
Introduction
Smoothing of kriged local estimates on an
operating mine that uses selective mining is
undesirable. Smoothing reduces the resolution
of individual estimates, thus inhibiting the
selection process and leading to sub-optimal
mining practices. Although the overall average
grade may be correct, only selected portions of
the orebody are mined. Our concern is not with
how much pay or unpay ground exists within
a certain area, but rather where it exists, and
where to drill and blast. The problem is
exacerbated on marginal mines, where
smoothing obscures small differences in grade
and could result in incorrect allocation of pay
ground to waste, or vice versa, and lead to
substantial financial losses. Although various
post-processing techniques are used to correct
smoothing, such as spectral post-processor,
(Journel et al., 2000), conditional simulations,

indirect post-processing techniques (Assibey-
Bonsu and Krige, 1999), and localized direct
conditioning (Assibey-Bonsu and Krige 1999;
Krige, Assibey-Bonsu, and Tolmay, 2008),
these have dealt with smoothing as a single
phenomenon and not identified algorithmic
smoothing on its own. Thus the aim of this
research was to devise a methodology that
reduces the algorithmic smoothing of
individual estimates.

The method has not yet been integrated
into the kriging process, but can easily be
integrated into the underlying mathematical
formalism in the future.

Why algorithmic smoothing occurs
In the case of simple kriging, the weight
assigned to the mean increases as estimates
move further away from the data source, but
in the case of ordinary kriging the criterion is
that the sum of the weights should add up to
unity, and this is exactly the reason for the
occurrence of algorithmic smoothing in this
case. If relatively few samples are included in
the estimation process there are likely to be
large differences between weightings.
However, as the number of samples used in
estimation increases, the differences between
weightings decreases until these differences
become so small that the weights to all intents
and purposes are considered to be equal. At
this stage the estimate simply becomes the
arithmetic mean of the samples used in the
estimate. This effect is demonstrated in 
Figure 1.

Figure 1 illustrates how the maximum
difference in weights decreases as the number
of samples used in the kriging estimates
increases, in this case the difference being
close to zero when approximately 68 samples
are used. At this stage the estimate is a totally
smoothed estimate of all samples used and
will, to all intents and purposes, be equal to
the simple arithmetic mean.
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Methodology
The premise for applying a new methodology is that at least
some of the smoothing of kriged estimates is a direct result of
the estimation algorithm. The smoothing results in kriged
estimates moving toward the mean, the movement being
negative if the estimate is above the mean and positive if the
estimate is below the mean. The smoothing effect is zero
when the distance between the location of the point being
estimated and the location of the samples is zero. In addition,
if the weight attributable to a sample is zero the smoothing
effect on the estimate is also zero. Similar estimation weights
result in similar smoothing effects (with the proviso that they
are in the same direction and have the same distance); hence
the circumstances relevant to an estimate may be different
from one estimate to another. This means that in order to
obtain an unbiased estimate, the amount by which an
estimate must move away from the average value of samples
on one side of an estimate is equivalent to the amount by
which it must move towards the average value of the samples
on the other side of the estimate. Thus any attempt to remove
the effects of smoothing must take into account:

➤ The distance and direction of the sample from the
estimate

➤ The estimation weighting of each sample
➤ The value of the sample relative to the mean of all

samples
➤ Whether or not the sample used is above or below the

average of all samples used
➤ Each estimate must be considered on its own merit
➤ The amount by which an estimate must move away

from the average value of samples on the one side of
an estimate to get to the actual value is equivalent to
the amount by which it moves towards the average
value on the alternative side of the estimate.

If the kriged estimate is considered to be the best linear
unbiased estimate, given the sampling data and the
associated semivariogram model, one can reasonably assume
that the difference between the estimate and its
corresponding actual value is attributable to the smoothing
effects of both information and algorithmic. From the basic
premises outlined above, the following algorithm represents
the proposed solution for a unsmoothed, unbiased value of a
kriged estimate:

∑WA.IA.SA + ∑WB.IB.SB = Actual [1]
Substituting SB with 1/SA gives:

∑WA.IA.SA + ∑WB.IB.1SA = Actual [2]
Re-arranging and multiplying by SA;

∑WA.IA.SA2 – Actual.SA + ∑WB.IB = 0 [3]
where
WA a kriging weight for a value above the estimate
WB a kriging weight for a value below the estimate
SA the smoothing effect attributable to the sampling above

the estimate
SB the smoothing effect attributable to the sampling

below the estimate
IA samples used for estimation whose values are above

the estimate
IB samples used for estimation whose values are below

the estimate
SB 1/SA. This is inferred from the last point in underlying

premises above, and is a pre-condition and axiomatic.

Solving Equation [3] provides a correction for the
smoothing effect on an individual estimate. For any quadratic
equation such as that shown in Equation [3], two solutions
exist, one of which is correct and the other extraneous, so
due caution must be exercised as only the solution which
increases the weighting on the side of the estimate opposite
to the smoothing effect will provide a corrected estimate. The
point is illustrated in the example presented in Table I.

Table I shows the estimated value, 12.80 compared to the
actual follow-up value of 13.1. Substituting the coefficients
from Table I into Equation [3] yields:

9.64SA2 – 13.1SA + 3.16 = 0
and solving for SA we obtain:

SA = (13.1+  √13.12−4x9.64x3.16) /2x9.64 = 1.0457
or

SA=(13.1− √13.12−4x9.64x3.16) /2x9.64 = 0.3136
In this case the estimated value must increase in order to

move from the estimate to the actual value. Thus the
correction factor must increase the weighting of the samples
above the estimate and decrease it for those below the
estimate. An example of choosing the wrong root as a
solution for our quadratic equation is shown in Table II.

▲
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Table I

An example of the calculation of coefficients and
constant

Sample description Samples Old weight Weight x sample

1B 1.8 0.050 0.09
2B 3.5 0.100 0.35
3B 6 0.180 1.08
4B 8 0.100 0.80
5B 12 0.070 0.84
1A 15 0.120 1.80
2A 17.6 0.180 3.17
3A 23 0.100 2.30
4A 23.7 0.100 2.37
Sums and averages 12.29 1.000 12.80
Actual value 13.10
A 9.64
B 13.1
C 3.16

Figure 1—Graph showing a decrease in the maximum difference in
weights as the number of samples used in kriging estimates increases



As can be observed in Table II, although the correction
factor produces the correct value, it does not increase the
weights of the samples above the estimate and hence is the
extraneous solution. An example of the choice of the correct
quadratic root is illustrated in Table III.

In Table III, the selection of the correct quadratic root
provides a correction factor that increases the weights of the
values above the estimate and is therefore the correct factor.

We should now consider the case in which the smoothing
has increased the value of the estimate, as shown in Table IV.

The value of the estimate shown in Table IV is 12.8,
whereas the actual follow-up value is 11.1. Again, substi-
tuting the appropriate coefficients from Table V gives:

9.64SA2 – 11.1SA + 3.16 = 0
Solving for SA gives:

SA = (11.1+ √11.12−4x9.64x3.16) /2x9.64 = 0.6369
or
SA = (11.1− √11.12−4x9.64x3.16) /2x9.64 = 0.5148
In this case, in order to move from the estimate to the

actual value, the value must decrease. Therefore the
correction factor must decrease the weighting of samples

above the estimate, and increase that of those below the
estimate. An example of choosing the correct root as a
solution for our quadratic equation in this case is shown in
Table V.
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Table IV

An example of the calculation of coefficients and
constant that decreases the value of the estimate

Sample description Samples Old weight Weight x sample

1B 1.8 0.050 0.09
2B 3.5 0.100 0.35
3B 6 0.180 1.08
4B 8 0.100 0.80
5B 12 0.070 0.84
1A 15 0.120 1.80
2A 17.6 0.180 3.17
3A 23 0.100 2.30
4A 23.7 0.100 2.37
Sums and averages 12.29 1.000 12.80
Actual value 11.10
A 9.64
B 11.1
C 3.16

Table II

Incorrect choice of quadratic root will produce an incorrect factor

Sample description Samples Old weight Weight x sample New weight New weight x sample

1B 1.8 0.050 0.09 0.159 0.29
2B 3.5 0.100 0.35 0.319 1.12
3B 6 0.180 1.08 0.574 3.44
4B 8 0.100 0.80 0.319 2.55
5B 12 0.070 0.84 0.223 2.68
1A 15 0.120 1.80 0.038 0.56
2A 17.6 0.180 3.17 0.056 0.99
3A 23 0.100 2.30 0.031 0.72
4A 23.7 0.100 2.37 0.031 0.74
Sums and averages 12.29 1.000 12.80 1.751 13.10
Actual value 13.10
A 9.64
B 13.1
C 3.16
Factor below 3.1892242
Factor above 0.3135559

Table III

Choice of the correct quadratic root provides a correct factor for correction of the estimate

Sample description Samples Old weight Weight x sample New weight New weight x sample

1B 1.8 0.050 0.09 0.048 0.09
2B 3.5 0.100 0.35 0.096 0.33
3B 6 0.180 1.08 0.172 1.03
4B 8 0.100 0.80 0.096 0.77
5B 12 0.070 0.84 0.067 0.80
1A 15 0.120 1.80 0.125 1.88
2A 17.6 0.180 3.17 0.188 3.31
3A 23 0.100 2.30 0.105 2.40
4A 23.7 0.100 2.37 0.105 2.48
Sums and averages 12.29 1.000 12.80 1.001 13.10
Actual value 13.10
A 9.64
B 13.1
C 3.16
Factor below 0.9563454
Factor above 1.0456473
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As can be observed from Table V, the correction factor
produces the correct value, and increases the weights of the
samples below the estimate and hence is a valid solution.

Consider Table VI, where the correction factor increases
the weights of the values below the estimate and hence is a
valid solution, however not the optimal.

In the second example, shown in Tables V and VI, we are
presented with two valid solutions. The choice of which one
to use should be based on the rational decision not to re-
introduce conditional bias, and it is therefore the solution
having the lowest factor for increasing the weights below the
mean.

One may ask why smoothing above the estimate was
solved for in both cases, rather than above and below. The
answer is that under certain conditions when solving for the
smoothing below, b2 – 4ac provides a negative value and
hence is not solvable; however, this does not occur in the
case of solving for the smoothing factor above the estimate.
Thus it is possible, using a cross-validation routine, to
calculate the smoothing correction for various distances and
directions. These can then be modelled and used in a
corresponding correction for smoothing routine.

The process
The process for reduction of algorithmic smoothing for each
estimate with a follow-up actual can be summarized as
follows:

➤ Utilizing the samples used for the estimate, calculate
and save the correction factor for each sample distance
and direction

➤ Average the correction factors into directions and
distances using a directional and lag tolerance.
Although in an entirely homoschedastic environment
those correction factors for increasing and decreasing
grades of estimates should theoretically be similar, the
spatial relationships surrounding these may not be so.
It is therefore prudent to model the factors for
increasing grade estimates separately from those for
decreasing grade estimates

➤ Model the correction factors
➤ For each estimate, apply model of correction factors to

each sample in order to obtain the corrected weight,
taking due cognisance of where the individual sample
is in relation to the estimate and the mean of all
samples used, i.e.

▲
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Table V

Choice of the correct quadratic root provides a correct factor for correction of the estimate

Sample description Samples Old weight Weight x sample New weight New weight x sample

1B 1.8 0.050 0.09 0.079 0.14
2B 3.5 0.100 0.35 0.157 0.55
3B 6 0.180 1.08 0.283 1.70
4B 8 0.100 0.80 0.157 1.26
5B 12 0.070 0.84 0.110 1.32
1A 15 0.120 1.80 0.076 1.15
2A 17.6 0.180 3.17 0.115 2.02
3A 23 0.100 2.30 0.064 1.46
4A 23.7 0.100 2.37 0.064 1.51
Sums and averages 12.29 1.000 12.80 1.103 11.10
Actual value 11.10
A 9.64
B 11.1
C 3.16
Factor below 1.5700713
Factor above 0.6369137

Table VI

Choice of the incorrect quadratic root provides an incorrect factor for correction of the estimate

Sample description Samples Old weight Weight x sample New weight New weight x sample

1B 1.8 0.050 0.09 0.097 0.17
2B 3.5 0.100 0.35 0.194 0.68
3B 6 0.180 1.08 0.350 2.10
4B 8 0.100 0.80 0.194 1.55
5B 12 0.070 0.84 0.136 1.63
1A 15 0.120 1.80 0.062 0.93
2A 17.6 0.180 3.17 0.093 1.63
3A 23 0.100 2.30 0.051 1.18
4A 23.7 0.100 2.37 0.051 1.22
Sums and averages 12.29 1.000 12.80 1.229 11.10
Actual value 11.10
A 9.64
B 11.1
C 3.16
Factor below 1.9425869
Factor above 0.5147775



– If the estimate is below the mean then the
smoothing will have dragged the estimate
upwards towards the mean. Hence values below
the estimate will have a weight correction factor
greater than unity, and values above the estimate
will have the weight correction factor less than
unity

– If the estimate is above the mean then the
smoothing will have dragged the estimate
downwards towards the mean. In this case values
above the estimate will have a weight correction
factor greater than unity, whereas those values
below the estimate will have the weight correction
factor less than unity

➤ Use the corrected weights to obtain new estimate.

An outstanding question, for which there is no immediate
answer, is ’does the kriging variance include the error made
in the smoothing of the estimate?’ If the answer is yes, as the
author suspects is the case, the distribution of errors will no
longer be symmetrical around the adjusted estimate and will
have to be corrected for by the amount of the adjustment.

The case study (or doing it Danie’s way)
A sampling database of 61 834 individual channel samples
was used for the follow-up. The database used for estimation
was obtained by overlaying a 60 by 60 m grid on the channel
samples, and using the sample closest to the centre of each
60 by 60 m block as a drill point. In addition, 3 years of data
was removed in order to check on the effects of extrapolation
as well as interpolation.

Using the abovementioned data a 30 by 30 m grid was
kriged and used for the analysis. The follow-up was obtained
by utilizing all the data in 30 by 30 m averaged blocks that
had a minimum of 14 samples within the block in order to
ensure representative means for each block. This
methodology was employed to obtain robust, smoothed
estimates from a regular grid underlying the area of interest.
These estimates were used to reduce the levels of smoothing
and to test the efficiency of the newly proposed method,
rather than improving the estimates per se. Nevertheless, a
certain amount of reduction in error would of necessity be
observed due to the averaging process, the results being
shown in Table VII.

Table VII indicates that the dispersion variance of the
adjusted values (post-processed dispersion variance) is
improved relative to that of the ordinary kriging, thus
rendering a greater resolution of estimates. 

A regression plot of the unmodified ordinary kriged
estimates can be compared with the modified estimates in
Figure 2a and 2b. The unmodified estimates have a
multiplicative bias of 1.188, while the modified estimates
only show a bias of 1.037. The question as to whether the
modified estimates are actually of greater quality must be
answered in the affirmative, with only a marginal conditional
bias and seemingly less error.

Although a large proportion of the smoothing is removed
(Figure 2b compared with Figure 2a), a minor amount of
smoothing, reflected as a 1.037 multiplicative bias due to the
information effect, remains.

When the data is plotted in grade-tonnage curves as
shown in Figure 3, it is evident that the curves for the
modified data are closer to the actual curves than the
unmodified ordinary kriging estimates.

On the reduction of algorithmic smoothing of kriged estimates
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Table VII

Values for actual, ordinary Kriging, and post-
processing dispersion variances

Minimum of 14 folllow-up samples Variance % of actual

Actual dispersion variance 3 370 157
OK dispersion variance 2 219 681 66%
Post processed dispersion variance 2 984 705 89%

Figure 2—Comparison of the regression lines for (a) the unmodified and ( b) the modified ordinary kriging estimates

Figure 3—Comparison of grade-tonnage curves pre- and post-
adjustment against follow-up actuals
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Conclusion
Comparison of the modified and unmodified kriging estimates
on regression curves and grade-tonnage curves indicates that
the newly proposed algorithm for eliminating the effects of
algorithmic smoothing through the ordinary kriging process
achieves this end in an effective manner without re-
introducing conditional bias. This method can be effectively
applied in areas with limited sampling coverage, and where
the effects of smoothing could adversely impact current and
future mining plans.
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