
Introduction
The Witwatersrand gold reefs in South Africa
are unique in terms of their continuity despite
the relatively narrow reef widths. This aspect,
together with the wealth of historical channel
sample data captured, affords the rare
opportunity of studying gold accumulation
behaviour over square kilometres in extent.
Such studies have in turn provided the
backdrop against which large-scale forecasts
can be attempted for a phenomenon as
inherently variable as gold, and at such
extreme mining depths. Due to the latter
circumstance, forecasting of values ahead of a
mining front is based almost exclusively on
extrapolation.

Although the channel sample data itself
exhibit very high micro-scale variability
(which all but masks any spatial continuity), 
it is well-known in the industry that, by

averaging these data values into blocks of
ever-increasing size, one can uncover spatial
structures (variograms) with ever-increasing
ranges to underpin the extrapolation. This
practice serves the needs of the industry:
resources within a short range of the just-
mined blocks constitute the ‘annual forecast’
or Measured Resource for the coming year,
and need to be estimated with relatively high
resolution; resources beyond these constitute
‘medium term’ or Indicated Resources that
may be mined within the following five years,
and the resolution requirements for these
resources are less stringent; finally, the
remaining resources constitute the ‘long-term’
or ‘life-of- mine’ or Inferred Resources, and
the resolution required for these last estimates
is relatively crude.

In choosing the block sizes on which the
averaging process will be based, one can be
purely practical and choose the block
dimension such that the resulting range will
cover the area to be estimated. However, one is
dealing with a geological phenomenon here,
and there is an instinctive feeling that
optimum block sizes – in terms of best
elucidating the underlying spatial structures –
will be peculiar to the reef or deposit studied.

A tool called a ‘variancegram’ is proposed
for determining the underlying optimum block
sizes. There is a small latitude in the final
determination of the sizes, allowing the very
desirable feature of having the block sizes as
integer multiples of each other and thus
multiples of the smallest block size chosen.
This feature forms a cornerstone for the
development of an overall gold resource
system, and the justification for considering
the derived block sizes as ‘optimal’ will also be
discussed.
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Having forecast (kriged) the resources remaining to be
mined with different degrees of resolution, the associated
practical problem of the need for confidence limits to attach to
average values built up from combinations of these varying
supports is posed. In essence, this boils down to the
intractable problem of the inability to derive a global kriging
variance by a simple combination of local kriging variances.
A first approximation to the problem, which has been mooted
in the literature, is discussed.

The quality of the above-mentioned approximation is
very dependent on the number of samples used to krige each
of the local estimates. Theoretically, if all available samples
were used to krige each local estimate, the resultant global
kriging variance should be good. However, for most of the
practical numbers of samples routinely used in such kriging,
the approximation delivers a hugely inflated global kriging
variance if ordinary kriging (OK) was done, and a markedly
better, but not accurate, value if simple kriging (SK) was
carried out.

The interesting finding is that, with increasing numbers
of samples, the behaviour patterns  of the different
components of the global kriging variance, for OK or SK,
differ; but they all link to the behaviour of the variancegram
for the particular gold reef under consideration.

A method for correcting the above-mentioned inaccurate
global kriging variances is proposed, based on the
variancegram.

It is anticipated that the same variancegram findings will
also hold for other densely sampled deposits, but this
remains to be investigated.

The variancegram
Early work of Krige, published during the 1950s and
summarized later (Krige, 1978), found that ‘the logarithmic
variance of gold values shows a rising linear trend when
plotted against the logarithms of the population areas
concerned. This remarkable finding is, of course, true in
theory and it would certainly be true for infinite deposits, but
in practice one finds that the variance of the logarithms of the
gold accumulation values, or logvariance for brevity, does not
steadily increase without limit, but that it starts to deflect
downwards towards an eventual ‘sill’.

For the purposes of determining optimum block sizes – to
use in the routine evaluation of gold reefs – it was decided to
investigate the above deflection points, with the view that
they indicate points at which the logvariance decreases
abruptly due to correlations between sample values that set
in for areas beyond that particular size. The argument is that
by averaging point values within an area indicated by, for
instance, the first deflection point, one would absorb the
first-structure variability within the block averages, and a
variogram in terms of these averages would then elucidate
longer-range structures.

Channel sample data (gold accumulation values) for a
typical reef was available over several square kilometres in
area (the ‘test data’). The logvariance of this ‘point’ test data
was calculated within grid cells of side 7 m, 8 m, etc., up to
cells of dimension 2000 m, and finally 5000 m. For each
choice of cell size the logvariance for that cell size, averaged
over the entire mine, was determined.

Figure 1 shows the graph resulting when the average
logvariance per cell is plotted against the logarithm of the
area of the cell.

As is clear from this graph, it was found that the series of
deflections does not constitute sharp, unique bends. On the
contrary, by drawing tangential lines to the graph, several
sets of deflection points can be obtained.

A solution to this problem was found by plotting the
average logvariance within square cells against the length of
the side of the square. Figure 2 shows the resultant graph for
the reef under consideration.

In contrast with Figure 1 this plot uses the effective block
(cell) side length l = √Area to characterize the area under
consideration. Such a construction will, for the purpose of
this discussion, be called a ‘variancegram’ to distinguish it
from the more familiar variogram of classical geostatistics.
The distinction is all the more important since (i) the plot has
the appearance of a variogram (which it is not), and (ii) in
describing its main features one can draw on previous
experience of fitting ordinary variograms. Point (ii) will be
discussed in more detail below.

One notices from Figure 2 that the rate at which the
logvariance varies with l = √A changes from a rapid to a
much slower one as the side of the block involved is

▲
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Figure 2—Logvariance versus side of square

Figure 1—Logvariance versus log of area of square



increased. If the initial rapid variation in the logvariance is
interpreted as a reflection of the microstructure variability in
the deposit, then this rapid increase in logvariance with block
side would be expected to continue without limit as l
increases, if this variability persists at all scales. Obviously
this does not happen in the case of the test data. Instead, the
logvariance increases less and less rapidly as l is increased,
and dramatically so.

This empirical finding is to be interpreted as reflecting the
presence of a set of superimposed micro-to-macro variability
structures in the deposit, each exhibiting a characteristic
range a over which it is operative, and beyond which it levels
off to a constant value. For block sizes of dimension larger
than a, it would lead to a smaller logvariance than would
otherwise have been found had the particular structure
continued to increase at the same rate for all distances.

The preceding qualitative observation can be made
quantitative by drawing on the understanding of the meaning
of the spherical model in fitting variograms. As is well-
known, the spherical model formula is equivalent to
surrounding each point grade by a ‘sphere of influence’ with
radius equal to one-half the variogram range a, and arguing
that the covariance of two grades at positions separated by h
< a is proportional to the overlap volume of their respective
spheres of influence. This assumption immediately gives

[1]

for the covariance, from which the standard spherical
variogram formula follows,

[2]

i.e. the variogram is proportional to the non-overlapping
volume, and when the two spheres are separated by a
distance of more than a, the non-overlapping volume has
reached a constant value.

These ideas can now be taken over to provide the basis
for a quantitative method for describing the variancegram as
well. For, by analogy with the variogram case, one can argue
that the variability associated with a structure of range a in
the deposit increases with square side l within a ‘sphere of
influence’ of radius a, beyond which the variability levels off
once l exceeds a. Then it immediately follows that the
logvariance (due to all structures present), as a function of
increasing square size, will gradually start to saturate as it
approaches a final value, instead of increasing indefinitely.
Calling the variancegram Γ(l ) to carefully distinguish it from
the usual variogram, one can write 

[3]

for the influence of the ith structure in the variancegram.
The variancegram itself is then constructed as follows:

[4]

It is to be emphasized again that this is a parametrization
of the variancegram that has been motivated by ideas
suggested by the meaning of correlation in the case of the

ordinary variogram. The big advantage of the approach is
that one draws on existing expertise and programs to fit the
curve.

In fitting the test data, it turned out that the spherical
model gives an extremely good representation of the
empirical variancegram. Figure 3 shows the experimental
data points, with the model fitted.

The parameters of the fitted model are the following
(using the standard spherical model notation):

C0 = 0
C1 = 0.710, a1 = 20 m 
C2 = 0.280, a2 = 60 m 
C3 = 0.190, a3 = 180 m
C4 = 0.118, a4 = 540 m 
C5 = 0.205, a5 = 1620 m 
C6 = 0.097, a6 = 4860 m

The advantage of fitting a nested spherical model is that
it fits a continuous curve, even though there are six
structures. There is thus no need to try to divine successive
bends in the experimental curve.

In establishing a good fit, there is a small amount of
latitude in choosing the ‘sills’ C and the ranges a. However,
the systematic increase in the ranges is no doubt an intrinsic
property of the variability structures of the deposit, and
arbitrarily chosen ranges will not deliver a fit.

As is clear from the above parameters, the small amount
of latitude that does exist is used to stagger the ranges in
such a way that they form integer multiples of each other.
The order of magnitude of this latitude is such that one could
have fitted any range between, say, 56 m and 64 m, instead
of 60 m, and still have obtained a reasonable fit. In this
particular case of the test data the scheme – of multiplying
each range by three to obtain the next one – worked well. A
similar set of ranges a, but not sills C, were observed to fit
the variancegrams of the same Witwatersrand reef on
different mines.

The fact that the spatial variability of the phenomenon
can so successfully be decomposed in individual structures
with finite ranges provides experimental justification for
using these ranges as the optimum block sizes on which to
base the different resolution levels of the resource

Witwatersrand gold reef evaluation: the ‘variancegram’ tool
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Figure 3—Model fitted to experimental variancegram points
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calculations. It certainly provides a natural, coherent
framework for an integrated system of increasing block sizes,
as will become clear.

In the case of the test data, the block sizes implicated
above turn out to be very convenient and appropriate. The 
20 m block size has been used as the basis for annual
resource forecasts; the 60 m block size provides variogram
structures that are very appropriate for medium-term
forecasts, and the 180 m block size could be useful for life-
of-mine resources.

A note in passing: the variancegram was fitted here up to
a range of about 5000 m, which corresponds to the limit of
experimental calculations. We will demonstrate that the
variancegram can be used as a tool to correct the global
kriging variance approximations, as stated above. 

What is very important, though, is that for the latter
purpose the variancegram has to be fitted over a very specific
distance. Such a procedure does alter the parameters of the fit
somewhat, i.e. they are not the same parameters taken over a
shorter distance, as will be shown.

The problem of calculating global kriging variances
Having derived optimal block sizes on which to base
forecasts for the different categories of resources, the kriging
of these resources is straightforward. Additional consider-
ations will determine whether OK or SK is used.

The main theme of the approach is thus not to use the
original channel samples values as data to forecast different
size blocks ahead, but to first average the point data into
different size blocks to create data of different support. The
new support now has a longer, more useful, range and, since
the blocks to be forecast have the same support, point kriging
is performed.  The result is a resource forecast defined on
blocks of varying support, where the blocks are integer
multiples of each other in area. Naturally, each block has an
associated local kriging variance as measure of the
confidence that can be placed in its estimate.

The practical problem that formed the main thrust of this
investigation stemmed from the requirement to be able to
place confidence limits on the weighted average value
calculated for a number of block estimates of varying support.
These blocks could be specified by a single polygonal
boundary that encloses them, or by several polygonal
boundaries that are disjunct.

In the discussion that follows, the assumption is made in
the first place that the forecast blocks are of different support,
but that the data used in the forecast is all of the same
support; say, the smallest data block used in the forecasts.
The generalization to varying data supports will be made
subsequently.

Assume that the total area(s) enclosed within the
specified polygon(s) is denoted by V, and the supports of the
M enclosed local estimates are referred to as ‘blocks’ vj. A
kriged estimate Z*

j is available for each of these blocks. Then
the ‘global’ kriged estimate that pertains to the entire area V
is given by the weighted average (see for example, Journel
and Huijbregts, 1978) of the Z*

j, i.e.

[5]

The proviso on this formula is that the same set of all n
data samples be used to krige the Z*

j. Similar relations then

hold for the ‘global’ weight λi pertaining to the contribution of
the ith data sample to the estimate Z*, and also to the
Lagrange multiplier µ in the event that ordinary kriging is
employed: 

[6]

[7]

Recall again that M counts the number of blocks making
up V and n the number of data points used to calculate the n
weights λi(j), i = 1, 2, · · · n that give the kriged estimate Z*

j =
∑

n
i=1 λi(j)Zi of the jth block. From this, the above equation for

the global weights follows, 

[8]

A similar argument produces the ‘global’ Lagrange
multiplier µ.

If it were simple to krige each block using all n available
data values there would be no problem in producing the
required global kriging variance associated with Z*, since this
error variance is given by

[9]

where the Lagrange multiplier µ < 0. In the case of SK, µ = 0.
The global weights λi and the global Lagrange multiplier µ
would be known from the above equations, and the
covariances could be calculated straightforwardly from the
variogram based on the smallest sample support. However,
this is not the case.

As it stands, the implementation of the kriging equations
to determine the λi(j) becomes impractical if the number of
data points n is large (e.g. several hundreds or thousands, as
would be the case here). Some of the weights become so
small that rounding errors in the computer pose a serious
problem.

The reduced data-set method (RDM)
An approximation to the above stringent requirements is
clearly needed. One knows that only the ‘nearest data
neighbours’ to the centre (or centre of gravity) of each block
vj are influential in determining Z*

j. Therefore an obvious
approximation suggests itself: pretend that all the data values
were used in kriging, but set artifically to zero the weights of
those data samples that were not actually used to krige a
specific block (and which are way out of variogram range
anyway). Call this the ‘reduced data method’ or RDM for
short. Although they used a different approach to calculating
global kriging variances, Kim and Baafi (1984) alluded to
this possibility, at least in theory. This dramatically reduces
the number of data values required in kriging each block, and
hence reduces the dimension of the corresponding matrix to
be inverted.

▲
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This approximation yields results that are not too
unreasonable for the global kriging variance in the case of
SK, provided the number of data values n used per block is
not too small.

For OK, the fact that the unbiasedness condition must be
satisfied requires that the global weights sum to unity. This
too is satisfied, provided the same requirement is met for the
weights nl <  n, say, not set formally to zero:

[10]

[11]

As with most approximations, there is a price for
introducing these simplifications: in artificially setting a
selection of otherwise small but finite weights to zero, and
implicitly leaving these data values out of the kriging
equations, one finds that the global kriging variance is
hugely overestimated.

Examples of the results obtained with this approximation
for the test data are given next.

Results obtained with the RDM
For ease of reference, the first term in Equation [9] (the
global kriging variance formula) will be called the polygon
covariance term, the second term the global Lagrange
multiplier, or µ, and the last term the sample/polygon term, 
sor sp.

Channel sample data was averaged into 239 60 m × 60 m
blocks, and variograms based on the raw average gold
accumulation values showed good structure (the histograms
of block averages are only slightly skewed, allowing direct
calculation on raw values, instead of on logarithms).  For the
purposes of this illustration, both the data and the unknown
blocks to be estimated were taken to be of the same support,
i.e. 60 m square blocks.

A rectangle of 18 × 5 (60 m) blocks, adjacent to the data
blocks, was kriged (point kriging) using various schemes.
Included in the latter was an exhaustive run for both OK and
SK using all 239 blocks to krige every unknown block, with
the idea that this would render the ‘true’ value for the global
kriging variance in each case that one is striving for. This
forms the last entry in the tables that follow. The other runs
were based on using respectively n = 1, 2, 4, 8, 16, 32, 64
data samples to krige each block, for both OK and SK.

The polygon, for which the global kriging variance was
estimated, included all 90 kriged blocks. The value obtained
for the polygon covariance is, of course, a constant. The
results obtained for SK are the following (global kriging
variance in the last column): 

n ∑
n
j=1 λi ∑n

i=1 λiC
–
(V, vi) σV

2

1 0.223 34 214 161 354
2 0.328 50 660 144 908
4 0.421 64 044 131 524
8 0.479 71 037 124 531
16 0.507 75 996 119 572

32 0.475 81 561 114 007
64 0.425 81 078 114 490
239 0.454 81 195 114 373

For values of n upwards of 16, a large number of
negative weights are obtained and their impact is clear.
Using a limited number of samples with which to krige each
block does overestimate the global kriging variance, but not
too dramatically.

The results obtained for OK, under otherwise exactly the
same circumstances, are the following:

n -µ ∑n
i=1 λiC

–
(V, vi) σV

2

1 166 8273 153 594 1 710 247
2 979 379 154 284 1 020 663
4 576 688 152 143 620 113
8 380 837 144 328 432 077
16 257 711 137 838 315 441
32 192 633 132 324 255 877
64 138 827 123 468 210 927
239 44 929 97 512 142 985

The amount by which the global kriging variance is
overestimated climbs drastically as the number of samples n
used in OK is reduced.

Faced with the above problem, a study was made of how
sp (the second column in the above tables) in the case of OK
and SK, and −µ in the case of OK, decrease/increase with n,
the number of samples used in kriging each block.

The link to the variancegram in the case of OK
The link to the variancegram will be illustrated graphically in
the first place. The link will be made even though the
variancegram is based on logvariance calculations, and the
kriging was done on raw values. In fact, raw variances can be
used as basis for the variancegram too, but in the case of
Witwatersrand gold reefs the logvariances probably result in
a more stable graph, which is very important.

We require the (log)variance as a function of the block
side l. As was demonstrated (Figure 3), this function Γ(l ) can
be faithfully reproduced by a set of nested spherical
variogram structures, as given in Equations [3] and [4].

An important requirement for the link is that the
variancegram has to be fitted specifically up to a square side
that is indicated by the total area defined by all the data
blocks. In the case of the test exercise the total number 
of data blocks is 239 and they cover 239 × 3600 m2, i.e. 
860 400 m2. The side of an equivalent square is 928 m. 
Thus the variancegram has to be refitted only up to 928 m,
which changes the parameters somewhat.

The required fit to the variancegram was accomplished
using five spherical variogram structures with parameters:
C0 = 0
C1 = 0.710, a1 = 20 m 
C2 = 0.280, a2 = 60 m 
C3 = 0.190, a3 = 180 m 
C4 = 0.090, a4 = 540 m 
C5 = 0.180, a5 = 928 m

It is useful for the illustration to introduce the logvari-
ance difference,

[12]

where the ’sill’ in this equation can be any convenient value,
since it will fall away in the final calculations.

Witwatersrand gold reef evaluation: the ‘variancegram’ tool
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We chose a sill of f(0) = 2.2276, the overall logvariance
of the data area.

Inserting the above values for the fit of the variance-
gram up to a square side l of 928 m, one obtains the graph in
Figure 4 for f(l ) versus l.

The global Lagrange parameter −µ in the case of OK
The remarkable finding is that the same behaviour as the
above variancegram fit is displayed when −µ(n) is plotted
against (n − 1), where n is the number of samples used in
kriging. Figure 5 gives the experimental points obtained for
the test data.

It is immediately clear from Figures 4 and 5 that these
two graphs can be scaled to coincide, and the scaling
constants will give proportionality criteria. Furthermore,
when −µ is plotted versus f(l ) (see Figure 11) the
relationship is shown to be a linear one.

The variancegram is known beforehand, and therefore,
three known points on the −µ versus (n − 1) curve will
determine the scaling constants for the entire curve. This in
turn enables one to determine −µ for a value of n of, say, 239
blocks, i.e. all the data blocks, which means that the correct
value of the −µ component of the global kriging variance can
be computed.

The actual determination of the scaling constants will be
discussed below.

The sample/polygon term sp in the case of OK
sp(n) also decreases with (n−1), where n is the number of
samples used in kriging. However, its behaviour is different
from that of −µ(n) versus (n − 1), shown in Figure 5. 
Figure 6 gives the experimental points obtained for the test
data when sp(n) is plotted versus (n − 1). There is not the
immediate resemblance to the way in which f(l) decreases
with l.

The scaling behaviour of sp is clearly more complicated
than was the case for −µ. When sp is plotted versus f(l) the
result is a curve resembling Γ(l) versus l . Figure 7 gives the
former curve, and Figure 8 shows the latter for comparison.

The two curves can again be scaled to coincide,
identifying the necessary scaling constants and allowing
extrapolation to n = 239 for the correct value of sp(n).

The procedures are discussed below.

The link to the variancegram in the case of SK
In the case of SK there is of course only the sample/polygon
term to correct in the equation for the global kriging variance,

▲
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Figure 5—Experimental behaviour of −µ(n) versus (n − 1)

Figure 4—Exp. variancegram points with fit of f(l ) vs l up to l = 928 m

Figure 7—Sample/polygon term versus f(l ) for OK

Figure 6—Experimental behaviour of sp(n) versus (n − 1) for OK



since the Lagrange multiplier is absent. The procedure for
correcting sp here is very similar to that used for correcting
−µ in the case of OK, with only one difference: sp increases
with n (see Figure 9) in a manner reminiscent of the way in
which Γ(l) increases with l.

This means that the only change necessary in the
approach used for −µ is a change in what f(l) in Equation
[12] now stands for:

[13]

By empirically scaling the axes in the respective graphs of
sp versus (n − 1) and the new f(l) versus l, the two curves
can again be made to coincide. The relationship is linear.

Note that for n = 64 and n = 239 in Figure 9, the large
number of negative weights obtained have an impact on the
experimental value of the sample/polygon term. The star in
the graph indicates the calculated ‘true’ sp value for n = 239,
which is unaffected by negative weights. Aside from that, it
is not difficult to see that the above graph can be scaled to
coincide with f(l) = Γ(l ).

An approximate analytical model
In this section a simple analytical model kriging system is
examined to obtain some insight into the behaviour of µ and
sp for OK, for example, with increasing n. Analogous results
can also be obtained for SK. The crux of the problem is to see
if one can understand their behaviour from the structure and
solutions of the kriging equations themselves. The OK
kriging system to be solved is, as usual,

[14]

[15]

where n data points have been used to krige block v. To
obtain approximate analytic solutions for the  values of λ and
µ for arbitrary n replace the off-diagonal elements C(vi, vk),
for i ≠ k, by their common average, and the right hand terms
C(vi, v) by their average taken over all data points. Making
the replacements

[16]

in Equation [14], the resulting system of equations can
be solved exactly. One finds that λi = 1/n for all i,

[17]

while µ is given by

[18]

This exhibits the same qualitative behaviour as was seen
empirically: for n = 1 the value is µ(1) = C − Cd,v, dropping
down to a lower limit of µ(∞) = Cdd − Cd,v. A graph of the
solution for – µ(n) is shown in Figure 10 (compare to 
Figure 5).

In generating this illustrative figure, the typical estimates
C = 1.245 × 106, Cdd = 0.187 × 106, and Cd,v = 0.019 × 106

have been used.
In this connection it is therefore important to realize that

the strong n-dependence of µ arises solely as a consequence
of the restriction ∑n

k = 1 λk = 1. This condition forces the
common λ values to equal 1/n, and thus the µ in Equation
[18] to become a function of 1/n.

Witwatersrand gold reef evaluation: the ‘variancegram’ tool
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Figure 8—The variancegram Γ(l ) versus l

Figure 9—Sample/polygon term sp (SK) versus (n − 1)

Figure 10—Behaviour of modelled −µ with (n − 1)
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Note that the order of magnitude of the model values of
sp(n) and −µ(n) are not expected to reproduce the empirical
values, due to the extremely crude assumptions made.
However, the model faithfully reproduces the qualitative
behaviour of the empirical observations to a striking degree.

The application of the findings to the computing of correct
global kriging variances from the variables obtained by local
kriging is set out next.

Correcting global kriging variances in the case of OK
The correction procedures referred to above will be illustrated
using the same exercise that was used previously: the data-
set consisted of average gold accumulation values for 
239 60 m × 60 m blocks, and it was used to krige an adjacent
rectangle of 18 × 5 (60 m) blocks. The relevant distance over
which the variancegram had to be fitted was 928 m.

As before:

[19]

where an arbitrary ‘sill’ value of 2.2276 (in this case the
overall logvariance of the data area) was chosen for
convenience, and Γ(l ) reproduced the variancegram by means
of a model fitted with five nested spherical structures:

[20]

l denotes the side length of the square for which each
logvariance is calculated in the experimental variancegram.

Methodology for correcting −µ, the global Lagrange
parameter
It was found that −µ decreases with n, the number of samples
used to krige each block, in a manner reminiscent of the way
in which f(l ) decreases with l (see Figures 4 and 5). By
empirically scaling the axes in the respective graphs, these
two curves can be made to essentially coincide.

Mathematically this means that the variable pairs [−µ,
f(l ] and [n, l ] are linearly related. Hence we may write

[21]

[22]

where the (n − 1) dependence on n is necessary since the
minimum value of n is 1, and this has to be associated with
the minimum value of l of the variancegram, which is zero.
The function f was defined in Equation [19]. The constants
α, β, and γ perform the necessary scaling to cause the two
curves in question to overlap. Since there are three of these
unknowns, we need three sets of data input to determine
them. From a practical viewpoint, one would expect to know
values for small sample numbers n1, n2, n3, say. Then, by
manipulating Equation [22] one can solve in turn for α, β,
and γ from

[23]

[24]

[25]

The notation is µi = µ(ni). The first of these three
relations is an equation for α. Once this has been solved, β
and γ follow. To solve this equation we cross-multiply and set

[26]

where x is a running variable. One sees that R(x) always
passes through zero due to the form of f. Thus R(x) has one
real root at x = 0; if R(x) were strictly a cubic polynomial in x
one could argue for three real roots: one at 0, plus one
negative and one positive root (we ignore the unphysical, but
mathematically possible, outcome of one real root at zero,
plus two complex conjugate roots). This is unfortunately not
the case due to the discontinuities in the Γi(l ) that enter the
form of f(l). However, if the real, positive root is not so large
as to exceed the shortest range in Equation [20], one can
perhaps expect R(x) to ‘act’ like a cubic. From the scaling
hypothesis it is clear that αmust always correspond to the
positive, non-zero root. A specific example of how R(x)
behaves when it has three real roots (the only case of
practical interest) is shown in Figure 11.

A word of caution is in order here. If the coincidence of
the -µ versus n and f versus l curves were exact, it would not
matter which known values were used to obtain α, β and γ.
However, since we are dealing with a so far empirically
established relation which need not be exact, it will matter to
some extent what input values are used. As it turns out, n1
= 1, n2 = 2, and n3 = 8 or 16 or 32, etc. give very good
results.

Methodology for correcting sp, the sample/polygon
term
As was shown above, the sample/polygon term, λαC

–
(V, vα),

also exhibits a scaling behaviour, but one which is different
from that of −µ. We first exploit the known l = 
α(n − 1) relation of Equation [21] to convert

[27]
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Figure 11—The function R(x) versus x



to a function of f = f[α(n − 1)] instead of n. (This is what
gave a straight line for −µ). In the case of sp, however, one
finds a curve resembling Γ(l ) versus l (see Figures. 7 and 8).
The two curves, sp versus f and Γversus l can again be scaled
empirically to coincide. This means that

[28]

where a, b, c are three new scaling constants. The equations
determining these have the same structure as Equations
[23]–[25] with spi = sp(ni) substituted for −µi and Γ[af [α(ni
− 1)]] for f [α(ni − 1)]. Thus

[29]

The least squares fit modification
Instead of relying on the assumption that the straight line of
−µ versus f in Equation [22] can be forced to pass through
three of the data (experimental) points, which may lead to no
real root for α in Equation [26], one can try a ’milder’
approach of only requiring a fit in the least squares sense.
This more robust procedure should always produce a
solution, which is important for a production system. To do
so one requires that the sum over the differences squared of
S sample points that are going to be used to determine the
scaling constants,

[30]

be minimized as a function of the parameters γ, β, and α.
This means that

[31]

[32]

[33]

where fi = f [α(ni − 1)] and f l is the derivative of f(x) with
respect to its argument x = α(ni − 1). The first two equations
are the usual least square conditions, arrived at by differen-
tiating w.r.t. β and γ. The last equation is new. It arises upon
differentiating w.r.t. α and requiring that this too should
vanish. Then, upon defining 

[34]

one finds, as usual, that

[35]

Substituting these two values into Equation [33], one
finds an equation that determines the as-yet unknown α as a
root of an algebraic equation, very much as in Equation [26].

This equation can be recast as

[36]

i.e. the value of y at which Q(y) vanishes is the preferred
value of α. Once this has been determined, the preferred
values of β and γ follow from Equation [35]. Next, one has to
check that the solution so obtained indeed leads to a
minimum value of F (α, β, γ), evaluated at these values of α,
β, and γ. The condition for this to be the case is that all three
second partial derivatives are positive there. Doing the
calculations, one finds the three conditions

[37]

[38]

[39]

Of these, the first two are obviously always met: the third
should be used as a test to ensure that one is indeed at a
minimum of F as envisaged by the least squares problem. In
the above development, pathological cases where F is neither
at a maximum or at a minimum have been excluded. One can
check for such cases by verifying in addition that

[40]

[41]

[42]

which, in combination with the vanishing first deriva-
tives, guarantee a minimum or a maximum.

The derivatives of f that are required come from Equation
[19] with Equation [20] inserted for Γ(l ). Note that this
consists of a sum of individual spherical variogram forms
that have zero derivatives once the argument exceeds the
range. This should be borne in mind in programming the
derivative. One has

[43]

for the jth structure. Hence

[44]

where the step function θ is merely a reminder that each term
in the sum will contribute only provided l does not exceed its
particular range aj. The expressions for the required
derivatives are

[45]
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[46]

Notice that both derivatives are a sum over the p
structures making up f l and f ll, evaluated at the particular
value l = li = (ni − 1)α.

It is interesting to observe that in all cases where low
values of n1, n2, n3 were considered to obtain the scaling
constants, the least squares method gave exactly the same
values for the scaling constants as were found from the
(largest) root of R(x) previously.

Calculation of a corrected −µ
To calculate the scaling constants for the test data the values
for −µ(ni) of [n1, n2, n3] = [1, 2, 16] are used. Figure 11
shows the plot of R(x) versus x, the positive root of which
will determine α.

The value of the positive root in this case is x = 10.7968.
This means that

[47]

[48]

[49]

Knowing these constants, we can write the way −µ is
expected to vary with the sample number (n − 1):

[50]

Extrapolating with this formula to n = 239, one finds

[51]

by direct calculation.

Verification of the scaling hypothesis for −µ
In order to verify that these scaling factors are indeed correct,
we show the values of f [10.7968(n − 1)], and the
corresponding values of −µ(n) found in the kriging run:

Experimental Samples used Calculated f
–µ × 10-6 n f [10.7968(n-1)]
1.6683 1 2.2276
0.9794 2 1.4241
0.5767 4 0.9544
0.3808 8 0.7484
0.2517 16 0.5395
0.1926 32 0.4865
0.1388 64 0.3755
0.0489 239 0.3528

The number pairs [f, −µ] are plotted as closed circles in
Figure 12.

The straight line is given by Equation [22], plotted as a
function of the variable f. The agreement is truly remarkable!

The predicted point at n = 239 has also been included to
illustrate that increasing values of n ‘pile-up’ on each other
along the straight line of −µ versus f.

It is useful to point out again that the inclusion of a sill to
define the logvariance difference f(l ) = Sill − Γ(l ) is merely
one of convenience. From the previous development it is clear
that one could equally well have considered −µ as a function
of the variancegram Γ(l ) = [α(n − 1)]. Then

[52]

Here −µ is a linear function of the variancegram with
gradient −β and a revised constant γl = Sill × β + γ. Thus the
entire exercise of determining the scaling constants could
equally well have been implemented by using the
variancegram: the choice of a sill is irrelevant.

Calculation of a corrected sp
By cross-multiplying in Equation [29] one finds a function
that is the exact analogue of R(x) in Equation [26]. The root
of the former equation now gives the value of a in Equation
[28] for fixed α. Using the input values of spi for [n1, n2, n3]
= [2, 4, 16] one determines the scaling constants as

[53]

[54]

[55]

Knowing these constants we can similarly write down an
equation for sp versus n:

[56]

The extrapolation to n = 239 gives

[57]

Notice a small but important point: the value of α =
11.914 appears here instead of α = 10.7968. This happens
because the samples for [n1, n2, n3] = [2, 4, 16] were used
for the sp, since sp1 and sp2 lie too close to give a useful
determination of a, b, c. One must thus use the same nls for
the coefficient α to remain consistent.

Verification of the scaling hypothesis for sp in the
case of OK
We verify the linear behaviour again by evaluating Γ(n) = Γ(af
[α(n − 1)]) for the values at which the sp are known from the
kriging runs

▲
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sp × 10-5 n Γ(71.03f [11.914(n − 1)])
1.536 1 1.874
1.543 2 1.874
1.521 4 1.864
1.443 8 1.837
1.378 16 1.803
1.323 32 1.765
1.235 64 1.71
1.169 239 1.713

The straight line character of the plot sp versus Γ is
verified in Figure 13.

Resulting estimated global kriging variance in the
case of OK
The directly calculated (‘true’) OK global kriging variance for
the test data is

[58]

The estimated OK global kriging variance based on the
proposed correcting method is

[59]

As is clear from comparison of the above two equations,
the estimated −µ and sp values are both higher than the true
values, and since they are subtracted from each other, the
resultant error in the global kriging variance should be
reduced. However, the main source of discrepancy is the
difference in the sp values. This could be ascribed to the fact
that the true value of 97 512 is anomalously low due to the
impact of negative weights, whereas the impact is absent in
the estimated value.

Nevertheless, the estimated value exhibits an error of less
than 11% of the true value, whereas the uncorrected RDM
value based on kriging with 16 samples showed an error of
121%.

Correcting global kriging variances in the Case of SK
The correction procedure here focuses only on sp, since the
Lagrange multiplier is absent. It was illustrated in Figure 9,
that for SK, sp increases with n in a manner reminiscent of
the way in which Γ(l ) increases with l. This again means that
the variable pairs [sp, f (l )] and [n, l ] are linearly related.

Hence the rest of the formulism is exactly the same as
was the case for −µ, except that −µ is everywhere replaced by
sp, and f (l ) is reinterpreted as being Γ(l ).

The least squares fit modification of the method to ensure
a solution in a production environment follows immediately
with the same replacements in the formulae of the relevant
subsection above.

The experimental values obtained for sp in the case of SK
based on kriging with n = 1, 2, 4, 8, etc. are given above.
Using n1 = 1, n2 = 2 and n3 = 16, the following scaling
constants were obtained when solving the equivalent of
Equations [23]–[25], replacing −µ by sp:

[60]

[61]

[62]

Knowing these constants, one can again write down the
way sp is expected to vary with the sample number (n −1):

[63]

Extrapolating with this formula to n = 239, one finds

[64]

This estimated value for sp (239) is indicated by a star in
Figure 9. It would indeed seem that this would have been the
value of sp if the influence of negative weights were absent.

The scaling hypothesis for sp in the case of SK is verified
next by evaluating f(n) = Γ[8.058(n − 1)] for the values at
which the sp are known from the kriging runs.

sp × 10−4 n Γ[8.058(n − 1)]
3.4214 1 0.0000
5.0660 2 0.6191
6.4044 4 1.1905
7.1037 8 1.4284
7.5996 16 1.5729
8.1561 32 1.6912
8.1078 64 1.8122
8.1195 239 1.8736

The straight line character of the plot sp versus Γ is again
verified in Figure 14.
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Figure 13—sp versus Γ(71.03 f[11.914(n − 1)])

Figure 14—sp versus Γ(8.058(n − 1))
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The deviations from the straight line at high n values are
once more a manifestation of the impact of negative weights
on the experimental sp values when kriging is actually
performed with such large numbers of samples.

The directly calculated (‘true’) SK global kriging variance
for the test data is

[65]

The estimated SK global kriging variance based on the
proposed correcting method is

[66]

The estimated SK global kriging variance is within 2% of
the true value, whereas the uncorrected RDM SK global
kriging variance based on kriging with 16 samples is within
4.5% of the true value.

Conclusion
With research into new mining methods opening up the
possibility of going to unprecedented depths in the
Witwatersrand gold mines, the legacy of Krige’s work
remains as relevant as ever.
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