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Synopsis

This paper shows the usefulness of geostatistical conditional simulation
combined with the quantification of sampling errors obtained from the
analyses of fundamental errors - validated from duplicate data - to
assess the relevance of the quality and quantity of the information, for
short-term mine planning purposes.

Traditional blast-hole drilling equipment has been designed for
efficient drilling, but not for obtaining high-quality samples.
Furthermore, blast-hole sampling interferes with production, and thus
usually produces poor-quality results. These results are the basis of
short-term plans, where the grades of selective mining units are
estimated and used for distinguishing between ore and waste. Under
these conditions, misclassification (ore blocks sent to the waste dump
and waste blocks processed at the plant) is inevitable, leading to
significant hidden losses that can amount to millions of dollars per
annum.

Reverse circulation drilling with the latest automated sampling
technology improves significantly the quality of the information used for
short-term planning, and thus reduces misclassification, improving the
financial returns of the operation.

In this paper, we present the general methodology for assessing the
effect of poor blast-hole sampling, as compared to advanced reverse
circulation drilling grids at several spacings, in order to arrive at the
most appropriate grid for short-term planning. This plan can be prepared
well in advance using several additional variables that are usually not
available when the plan is based on blast-hole samples. Furthermore,
blending options can be analysed in order to optimize plant recovery,
minimize the use of sulphuric acid, etc.

Three case studies are presented, namely a typical porphyry copper
deposit, an exotic oxide copper deposit, and a complex gold deposit,
where mineralization is controlled by structures and lithology. This
paper shows that in all cases, advanced reverse circulation drilling grids
provide good-quality information that, coupled with the use of geosta-
tistics for short-term mine planning, significantly improve the financial
returns of the operation.

Keywords
geostatistics, conditional simulation, misclassification, grade control,
sampling error.

Introduction

Short-term decisions in mining operations are
related to defining the destination of material
blocks, either to the processing plants, low-
grade stockpiles, or the waste dump. These
decisions are usually based on the grade
control estimates built from information
gathered from samples taken specifically for
this, from blast-holes (Deutsch et al., 2000;
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Ortiz et al., 2012). However, it is well known
that the quality of these samples is poor due to
many reasons. Firstly, blast-hole samples are
taken within the production cycle, with
significant time and space constraints, since
this must be done before charging the blast-
holes with explosives. Chemical analysis
results, in some cases, are not returned in time
to build the short-term plan, and the
destination of the blocks may be defined
without having the analytical results at hand,
with a significant risk of misclassification.
Secondly, sampling is done by a variety of
methods, such as using a radial bucket placed
under the drilling rig platform; taking a
number of increments from the cone by means
of a tube in order to complete the weight of the
required sample; or taking a channel sample
from the cone, among others. A correct sample
must comply with the requirements of
sampling theory. Experience has shown that
this seldom occurs; in fact, most of these
methods suffer from severe delimitation and
extraction errors, not to mention segregation-
related biases.

It is well known that sampling is an
essential part of the resource modelling
process, since if samples are of poor quality,
the entire model is weak (Rolley, 2000).
Furthermore, sampling operators are in many
cases poorly trained and do not really
understand the importance of applying a
rigorous procedure during sampling. Night
shifts make things worse, as little control is
possible during these shifts, and there is
frequently insufficient light for the operators.

The significance of poor blast-hole
sampling has already been demonstrated
(Magri and Ortiz, 2000). A random error
around the true block values affects the
decision regarding the destination of such
blocks: to either the processing plants, to a
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stockpile, or to the waste dump. Furthermore, a systematic
bias may have large economic impacts on a project and due to
the nature of blast-hole drilling and sampling, bias can
originate from multiple sources. Therefore, sampling theory
must be followed with as much care as possible to reduce the
losses due to poor sampling (Francois-Bongarcon, 1983;
Pitard, 1993; Assibey-Bonsu, 1996; Magri, 2007; Pitard,
2009).

Poor samples lead to poor short-term plans. Furthermore,
short-term plans should incorporate as many variables as
possible that are relevant for ore processing, and estimation
techniques that satisfy some requirements such as global and
conditional unbiasedness and precision. The effect of all
economic and detrimental elements must be taken into
account to arrive at the best decision as to whether a block is
profitable or not. Thus, a precise estimation of all the relevant
variables is required in order to obtain a proper assessment
of the best destination of each block. In addition to this
already challenging setting, when different variables are
correlated, and they all have an impact on the process, their
spatial distributions should be co-simulated so as to consider
the cross-correlations in space for the best assessment of the
blocks’ value. In summary, in order to maximize profits, the
final models built for deciding the destination of the blocks
must be globally and conditionally unbiased and as precise as
possible. Unfortunately, misclassification is not directly
reflected in the company’s books since it leads to hidden
losses: some ore blocks end up in low-grade stocks or in the
waste dump, while some waste blocks are processed and do
not pay for their treatment.

The following section contains a brief review of geosta-
tistical techniques and presents the methodology for
performing conditional simulations to assess the economic
benefit of improving sampling quality and determine the best
advanced drilling spacing to improve the financial returns of
the mine, in addition to determining the best grade control
approach to achieve this goal.

The geostatistical framework

Geostatistics was originated to solve prediction problems in
gold mines in South Africa (Krige, 1952). The apparent
random, yet structured, behaviour of gold grades triggered
the formulation of a probabilistic approach, where the grade
value at an unsampled location, z(u), is related to a random
variable, Z(u), characterized by a probability distribution.
The structured behaviour is accounted for by relating random
variables at different locations by means of a random
function, {Z(u), uE€D}. This random function is in turn
characterized by its statistical moments, which must be
inferred from the available data, that is, the values gathered
at sample locations {z(u,), & = 1,...,n}. The spatial distri-
bution of actual values of the variable within the domain is
interpreted as a realization of this random function.

The geostatistical paradigm consists of estimating the
expected value of the random variables at every location to
obtain a map suitable for local optimum prediction or
constructing other realizations of the random function to
characterize the uncertainty associated with unsampled
locations, preserving the spatial relationships between
locations. This is achieved through estimation and simulation
techniques respectively. Results of these estimation and
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simulation processes are controlled by the definition of the
domains where the random functions are defined. These
domains are established by understanding the geology, and
integrating this knowledge to the statistical analysis done
during the exploratory data analysis. Poorly defined
geological domains for estimation and simulation will
inevitably lead to poor estimates and inaccurate uncertainty
quantification.

Estimation is done by considering a linear estimator that
depends on the surrounding information available. In geosta-
tistics, this estimator is called kriging in honour of Danie
Krige, who proposed this approach in the early 1950s.
Kriging is the best linear unbiased estimator (Journel and
Huijbregts, 1978; Isaaks and Srivastava, 1989). The kriging
estimator is constructed by successively imposing these
features (linearity, unbiasedness, optimality). Variations of
the estimate are achieved by imposing a known or unknown
mean, and allowing local variations of it (Goovaerts, 1997).
Kriging is the best estimator in the least-squares sense that
is, it imposes the minimization of the error variance. The
simple kriging estimate assumes the mean known and
constant, and is at the heart of simulation procedures:

Zi(uo) = Xn_y K Z(ug) + A = X2, A55m  [1]
The estimation variance results in:
Ung (uo) = UZZ - Ya=1 2K C(ugq up) [2]

where o7 is the variance of the population, which is
estimated from the sample data, C(u,, u,) is the covariance
between the data located at u,, and the location of interest u,
and 25X are the optimum weights to minimize this error
variance. This variance gives a basic measure of uncertainty
of the estimated value. However, as seen in Equation [2],
this does not depend on the sample values themselves, but
only on their locations. Therefore, the kriging variance
measures the uncertainty at the estimation location due to the
spatial configuration of the available data for its estimation,
rather than based on the dispersion of the values.

The kriging weights are obtained from solving the
following linear system of equations, which arises from
imposing the minimization of the error variance:

=1 A3 C(uq ug) = Cuq, up)

Va=1,..,n

In practice, simple kriging is not used, but rather, the
mean of the random variable is assumed unknown, but
constant within the neighbourhood where samples are
searched to be used in the estimation. This is a convenient
choice, since it provides a robust estimator to changes in the
local mean. This estimator is known as ordinary kriging. Its
derivation follows the same steps as in simple kriging
(linearity, unbiasedness, optimality), but owing to the
assumption that the mean is unknown, it requires the kriging
weights to add up to unity, to ensure unbiasedness. The
estimate and estimation variance for ordinary kriging are:

Zok (o) = =1 A" Z(ug) [4]

3]

5k (o) = 07 — Xg=1 A" C(Ua o) — 1 [5]

The system of equations requires an additional constraint
over the weights, to prevent a weighting bias:
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Yho1 AZ% C(ug up) + 1 = C(ug, up)
Va=1,..,n [6]

n OK _
a:ll‘{a =1

In these equations, u is the Lagrange multiplier required
to impose the constraint over the weights.

Ordinary kriging is commonly used to estimate block
grades for long-term planning, using the samples from the
exploration drilling campaign, and also in the short term to
build the grade control model (although other geometric
estimation techniques may also be used, such as inverse
distance weighting). When blocks are estimated, average
covariances are used to obtain the point to block relationship
in Equations [5] and [6], instead of the point-to-point
covariances presented. These average covariances are
computed numerically by discretizing the block into points
and averaging the covariances between these points and the
sample location. Additionally, the block variance must be
used in Equation [5], which can be calculated by volume-
variance relations.

Estimation allows obtaining the best prediction in terms
of precision. The idea of simulation is to provide alternate
realizations of the random function, in order to quantify the
uncertainty over a transfer function that acts over different
locations on the domain. The actual values are interpreted as
one possible realization of this random function, therefore
each resulting realization performs /ike the actual deposit and
can be used for risk assessment and uncertainty quantifi-
cation. The main difference between estimation and
simulation is that the former looks for the best local estimate,
while the latter is concerned with reproducing the spatial
characteristics that relate multiple locations.

There are several approaches to simulating a random
function; most of them are based on a multigaussian
assumption that relieves the inference of the probability
distribution characterizing every location. Under this
assumption, the random variable can be linked to a
Gaussian-shaped probability distribution, whose expected
mean and variance are identified with the simple kriging
mean and kriging variance (Equations [1] and [2]).
Simulated values are drawn directly from this local distri-
bution and the spatial correlation is imposed through a
Bayesian framework, by sequentially conditioning the
inference of the probability distribution at a given location on
the previously simulated values at other locations (Journel,
1974; Deutsch and Journel, 1998). Since most variables are
non-Gaussian, this approach is implemented after a transfor-
mation of the distribution into a standard Gaussian distri-
bution. This calls for the representative grade distribution,
which sometimes requires declustering to compensate for
spatial redundancy and preferential sampling. The steps
required in sequential Gaussian simulation are:

1. Transform the sample values to their corresponding
normal scores. This requires having a representative
reference distribution that may have been obtained
after declustering the available data.

Y(u) = 9(Z(wy)) Va=1,..,N [7]

where ¢ is the quantile transformation from the reference
(representative) Z distribution to a standard Gaussian distri-
bution Y, and N is the total number of samples
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2. Define a random path over the M locations {u;, i =
1,...,M} where the variable is simulated.

3. At every location, compute the simple kriging estimate
and kriging variance of the transformed grade Y,
using Equations [1] and [2]. These allow the exact
estimation of the conditional expectation and
conditional variance of the random variable under the
multigaussian assumption. Note that the mean of the
normal scores is 0. The conditioning information is
composed by the normal scores of the sample data and
the Gaussian values of the previously simulated nodes
within the search neighbourhood.

EQY(u)|(m)} = Yo (w) = Xro 47 Y(u,) (8]

Var{Y (u)|(m)} = USZK,Y(ui) =

0% — Y1 Ao Cy (e 1) [9]

where the index Y has been added to emphasize that
these are the estimate and variance of the transformed
variable; the covariance function is also inferred from the
normal score sample data. The variance of the point support
distribution.
is 012/=1
4. Draw a simulated value from the conditional distri-
bution characterized by a mean equal to the simple
kriging estimate, a variance equal to the simple
kriging variance, and Gaussian shape. This is done by
Monte Carlo simulation, that is, a uniform random
value between 0 and 1 is generated and the
corresponding quantile of the conditional distribution
is taken as the simulated value of the Y variable. The
simulated value is used as conditioning for all
subsequent nodes in the random path.
5. Back-transform the Gaussian simulated values to the
grade distribution by reversing the transformation on
step 1.

Zw) =9 Y (Y(w)) Vvi=1,...M [10]

Note that the result of this process is a conditional
realization of the random variable at the simulation locations
{u;, i=1,...,M}. New realizations can be obtained by
changing the random path, and by changing the values
drawn from the conditional distributions at the Monte Carlo
simulation step.

Other methods to simulate multigaussian random
functions exist and could also be used (see for example
Chiles and Delfiner, 1999).

Simulation trades off the local precision obtained in
kriging to reproduce the spatial continuity of the variable.
The distribution of simulated values at every unsampled
location provides a measure of uncertainty and, contrary to
the kriging variance, this uncertainty is data-value
dependent. This is highly convenient in most applications
where some relationship is seen between variability and local
mean. More importantly, each realization can be treated
jointly to compute the output to any transfer function, where
the joint distribution at different locations has an impact on
the final output. This occurs on flow, mine planning, and
pollution problems.
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Once each realization has been processed to infer a given
response to a process, the set of responses over the suite of
realizations provide a quantification of the distribution of this
response, which is useful for risk assessment (Glacken,

1997; Journel and Kyriakidis, 2004).

Methodology

Evaluating the financial output of a given drilling grid
requires understanding the spatial variability of the grades
within the deposit. Conditional simulation helps create
possible realizations of the true distribution. Each one of
these realizations can be used to compare the performance of
a given combination of drilling density and sample quality.

The process is demanding, since the economic
performance assessment must be repeated for each of the
realizations built with conditional simulation. In order to
obtain realistic financial outputs, several input parameters
must be known: economic parameters such as mining and
processing costs, drilling, sampling and assaying costs, sale
price of the elements of interest, as well as metallurgical
parameters in order to assess the short-term performance,
etc.

The general methodology is as follows.

Determine the current and expected sample quality
considering the drilling equipment available

Sampling errors emanating from blast-hole data can be
assessed by QA-QC analysis of field duplicates and
fundamental error calculations. This error becomes the
current value and is added to the simulated grades that
represent exact values, since they are obtained from
exploration data which has very small errors. However, the
blast-hole drilling recovery, which is very poor at the top of
the bench already broken up, cannot be assessed by QA-QC,
therefore the value computed from field duplicates can be
considered lower than the actual error.

Additionally, sampling errors from more sophisticated RC
equipment can be assessed. The use of sampling theory and
the design of the sampling and sample preparation protocols
will provide the calculation of the fundamental error of the
new procedure. This value can be seen as the achievable
improved situation. These errors will also be added to the
simulated grade values that represent exact values.

Build multiple dense conditional realizations of the
distribution of grades within the domain, considering
all relevant short term planning variables

A set of dense conditionally simulated realizations of the
grades within the geological units of the deposit must be built
using simulation techniques and appropriate software. If
significant cross-relationships exist between variables, then
co-simulation should be tried, in order to preserve those
relationships. Conditioning is provided by the exploration
drill-hole samples, which may be diamond drill-holes and
reverse circulation holes.

The sampling, sample preparation, and assaying error of
these samples must also be assessed, although this error
usually is significantly lower than the one associated with
blast-hole drilling recovery and blast-hole samples, and could
be considered negligible, except when coarse gold is present.
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The goal of having dense realizations is to be able to
sample them at several spacings, each representing a drilling
spacing for advanced RC drilling, and evaluating the
economic benefit of using that information and a given grade
control methodology to select blocks to be processed,
assessing their metallurgical performance and final revenue.

Furthermore, these dense realizations are block-averaged
to obtain a representation of true block grade distributions,
which in turn will be used to evaluate the short term plan
performance.

Sample the dense realizations at different spacings
emulating the blast-hole grid as well as the advanced
reverse circulation drilling grids and add the
corresponding sampling error to each of them

By sampling from each of the realizations, simulated values
are obtained for locations representing regular sampling
grids. The spacing of these grids represents the different
drilling grids. The values obtained from this ‘sampling
procedure’ over the dense realizations can be considered as
the exact true grade at the corresponding locations. However,
in practice, samples carry error. Therefore, a random
Gaussian error is added to these exact values, to reflect the
information quality, which can vary from minimum error
samples obtained through high-technology RC equipment to
large errors for traditional blast-hole sampling. It should be
mentioned that blast-hole samples also carry non-random
errors which may have significant consequences. These
errors are hard to quantify, thus they have not been
accounted for in this analysis. However, final results should
be discussed considering this issue.

The simulated value with sampling error is obtained by
Monte Carlo simulation from a Gaussian distribution with
mean equal to the original simulated value at the location of
the blast-hole sample: Z/(u;), where [ represents one of the
realizations; and variance equal to the fundamental error
relative variance computed in the previous step multiplied by
the sample value squared: oﬁE - (Z(up))2.

For each realization /=1,...,L, multiple sample data-sets
are obtained, one for each drilling grid spacing and sampling
error evaluated.

Emulate the short-term plan strategy over each of the
realizations

Each of the sample data-sets obtained in the previous step,
which represent a combination of information quantity
(sample spacing) and quality (sampling error), can be used to
predict the block grades, using the short-term planning
strategy that is to be assessed. Different estimation
procedures (inverse distance weighting, ordinary kriging)
and parameters (minimum and maximum number of samples
to be used in estimation, minimum number of samples per
octants, number of octants informed, search radii, etc.) can
be considered at this stage.

The result of this step is a model of estimated block
grades similar to the one used for grade control, which will be
more precise when more information is available and when
this information is of higher quality, but this will come at a
higher cost due to the additional drilling required for dense
grids. Accuracy, however, is not necessarily better than in the
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original model if the multiple potential biases that occur
during blast-hole drilling and sampling are not accounted for.
This suggests much more research is required to understand,
quantify, and model all the sampling errors present in blast-
hole sampling.

Compute the revenue for each combination of sample
quantity, sample quality, and estimation procedure,
and compare to the maximum unachievable profit
that could be obtained without misclassification i.e.
using the true block grades stored in step 2

For each drilling grid spacing and sampling error considered,
the block grades can be estimated and the profit of processing
those that are considered ore and dumping those that are
considered waste (based on the estimated block grades,
which are obtained with the samples with error) can be
calculated. Revenue considers the following components:

Revenue = Metal,epenye — CoSt — Royalties

where
Metal epenue = Metalyrqqe - Tonnage - Recovery - Metal,yic,

Cost = Metaly,qq4, - Tonnage - Recovery - Costypitary + COStariugsamp

In these equations, Royalties depends on the mining tax
laws of each country, Recovery is usually a function of the
Metalgyqq, and other detrimental elements, as well as the type
of process considered. Cost,irary is the cost per weight unit
of the commodity under consideration. This cost will usually
be composed of several items:

COStunitary = COStmine + COStmill + COStprocess

The cost of drilling and sampling (includes sample
preparation and analysis) is added to the equation to account
for the additional cost required to acquire the information
given by a specific drilling grid.

The ideal (unachievable) case where all true block grades
are known can also be assessed for each realization and can
serve as an upper bound of the profit. This case can be
evaluated because the ‘true’ block grades can be obtained
from averaging the densely simulated points without adding
any sampling error (step 2).

The best drilling grid with respect to the maximum
revenue can be defined by comparing revenues obtained from
the grade control model based on the blast-hole samples
(with large sampling error), and those based on the RC
sampling grids (with minimum error), for each of the grid
spacings considered.

Three case studies

In this section, the methodology is applied to three case
studies.

Case 1: Large porphyry copper deposit

The first application is performed on a porphyry copper
deposit operated by open pit mining and producing both
oxides and sulphides. The deposit shows a fairly typical
configuration of lithology, including andesite, porphyry, and
breccia, covered by ignimbrites and gravel. Mineralization
units are characterized by a sequence of barren gravels at
surface, followed by a leached cap, oxides, secondary
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sulphides, and a hypogene zone. Alteration zones are mainly
due to the presence of clay, which defines ore types that have
different behaviour during leaching.

The long-term geological model is used as a reference to
identify the estimation units. Total and soluble copper are the
relevant variables. Since their relationship is complex due to
the mineralogical constraint (total Cu = soluble Cu), solubility
ratio and total copper are simulated at point support, on a 2 x
2 x 10 m grid, over a domain representing the next 5 years of
production. For each of these realizations, soluble copper is
deduced and block averaging is performed over the grades
(not over the solubility ratio) to 10 x 10 x 10 m blocks.
Global relative errors for total and soluble copper are obtained
from duplicate blast-hole sampling data. These are 14% and
15% respectively. These numbers are optimistic, since they
do not account for recovery problems.

Sampling grids ranging from 6 x 6 m to 20 x 20 m are
assessed and relative errors are added to emulate the blast-
hole sample quality. Also, the case of advanced RC drilling is
considered by not adding error. It is assumed that the RC
error is negligible and already included in the realizations
since these were obtained from exploration data that had a
high proportion of RC drill-holes.

Short-term planning is currently done with inverse
distance squared estimation with few samples (minimum 1
and maximum 6). An estimation plan based on ordinary
kriging is assessed considering a larger number of samples
(minimum 4, maximum 16).

Revenue and profits were calculated using actual costs
and the two short-term planning methodologies mentioned
earlier. Several sensitivity analyses were performed to
evaluate the robustness of the proposed advanced RC grid
spacing. In particular, the decision was tested by changing
the commodity price, the drilling cost, by adding a systematic
underestimation bias to all blocks, and by considering a
reduction in the geological classification of each block, from
5% to 2% over the entire domain.

The current situation, that of blast-holes on an 8 x 8 m
grid, can be improved by considering the increased cost of RC
drilling and the increased profit due to the better geological
classification of the blocks and higher precision in the
estimation of the grades. Results are shown in Table I, where
the economic losses in eight cases of drilling grids are
presented, as well as the four main grade control estimation
cases: inverse distance squared weighting and ordinary
kriging, with no added error (emulating an advanced RC
drilling system dedicated to obtaining samples for short-term
planning) and with added error (emulating conventional
blast-hole sampling). It should be noticed that for the 8 x 8 m
grid, losses of inverse distance and kriging when considering
the added error situation are low because they do not require
additional drilling other than that already considered in the
mine cost for blasting. If the error is to be reduced by
advanced RC drilling, then these holes have to be drilled
specifically for this purpose, incurring additional cost.

The final recommendation was to move from the current
blast-hole sampling on an 8 x 8 m grid, to drilling with the
RC system on an 18 x 18 m grid, which carries a reduction in
losses due to misclassification of ore blocks that reaches
US$130 million over a 5-year period.
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Table |

Economic losses (in million US dollars) for different drilling grids and grade control estimation procedures with
conventional drilling (added error) or advanced RC drilling (no error), porphyry copper deposit

Case Grid spacing (m)

6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20
ID2 No error 210.47 166.24 148.87 137.08 132.85 130.61 129.99 138.82
OK No error 184.51 144.36 127.51 118.86 114.92 112.30 111.03 111.83
ID2 Added error 346.68 248.01 279.76 270.54 266.32 263.48 263.24 272.61
OK Added error 299.58 206.62 242.72 234.16 230.31 227.72 227.06 227.92

Case 2: Exotic oxide copper deposit

In this case study, the procedure was applied to an exotic
copper deposit, which is mined by an open pit operation
using 7.5 m high benches. The ore is processed through heap
leaching, solvent extraction, and electrowinning to produce
copper cathodes. Drilling is done by conventional DTH
drilling since the presence of moisture and clay impeded the
use of the advanced RC drilling system that was in place. In
this case study, a production period of 5 years was evaluated.

Ten realizations were built respecting the geological
domains, which are based on grade shells for the case of total
copper grades, and on clay-controlled units, for carbonates.
These realizations were built in a 2 x 2 x 7.5 m grid. The
short-term model consists of blocks 6.25 x 6.25 x 7.5 m in
size. Estimation of the selective mining units is done by
ordinary kriging with a minimum of 3 and a maximum of
12 samples.

Sampling errors are assessed from duplicate data,
resulting in 16% relative error for total copper and 20%
relative error for carbonates.

Advanced sampling grids at 6 x 6 to 14 x 14 m centres in
increments of 2 m were analysed.

The economic performance of each combination of
advanced sampling grid and sampling error was analysed
using the grade control estimation parameters as well as the
mining and economic parameters provided by the operations
and metallurgy teams. These include acid consumption
estimation based on the total copper and carbonate grades,
and copper recovery, which also depends on these grades.

Results in Table II show that the current sampling error
obtained with the conventional DTH drilling rig costs about
US$5 million for the 5-year period and the 8 x 8 m drilling
grid, which is the closest to the unattainable optimum
(highlighted in bold). This money could be used for
improving the sampling system, to move towards a more
sophisticated RC drilling rig that can deal with the moisture
encountered.

Case 3: complex gold deposit

The third case study involves a structurally controlled gold
and silver massive deposit. Estimation units were defined
based on the orientation of the controlling structural trends,
which generated vertical mineralized volumes with widths
ranging from about 10 m to 30 m. In addition to these
structures, a central breccia contains disseminated mineral-
ization. Bench heights of 8 m and 16 m were considered for
the structurally controlled and disseminated mineralization
areas respectively.
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Automated sampling procedures were recommended for
this operation due to the climatic conditions under which
drilling is to be done. High winds and low temperatures
hinder the possibility of obtaining good blast-hole samples,
especially during the winter months. Therefore, a dedicated
RC drilling rig with an automated sample capture system was
considered in order to improve the quality of the information
used to build short-term models and to ensure representative
samples free of segregation error due to loss of fines and
particle size segregation. Inclined RC drilling (60°) produces
relative errors lower than 8% using sampling ratios of 4%
and 2% in 8 m and 16 m benches respectively.

In this particular case, since blast-hole sampling is not
feasible, the advanced drilling grid spacing optimization is
reduced to balance out the advanced RC drilling, sampling
and assaying costs versus block misclassification. Thus, a
dense RC grid reduces losses due to misclassification but is
more expensive; on the other hand, a sparse drilling grid is
inexpensive but increases the losses due to misclassification.

The procedure was applied over the two distinct areas of
the mine, producing slightly different results, due to the
different bench heights and grade continuity in each zone.
Sensitivity analysis was performed to assess the effect of
changing the short-term estimation parameters to obtain the
block grades from the samples obtained from the advanced
drilling grids. Ordinary kriging with a minimum of 4 and a
maximum of 16 samples outperformed all other estimation
methods (inverse distance, nearest neighbor estimation and
kriging with fewer samples).

Results in Table III show an improvement of US$50
million over a 5-year period when using ordinary kriging
over inverse distance estimation on a 10 x 10 m advanced RC
drilling grid.

Table Il

Expected revenue (in million US dollars) for different
sampling grids and scenarios, exotic oxide copper
deposit

Scenario Advanced drilling grid (m)

6x6 | 8x8 [10x10/12x12 |14 x 14

Optimum (unattainable) 709.06 |709.06 | 709.06 | 709.06 | 709.06
Samples without added error | 671.89 |674.50 | 666.57 | 657.22 | 640.56
Samples with added error 667.58 |669.32 | 658.01 | 649.49 | 633.14
Difference 4.31 5.18| 8.56 7.73 7.42
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Table Il
Economic losses (in million US dollars) for different drilling grids and estimation methods, complex gold deposit
Scenario Advanced drilling grid (m)

6x6 10 x 10 14 x 14 18 x 18
Ordinary kriging with 4/16 samples 276.1 206.8 210.9 219.6
Polygonal estimation 365.0 300.3 310.9 330.2
Inverse distance squared with 4/16 samples 328.8 256.2 263.7 279.2

Conclusions corrections made by Dr Francis Pitard and an anonymous

Simulated models of the distribution of grades and geological
units can be built with conventional geostatistics software.
Dense simulated models can be used to represent the true
distribution of grades within a deposit. Several procedures
can be emulated over these dense realizations, to evaluate
the cost and benefit of many decisions. In this paper, we
show that these models can be used to assess the cost of
changing the drilling technology for short-term planning, and
improving the sampling and sample preparation errors.

Three case studies are presented, showing that moving
away from blast-hole sampling, which is well known for
producing poor-quality drilling recovery and poor-quality
samples, provides significant economic benefits that reach
millions of dollars per annum.

The change in drilling and sampling technology for short-
term planning results in better drilling recovery and better
samples, without loss of fines, with increments that correctly
represent the lot, and with improved health and safety
conditions for drilling rig operators. The benefits of this
change can be evaluated by processing the geostatistical
realizations built (which represent the spatial variability of
the orebody) in order to emulate the sampling procedure,
sample quality, and estimation procedure. Grid optimization
is carried out by quantifying the costs and revenues related to
the different sampling grids.

The three case studies reveal that when operating
conditions allow for a dedicated drilling rig, it is worth
considering investing in a sophisticated sampling system
mounted on an RC drilling rig to operate well in advance,
thus providing timely data for building short-term models
that can include several additional relevant variables.

Once validated dense simulations are available,
sensitivity analyses can be easily performed in order to
ensure that the recommended drilling spacings are robust
with respect to changes in the economic and metallurgical
conditions.

The results presented in this paper are optimistic in the
sense that they do not account for additional errors due to
poor recovery, and thus can be considered as a minimum in
terms of the losses that the mines actually experience due to
sampling problems.
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