram. Recently, Serra (2014) has calculated the
rather strong bias that could result from estimating the
spatial covariance from data for which the variance does not
exist. Such an approach differs from statistical applications of
time series analysis, in which the existence of mean and
variance is normally taken for granted. If the variance σ2 of
spatial observations exists, it follows immediately that the
semivariogram satisfies γh = σ2 – σh where σh is the
covariance of values that are distance h apart. On the other
hand, Matheron (1962) originally assumed γh = 3A·ln h for
logarithmically transformed element concentration values for
infinitesimally small volumes, and his approach was in
accordance with the model of de Wijs.

De Wijs (1951) used a series of 118 zinc assays for
channel samples taken at 2 m intervals along a drift in the
Pulacayo Mine, Bolivia, as an example to illustrate his
original model. Matheron (1962) analysed this data-set as
well, constructing a semivariogram for the channel samples
based on the γh = 3A·ln h model with γ0 = 0 and σ2 = ∞. The
original zinc assays for this example are shown in 
Figure 6. In Agterberg (1974), a standard time series
approach was taken in which mean and variance were
assumed to exist. The model used for smoothing the 118 zinc
values was that each zinc value is the sum of a ‘signal’ value
and small-scale ‘noise’ with autocorrelation function ρh =
c·exp(-ah), where c represents the small-scale noise variance
and the parameter a controls the decreasing influence of
observed values on their surroundings. The two parameters
were estimated to be c = 0.5157 and a = 0.1892.
Signal+noise models of this type are well known in several
branches of science (cf. Yaglom, 1962). Filtering out the
noise component produces the signal shown in Figure 6.
Various other statistical methods such as ordinary kriging
can be used to produce similar smoothed patterns.

If the logarithmic variance of element concentration
values is relatively large, it may not be easy to obtain reliable
estimates of statistics such as mean, variance, autocorrelation
function, and semivariogram by using untransformed
element concentration values. This is a good reason for using
logarithmically transformed values instead of original values
in such situations. Approximate lognormality for the

frequency distribution of element concentration values can
often be assumed. If the coefficient of variation, which is
equal to the standard deviation divided by the mean, is
relatively small (< 0.5), the lognormal distribution can be
approximated by a normal (Gaussian) distribution and
statistics such as the autocorrelation function can be based
on original data without use of a logarithmic transformation.
Agterberg (2012a) showed that the estimated and theoretical
autocorrelation coefficients for the 118 zinc values from the
Pulacayo orebody are almost exactly the same whether or not
a logarithmic transformation is used. Consequently, the
original data can be used in subsequent statistical
calculations for this example.

Multifractals
Fractals are objects or features characterized by a fractal
dimension that is either greater than or less than the integer
Euclidean dimension of the space in which the fractal is
embedded. The term ‘fractal’ was coined by Mandelbrot
(1975). On the one hand, fractals are often closely associated
with the random variables studied in mathematical statistics;
on the other hand, they are connected with the concept of
‘chaos’ that is an outcome of some types of nonlinear
processes. Evertsz and Mandelbrot (1992) explain that
fractals are phenomena measured in terms of their presence
or absence in cells or boxes belonging to arrays superimposed
on the one-, two-, or three-dimensional domain of study,
whereas multifractals apply to ‘measures’ of how much of a
feature is present within the cells. Multifractals are either
spatially intertwined fractals (cf. Stanley and Meakin, 1988)
or mixtures of fractals in spatially distinct line segments,
areas, or volumes that are combined with one another.
Fractals and multifractals often indicate the existence of self-
similarity that normally results in power-law relations
(Korvin, 1992; Agterberg, 1995), which plot as straight lines
on log-log paper.

Brinck’s (1974) model constituted an early application of
the model of de Wijs. Estimation of parameters in this model,
including d, could be improved by adopting a multifractal
modelling approach (Agterberg, 2007a). At first glance, the
Brinck approach seems to run counter to the fact that mineral
deposits are of many different types and result from different

▲
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Figure 6—Pulacayo Mine zinc concentration values for 118 channel
samples along horizontal drift samples (original data from De Wijs,
1951). Sampling interval is 2 m. ‘Signal’ retained after filtering out
‘noise’ (Agterberg, 2012a, Figure 1)



genetic processes. However, Mandelbrot (1983) has shown
that, for example, mountainous landscapes can be modeled
as fractals. Smoothed contours of elevation on such maps
continue to exhibit similar shapes when the scale is enlarged,
as in Krige’s (1966a) example for Klerksdorp gold contours.
Lovejoy and Schertzer (2007) argued convincingly that the
Earth’s topography can be modelled as a multifractal, both on
continents and ocean floors, in accordance with power-law
relations originally established by Vening Meinesz (1964).
These broad-scale approaches to the nature of topography
also seem to run counter to the fact that landscapes are of
many different types and result from different genetic
processes. In this paper it is assumed that chemical elements
within the Earth’s crust or within smaller, better-defined
environments like the Witwatersrand goldfields can be
modeled as multifractals.

The model of de Wijs is a simple example of a binomial
multiplicative cascade (cf. Mandelbrot, 1989). Cascade theory
has been developed extensively over the past 25 years; for
example, by Lovejoy and Schertzer (1991) and other
geophysicists (Lovejoy et al., 2010), particularly in
connection with cloud formation and rainfall (Schertzer and
Lovejoy, 1987; Veneziano and Langousis, 2005). More
recently, multifractal modelling of solid Earth processes,
including the genesis of ore deposits, has been advanced by
Cheng and others (Cheng, 1994, 2008, 2012; Cheng and
Agterberg, 1996). In applications concerned with turbulence,
the original binomial model of de Wijs became widely known
as the binomial/p model (Schertzer et al., 1997). With respect
to the problem that in various applications observed
frequency distribution tails are thicker than log-binomial or
lognormal, it is noted here that several advanced cascade
models in meteorology (Veneziano and Langousis, 2005)
result in frequency distributions that resemble the lognormal
but have thicker tails.

Binomial/p model
The theory of the binomial/p model is clearly presented in
textbooks, including Feder (1988), Evertsz and Mandelbrot
(1992), Mandelbrot (1989), and Falconer (2003). There have
been numerous successful applications of this relatively
simple model, including many for solving solid Earth
problems (e.g. Cheng, 1994; Cheng and Agterberg, 1996;
Agterberg, 2007a,b; Cheng, 2008). Although various
departures from the model have also been described in these
papers and elsewhere, the binomial/p model remains useful.
Basically, it is characterized by a single parameter. In the
original model of de Wijs (1951), this parameter is the
dispersion index d. When the parameter p of the binomial/p
model is used, p = 0.5(1-dh).

Evertsz and Mandelbrot (1992) defined the ‘coarse’
Hölder exponent α as:

[7]

where μ represents a quantity measured for a cell with
volume Bx (∈ ) around a point x, and ∈ is a line segment, e.g.
the edge of cubical cells used to partition the domain of study
in a three-dimensional application. In most applications by
physicists and chemists, α is called the ‘singularity’. The
mass-partition function χq (∈) is defined as: 

[8]

where q is a real number (-∞ ≤ q ≤ ∞), N(∈ ) is total number
of cells, and N∈ (a) = ∈ –f(a); f(a) represents the fractal
dimension for all cells with singularity α. It follows that

[9]

At the extremum, for any ‘moment’ q: ∂a
∂{qa – f(a)} = 0 and

δq

δf(a)
|ä=ä(q) = q (cf. Evertsz and Mandelbrot, 1992, 

Equation B.14). Mass exponents τ(q) are defined as:  

[10]

It follows that
δa

δτ(q) = q, and the so-called multifractal
spectrum satisfies:

[11]

The preceding derivation is used in the method of
moments to construct a multifractal spectrum in practice. This
spectrum shows the fractal dimension f(α) as a function of
the singularity a and has its maximum f(α) ≤ 1 at α = 1, and
f(α) = 0 at two points along the α -axis with:

[12]

A one-dimensional example of a multifractal is as
follows. Suppose that μ = x· ∈ represents the total amount of
a metal for a rod-shaped sample that can be approximated by
a line segment of length ∈, and x is the metal’s concentration
value. In the multifractal model it is assumed that (1) μ ∝ ∈∝
where ∝ denotes proportionality and α is the singularity
exponent corresponding to element concentration value x;
and (2) Nα(∈) ∝ ∈ - f(α) represents the total number of line
segments of length ∈ with concentration value x, while f(α) is
the fractal dimension of these line segments.

The binomial/p model can be characterized by the
second-order mass exponent τ(2) with 

[13]

If the binomial/p model is satisfied, any one of the
parameters p, d, τ(2), αmin, αmax, or σ2 (ln X) can be used for
its characterization. Using different parameters can be helpful
for checking goodness of fit for the model or finding
significant departures from model validity. The mass-
partition function and multifractal spectrum of the Pulacayo
zinc values were derived by Cheng (1994; also see Cheng and
Agterberg, 1996, Figure 2). The line for the second-order
moment q = 2 is shown in Figure 7. This line was fitted by
least-squares. Its slope provides the fairly precise estimate
τ(2) = 0.979 ± 0.038. The degree of fit in Figure 7 is slightly
better than can be obtained by semivariogram or correlogram
modelling applied to the same data. From this estimate of
τ(2) it would follow that d = 0.121.

Estimates of αmin and αmax derived for the Pulacayo zinc
deposit in Chen et al. (2007) by a technique called ‘local
singularity analysis’ (see later) were 0.532 and 1.697,
respectively. Using a slightly different method, Agterberg
(2012a) obtained 0.523 and 1.719. These results, which
correspond to d = 0.392 Agterberg, 2012b), differ greatly
from the estimates based on the binomial/p model with d =

Self-similarity and multiplicative cascade models
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0.121. Clearly, the binomial/p model has a limited range of
applicability, although it shows well-defined linear patterns
for different moments (q) on the log-log plot of partition
function versus ∈ (see e.g. Figure 7). 

This discrepancy can be explained By using more flexible
models with additional parameters, such as the accelerated
dispersion model of Equation [6]. The multifractal spectrum
resulting from an accelerated dispersion model would be
approximately equal to that for the binomial/p model except
at the largest (and smallest) concentration values. Because
these extreme values occur rarely in practical applications, it
follows that the smallest (and largest) singularities that
correspond to the extremes cannot be determined by means
of the method of moments, which requires relatively large
sample sizes. Local singularity analysis has the advantage
that it operates on all values from within relatively small
neighbourhoods in the immediate vicinity of the extreme
values. Another approach resulting in thicker tails is provided
by the ‘universal multifractal model’ initially developed
during the late 1990s by Schertzer and Lovejoy (1991).
These authors have successfully applied their model to the
Pulacayo zinc deposit (Lovejoy and Schertzer, 2007). A basic
tool in their approach is the ‘first-order structure function’,
which can be regarded as a generalization of the semivar-
iogram, because differences between spatially separated
element concentration values are not only raised to the power
2 but to any positive real number.

Multifractal spatial correlation
Cheng (1994) (also see Cheng and Agterberg, 1996) derived
general equations for the semivariogram, spatial covariance,
and correlogram of any scale-independent multifractal
including the model of de Wijs. Cheng’s model is applicable to
sequences of adjoining blocks along a line. Experimentally,
the resulting semivariogram resembles Matheron’s semivar-
iogram for infinitesimally small blocks. In both approaches,
extrapolation of the spatial covariance function to infinites-
imally small blocks yields infinitely large variance when h
approaches zero. The autocorrelation function along a line
through a multifractal is:

[14]

where C is a constant, ∈ represents the length of line
segment for which the measured zinc concentration value is
assumed to be representative, τ(2) is the second-order mass
exponent, ξ represents overall mean concentration value, and
σ2(∈ ) is the variance of the zinc concentration values. The
unit interval ∈ is measured in the same direction as the lag
distance h. The index k is an integer value that can be
transformed into a measure of distance by setting k = ½h.
Estimation for the 118 Pulacayo zinc values using an
ordinary least-squares model after setting τ(2) = 0.979 gave:

[15]

The first 15 values (k≥1) resulting from this equation are
nearly the same as the best-fitting semi-exponential (broken
line in Figure 8). This semi-exponential function was used
for the filtering in Figure 6. The heavy line in Figure 8 is
based on the assumption of scale-independence over shorter
distances (h < 2m). It represents a multifractal autocorre-
lation function. 

This model can be used for extrapolation toward the
origin by replacing the second-order difference on the right
side of Equation [15] by the second derivative (cf. Agterberg,
2012a, Equation 9):

[16]

The theoretical autocovariance function shown as a solid
line in Figure 8 was derived by application of this method to
lag distances with 2 m > h ≥ 0.014 m. It is approximately in
accordance with Matheron’s original semivariogram for the
Pulacayo zinc assays. For integer values (1 ≤ k ≤15), the
curve of Figure 7 (solid line) reproduces the estimated
autocorrelation coefficients obtained by the original
multifractal model using Equation [15]. This method cannot
be used when the lag distance becomes very small (h < 0.07
in Figure 8), so that the white noise variance at the origin 
(h = 0) cannot be estimated by this method. However, as will
be illustrated in the next section, white noise as estimated by
local singularity mapping represents only about 2% of the
total variability of the zinc values (Agterberg, 2012a). This
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Figure 7—Log-log plot for relationship between χ2(∈) and ∈ ; logarithms
base 10 (Cheng and Agterberg, 1994, Figure 3)
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Figure 8—Estimated autocorrelation coefficients (connected by partly
broken line) for 118 zinc concentration values of Figure 6. Broken line
represents best-fitting semi-exponential function used to extract
‘signal’ in Figure 6. Solid line is based on multifractal model that
assumes continuance of self-similarity over distances less than the
sampling interval (Agterberg, 2012b, Figure 3)



white noise would represent measurement error and strong
decorrelation at microscopic scale.

Singularity analysis
Cheng (1999, 2005) proposed a new model for incorporating
spatial association and singularity in interpolation of
exploratory data. In his approach, geochemical or other data
collected at sampling points within a study area is subjected
to two treatments. The first of these is the construction of  a
contour map by any of the methods, such as kriging or
inverse distance weighting techniques, generally used for this
purpose. Secondly, the same data is subjected to local
singularity mapping. The local singularity α is then used to
enhance the contour map by multiplication of the contour
value by the factor ∈ α-2 where ∈ < 1 represents a length
measure. In Cheng’s (2005) approach to predictive mapping,
the factor ∈ α-2 is greater than 2 in places where there has
been local element enrichment, or by less than 2 where there
has been local depletion. Local singularity mapping can be
useful for the detection of geochemical anomalies charac-
terized by local enrichment (cf. Cheng, 2007, Cheng and
Agterberg, 2009).

According to Chen et al. (2007), local scaling behaviour
follows the following power-law relationship:

[17]

where ρ{Bx(∈ )} represents the element concentration value
determined on a neighbourhood size measure Bx at point x,
μ{Bx(∈ )} represents the amount of metal, and E is the
Euclidean dimension of the sampling space. For our 1-
dimensional Pulacayo example, E = 1; and, for ∈ = 1, Bx
extends ∈ /2 = 1 m in two directions from each of the 118
points along the line parallel to the mining drift. Suppose that
average concentration values ρ{Bx(∈ )} are also obtained for
∈ = 3, 5, 7, and 9, by enlarging Bx on both sides. The
yardsticks ∈ can be normalized by dividing the average
concentration values by their largest length (= 9). Reflection
of the series of 118 points around its first and last points can
be performed to acquire approximate average values of
ρ{Bx(∈ )} at the first and last four points of the series.
Provided that the model of Equation [17] is valid, a straight
line fitted by least squares to the five values of ln μ{Bx(∈ )}
against α(x)·ln ∈ then provides estimates of both ln c(x) and
α(x) at each point. Chen et al. (2007) proposed an iterative
algorithm to obtain improved estimates. Their rationale for
this was as follows.

In general, ρ{Bx(ε)} is an average value of element
concentration values for smaller B values at points near x
with different local singularities. Consequently, use of
Equation [17} would produce biased estimates of c(x) and
α(x). How could we obtain estimates of c(x) that are non-
singular in that they are not affected by the differences
between local singularities within Bx? Chen et al. (2007)
proposed to replace Equation. [17] by:

[18]

where α* (x) and c* (x) are the optimum singularity index
and local element concentration coefficient, respectively. The
initial crude estimate c(x) obtained by Equation [17] at step k
= 1 is refined repeatedly by using the iterative procedure:

[19]

In their application to the 118 zinc values from the
Pulacayo orebody, Chen et al. (2007) selected α* (x) = α4 (x)
because at this point the rate of convergence has slowed
considerably. Agterberg (2012a) duplicated their results and
continued the algorithm until full convergence was reached at
approximately k = 1000. A bias may arise due to the fact
that, at each step of the iterative process, straight-line fitting
is being applied to logarithmically transformed variables and
results are converted back to the original data scale. This bias
can be avoided by forcing the mean to remain equal to
15.61% Zn during all steps of the iterative process. After
convergence, all ck became approximately equal to the
average zinc value (= 15.61%). For increasing value of k, ck
represents element concentration values of increasingly large
volumes. On the other hand, the corresponding αk (x) values
are singularities for increasingly small volumes around the
points x.

The end product of this application consisted of 118
singularities that are related to the original zinc values
according to a logarithmic relationship (Figure 9). It can be
assumed that every original zinc value (shown as a cross in
Figure 6) is the sum of a true zinc concentration value and an
uncorrelated random variable. The latter is a white noise
component that would represent both measurement error and
strictly local decorrelation because of granularity at the
microscopic level. In Figure 9 it is represented by the
deviations between the logarithmically transformed measured
zinc concentration values and the final singularities obtained
at the end of the iterative process. The white noise variance
(2.08% of total variance of Zn values) is much smaller than
the nugget effect previously used for filtering, which had
48.43% of the total variance.

Relations between variances for blocks of different
sizes and shapes
The following argument is summarized from Agterberg
(1984), where further discussions can be found. It is relevant
because it is based on the assumption of permanence of
shape of frequency distributions of measures on blocks of
different sizes. Suppose that a rock or geological environment
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Figure 9—Relationship between final singularity and zinc concentration
value is logarithmic. Plotted values (diamonds) are for k = 1000. Straight
line was fitted by least squares (Agterberg, 2012a, Figure 21)



Self-similarity and multiplicative cascade models

is sampled by randomly superimposing on it a large block
with average value X2, and that a small block with value X1
is sampled at random from within the large block. Then the
expected value of X1 is X2, or E(X1 | X2) = X2. Let f(x1) and 
f(x2) represent the frequency density functions of the random
variables X1 and X2, respectively. Suppose that X1 can be
transformed into Z1 and X2 into Z2 so that the random
variables Z1 with marginal density function f(z1), and Z2 with
f(z2) satisfy a bivariate density function of the type

[20]

In this equation, ρ represents the product-moment
correlation coefficient of Z1 and Z2. Qj (z1) and Sj (z2) are
orthogonal polynomials with f1 (z1) and f2 (z2) as weighting
functions, and with norms h1j and h2j respectively. Equation
[20] implies

[21]

In most applications, f (z1, z2) is symmetric with f1 (zi) =
f2 (zi) for f = 1, 2. For example, if f1 (z1) and f2 (z2) are
standard normal, Qj (z1) = Qj (z1) and Sj (z2) = Hj (z2) are
Hermite polynomials. Then Equation [20] is the Mehler
identity, which is well known in mathematics.

When f(x1) is known, f(x2) can be derived from Equation
[20] in combination with E(X1 | X2) = X2. If f(x1), and f(x2)
are of the same type, their frequency distribution is called
‘permanent’. Six types of permanent frequency distributions
are listed in Agterberg (1984). His Type 2 (logarithmic
transformation) includes the lognormal and log-binomial
distributions. Permanence of these two distributions was first
established by Matheron (1974). It means that blocks of
different sizes have the same type of frequency distribution;
for example, all can be lognormal with the same mean but
different logarithmic variances.

It is noted that E(X1 | X2) = X2, which can be called the
‘regression’ of X1 on X2, results in the following two relations
between block variances:

[22] 

with ρx > 0 representing the product-moment correlation
coefficient of X1 and X2. The first part of Equation [7] can be
rewritten as σ2 (v, V) = σ2 (v) + σ2 (V). Suppose that v is
contained within a larger volume v' that, in turn, is contained
within V . Then: σ2 (v, V) = σ2 (v, v') + σ2 (v', V). Equations
[20]–[22] are general in that they do not apply only to
original element concentration, but also to transformed
concentration values; for example, E(ln X1 | ln X2) = ln X2.

As mentioned before, Matheron (1962) showed that the
semivariogram γ(h) in his extension of the model of de Wijs
satisfies γ(h) = 3A·ln h where A is absolute dispersion. This
result applies to element concentration values of infinites-
imally small blocks at points that are distance h apart.
Extending this to volumes v and V by integration yields σ2

(ln x) = A·ln V/v. Suppose that σ2 (v, V) = σ2 (v, v') + σ2 (v',
V) applies to volumes v that differ in shape from the volumes
v' and V, which have similar shapes. Then Matheron’s
extension of the model of de Wijs yields: σ2 (v, v') = A·ln 

(v' /v) + C where C is a constant (cf. Matheron, 1962,
Equation IV-57, p. 76). In the application to Witwatersrand
gold values there is a distinct shape difference between the
linear samples used for assaying and the larger plate-shaped
volumes on which the average values were based. This shape
difference probably accounts for a constant term included in
the observed variances for samples plotted. This constant
term (called the ‘sampling error’ by Krige, 1966a), which
equals 0.10 units along the vertical scale in Figure 1) is
independent of the size of the area.

Concluding remarks
In this paper, Krige’s formula for the propagation of metal
concentration variances in blocks with different volumes, as
well as his demonstration of approximate scale independence
of gold assays in the Klerksdorp goldfield, were viewed in the
context of multifractal theory. The original model of de Wijs
used by Krige and Matheron was the first example of a
multiplicative cascade. Various new modifications of this
model were discussed to explain inconsistencies that may
arise in applications. It was shown that singularity analysis
provides useful new information on element concentration
variability over distances that are shorter than the sampling
intervals used in practice. These new developments reinforce
the practical usefulness of Krige’s original ideas on self-
similarity and scale-independence of patterns of block
averages for gold and uranium values in the Witwatersrand
goldfields. This paper was mainly a review of recent
multifractal theory, which throws new light on the original
findings by Professor Danie Krige on self-similarity of gold
and uranium patterns at different scales for blocks of ore by
(a) generalizing the original model of de Wijs; (b) using the
accelerated dispersion model to explain the appearance of a
third parameter in the lognormal distribution of
Witwatersrand gold determinations; and (c) considering that
Krige’s sampling error is caused by geometrical differences
between single ore sections and reef areas.
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