
Introduction

The submerged arc furnace (SAF) is still the
predominant route for ferroalloy production,
accounting for over 70% of production. SAF
campaigns are strongly influenced by the
lifetime of the lining, which is gradually
eroded or worn due to physical and chemical
wear by molten alloy and slag. The design of a
SAF is a lengthy process, and construction is
expensive. In order to prevent breakouts, it is
important to monitor the residual thickness of
linings.

To estimate the erosion profile of SAF
linings, a few online monitoring models (Kievit
et al., 2004; Rodd, Voermann, and Stober,
2010; Karstein and Skaar, 1999) have been
developed since 1999, which are similar to that
applied in monitoring the erosion of the hearth
and bottom of a blast furnace (BF). The
methodologies by which information on a BF
hearth state is obtained include core sampling
(Akihiko, 2003), non-destructive testing
(NDT) (Afshin and Pawel, 2009), and
theoretical prediction (Zhao et al., 2007;
Swartling et al., 2010; Surendra, 2005;
Brännbacka and Saxén, 2008; Zagaria,
Dimastromatteo, and Colla, 2010; Torrkulla

and Saxén, 2000; Lijun and Huier, 2003; Yu
and Robit, 2008; Kuncan, Zhi, and Xunliang,
2009; Kouji, Takanobu, and Kouzo, 2001).
Thicknesses of linings, provided by core
sampling and NDT methods are precise, but
these methods have obvious drawbacks. Core
sampling requires a furnace shutdown, with
consequent loss of production. The thickness
of lining acquired by NDT has a local character
and cannot represent the status of the entire
BF hearth. Theoretical prediction, on the other
hand, calculates the location of 1150°C
isotherm based on measured temperatures
from thermocouples embedded in hearth
linings. This isotherm was considered as the
wear-line in the BF hearth model. Theoretical
prediction models involve a heat conduction
model and a composite model that combines
heat conduction theory with CFD (Kuncan, Zhi,
and Xunliang, 2009). With respect to the heat
conduction model, there are two ways to
approach a heat transfer problem: direct and
inverse heat conduction problems, known as
DHCP and IHCP (Swartling et al., 2010).
Boundary conditions and thermo-physical
properties are known in the DHCP models
(Swartling et al., 2010; Surendra, 2005; Lijun
and Huier, 2003). A significant limitation of
DHCP models is that the computational domain
is not immutable. Hence it is necessary to
continually change the computing domain,
which varies with the location of the erosion
boundary. However, it is difficult to
accomplish this by the DHCP approach. For
instance, Lijun and Huier (2003) attempted to
employ BEM to solve a DHCP and the 1150°C
isotherm was investigated by the orthogonal
design. Either thermo-physical properties or
boundary conditions could be known in the
IHCP model; instead, interior temperatures had
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f fto be known for some points of the domain (Swartling et al.,
2010). Monitoring models to solve IHCP and estimate the
shape of erosion profile were developed, the system geometry
of which is not fully known but is being investigated in the
solution. Some investigators (Brännbacka and Saxén, 2008;
Zagaria, Dimastromatteo, and Colla, 2010; Torrkulla and
Saxén, 2000) combined the optimization technique with a
numerical method to solve IHCP, obtaining several acceptable
solutions for the erosion profile. It is important to note that
the approximate solutions acquired from IHCP models are not
unique. Therefore, validation is very important in numerical
simulation because the availability of a computing model
should be carefully considered. The most common validating
method is the comparison between calculated temperatures
and measured temperatures. If calculated temperatures at
thermocouple locations approximate measured ones, the
solution for the erosion profile can be accepted. Due to the
non-uniqueness of solutions in IHCP, some other
measurements were employed to validate the computation
models in addition to comparison of temperatures. Dig-out
investigations (Zagaria, Dimastromatteo, and Colla, 2010;
Kouji, Takanobu, and Kouzo, 2001) are also a good
vvalidation method, but this process is available only during
the blow-out of a BF. Torrkulla and Saxén (2000) validated
the model by analysing various hearth phenomena such as
pressure drop, coke voidage, production rate, and slag delay.
In addition, Yu and Robit (2008) combined the CFD model
wwith a one-dimensional heat conduction to perform a
numerical analysis on the inner profile of a BF hearth.
However, this calculation procedure is overly complex.

Many researchers have contributed to modelling the
complex process of lining erosion in a BF hearth, while only
few have paid attention to the erosion profile of SAFs, and
monitoring of SAF linings is still in its infancy. Kievit et al.
(2004) utilized a one-dimensional steady heat conduction
method to monitor a ferromanganese SAF. Rodd, Voermann,
and Stober (2010) developed a two-dimensional DHCP model
that was used for a SAF for ferronickel production. Karstein
and Skaar (1999) exploited two different numerical
algorithms and employed the finite element method (FEM) to
solve IHCP for an ilmenite melting furnace. The simulated
results obtained from this work were validated by the method
of temperature comparison.

In view of the lack of methods for determining the
erosion profile of the freeze lining in SAFs and the
shortcomings of the method of temperature comparison, we
have developed a model for monitoring the erosion profile in
a ferronickel SAF at the Liang-Da cooperation in Shandong
Province, China. Measured temperatures from the thermo-
couples were utilized to solve an inverse heat conduction
problem. The nonlinear differential equation could be
converted into a Laplace equation after introducing Kirchhoff
transformation. BEM and the Nelder-Mead simplex
optimization method (Nelder and Mead. 1965) were adopted
simultaneously in order to improve the speed of solution.
Furthermore, the computing model was validated with
industrial data such as actual power consumption, tap-to-tap
time, and output of ferronickel.

Compared with previous monitoring models for SAFs,
there are two main advantages in the methodology presented
in this paper. Improved accuracy and efficiency are obtained

by employing BEM and the Nelder-Mead simplex algorithm,
and a new validation method is presented, in which the
model is validated utilizing industrial data.

Mathematical  model

Governing equations and boundary conditions

The SAF lining model studied in this paper is built with
reference to the configuration illustrated in Figure 1.
According to this concept, the ceramic protection layer is a
sacrificial layer, and a ’skull’ will be formed at the interface
between carbon brick and molten iron after the ceramic layer
has been eroded away. The erosion profile of the freeze lining
could therefore be determined if the inner contour of the
carbon brick region could be calculated. Figure 2 illustrates a
calculation domain Ω to represent the carbon brick region, the
inner boundary of which is expressed as B5, and the determi-
nation of its shape is the aim of the present work.

Sensor locations in the system geometry Ω are indicated
by the open circles in Figure 2. Six thermocouples numbered
from 1–6 are utilized to measure internal temperatures. A
further six thermocouples, numbered 7–12, are embedded at
the interface between carbon brick and graphite to measure
the boundary temperature. It should be pointed out that the
actual number of sensors in a SAF is larger. In region Ω, heat
conduction in the steady state can be described by the 2D
rotational symmetry equation:

▲
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Figure 2—2D physical model for computing erosion profile

Figure 1—Freeze lining configuration in a submerged arc furnace (after
Duncanson and Toth, 2004)
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[1]

where T is the temperature at a point (r,rr z), r and z are
the radial and axial coordinates, respectively, and k(T ) is the
thermal conductivity of the carbon brick, which is a function
of temperature as shown in Equation [2] and can be detected
by micro-laser flash apparatus (LFA427, NETZSH group,
Germany) .

[2]

Equation [1] is a nonlinear partial differential equation
because the function of thermal conductivity is a logarithmic
equation. Kirchhoff transformation (Carslaw and Jaeger,
1959) is applied to simplify the differential equation of heat
conduction. A new temperature variation U is used to replace
T (Equation [3]), where k0 is thermal conductivity of carbon
brick at a known temperature T0TT . The Laplace equation can
be obtained after substituting U into Equation [1] as follows.

[3]

[4]

In order to solve Equation [4], boundary conditions
should be specified and transferred by Kirchhoff transfor-
mation for the domain Ω border. Heat fluxes of B1 and B4
are assumed to be zero since the model is rotational
symmetric.

[5]

[6]

Temperatures of the boundary between B2 and B3 were
measured by thermocouples 7-9 and 10-12 respectively. A
function f(ff r,rr z) was selected to describe the Dirichletz
boundary condition of B2 and B3. A new function g(r,rr z) ofz
boundary conditions could also be established from the
Kirchhoff transformation.

[7]

[8]

The 1150°C isotherm is defined as the inner boundary
wwhen the erosion profile of the BF hearth is monitored. This
temperature corresponds to the solidification of the eutectic
Fe-C, and the hot metal is in solid state at lower temperatures
than this (Kuncan, Zhi, and Xunliang, 2009). In industrial
ferronickel production, the FeNi liquidus temperature is
around 1300°C and the slag liquidus temperature is 1550°C.
Since the amount of slag is very large in ferronickel
production, the slag liquidus temperature 1550°C is defined
as the hot face boundary condition (Rodd, Voermann, and
Stober, 2010.

[9]

[10]

Numerical and optimization method for inverse heat
conduction problem

Normally, the solution for IHCP consisted of two main parts.
First, a numerical method was utilized to calculate the
temperatures at the sensor locations, and an optimization
method was then adopted to minimize the difference between
the calculated temperature (TCTT ) and measured temperatureC
(TMTT ) (Equation [11]). The unknown erosion profile will be
estimated by this computation scheme, illustrated as
Equation [11]:

[11]

where TcTT is the temperature calculated by the numerical
methods, TMTT is the measured temperature from the thermo-
couples, and superscript i is the number of thermocouples in
domain Ω.

The Laplace equation describing the domain Ω in Figure 2
could be solved by BEM with high efficiency. Temperatures at
the thermocouple locations could be calculated from Equation
[12]. The integrating range C consists of the entire boundary
(B1∪B2∪B3∪B4∪B4∪). T* represents the fundamentalTT
solution of the Laplace equation and q* is its derivative
(Kurpisz and Nowak, 1995).

[12]

The inside boundary B5, as the optimizing object, should
be determined by some parameters at first. The parameteri-
zation schedule to B5 is shown in Figure 3 and described as
follows.

Two straight lines were extended from the B1 and B4
boundary, which intersect at structure point A. Structure
lines (L1, L2, L3, ... Ln) were built after connecting point A
with some points on B2 and B3. B5 would be formed by cubic
spline interpolation to boundary points (P1, P2PP , P3PP , ... PnPP ) that
lie on the structure lines. Because the relationship between r
and z is linear on the structure lines, a set of radial
coordinates (r1, r2rr , r3rr , ... rnrr ) of boundary points is defined as
optimizing parameters. The ill-posed property is a major
obstacle in the solution process. Small changes in measured
data would lead to significant fluctuations. In order to
prevent the emergence of unreliable solutions, a regular-
ization method was adopted to modify the equation
(Brännbacka and Saxén, 2008; Zagaria, Dimastromatteo, and
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Figure 3—Construction scheme of inner boundary in computational
model
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fColla, 2010; Torrkulla and Saxén, 2000). Therefore, instead
of the minimizing formula in Equation [11], the minimization
process was modified with a regularizer, as shown in
Equation [13].

[13]

wwhere Ψ is the objective function, j is the number of
boundary points, αjα is the angle between structure line and
B5, and γ is a regularization term. The Nelder-Mead simplex
optimization method (Nelder and Mead. 1965) belonging to a
direct searching procedure is introduced. The criterion for
stopping iteration of the optimization process is shown in
Equation [14]:

[14]

wwhere ε is a convergence criterion, R l is the element from the
collection of ‘simplex’, and xcxx is the centroid (Nelder and
Mead, 1965). The flow diagram of the computational model is
shown in Figure 4. Since Equation [12] does not contain any
domain integrals, only the boundary needs to be discretized.
In addition, the solution of the Nelder-Mead simplex method
(modified simplex method) does not need derivation to
optimizing parameters, and this program would converge in a
few minutes. Detailed information about BEM and the
modified simplex method is given by Nelder and Mead
(1965) and Kurpisz and Nowak (1995). The setting up of the
mathematical model is described by Dong and Shaojun
(2013).

Results

The average values of measured data from thermocouples
1–6 in Figure 2 were selected to calculate the erosion profile.
Measured temperatures in domain Ω also needed to be
transferred by the Kirchhoff method (Table I). The computing
methodology in Figure 4 was programmed in MATLAB
(R2010a). The convergence criterion was chosen as 25 and
the regularization term was defined as 0.015. More than one
result could be acquired after the iterative convergence
because of the diversity of the initial simplex and ill-
posedness of the inverse problem. Two sets of calculated
temperatures are illustrated in Table I. It can be seen that the
difference between measured temperatures and calculated
temperatures is less than 5°C, which indicates the
effectiveness of the computing methodology developed. The
corresponding erosion profiles from calculated temperature

are shown in Figure 5. It can be seen that the calculated
shapes of the inner profile vary widely, although the
difference between two calculated temperatures is not
obvious. In this case, it is preferable to introduce some other
characteristics or industrial data for SAFs to validate the
computing model and determine a reasonable solution.

Validation

In previous work, Chu, Liu, and Wang (2009) assumed that
an SAF is an adiabatic system and calculated its theoretical
power consumption by material and energy balance theory.
The results showed that the theoretical power consumption is
2713.46 kWh for producing one ton of FeNi (12%Ni) when
the charge has been heated to 700°C. However, a real SAF is
not an adiabatic system, hence it has a higher power

▲
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Figure 4—Flow chart of the computational model

Table I

Measured and calculated temperatures at sensor locations

Temperature (°C)

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Measured 733.58 677.39 333.46 638.87 755.11 773.29
Measured (Kirchhoff transformation) 676.83 623.56 295.44 586.99 697.23 714.44
Calculated 1 677.39 625.90 295.46 587.08 696.27 715.74
Calculated 2 679.41 621.67 298.78 589.19 694.05 713.93

Figure 5—Computed lining erosion profiles obtained by (a) calculated
temperature 1 and (b) calculated temperature 2 (Table I)



consumption. According to investigations in an industrial
plant, the actual power consumption is 3650 kW/t. A batch of
FeNi is about 35 t and tap-to-tap time is around 4 hours. The
modes of heat loss from a SAF have also been studied, and
the heat losses through different paths are shown in Table II.

It is assumed that all these energies, which are generated
by extra power consumption, are changed into heat. If the
heat emissions from a SAF as indicated in Table II are correct,
heat loss from the current SAF linings per unit time can be
calculated as Equation [15]:

[15]

wwhere QRQQ1 is the heat loss through the linings as calculated
from the production data. Since the heat flux density of all
boundaries in domain Ω can be calculated by virtue of BEM
after erosion profiles have been obtained, the heat loss from
the linings can also be calculated by integration. The
computing process can be expressed as follows: since more
than one vertical section, similar to domain Ω in Figure 2,
wwas fitted with thermocouples to measure temperatures in a
production SAF, several 3D solid lining models can be built
by integrating to vertical sections; then the total heat loss of
the linings can be calculated by summing the heat losses of
all 3D models. The computational scheme, which takes one
vvertical section of domain Ω as an example, is illustrated in
Figure 6. 

B4 in Figure 6 is assumed to be an axis located in the
center of the SAF. One 3D model s generated by rotating the
section around B4 through an angle φ. Surfaces S1 and S2 are
formed by the sweep of B2 and B3, with lengths of H and G,
respectively. In addition, B2 and B3 in Figure 6 are discretized
into some boundary elements, with the amounts of M1 and
M2. The element on boundary B2, numbered as u, can be
indicated by EBEE 2

u
. Similarly, the vth element on boundary Bvv 3

is expressed as EBEE 3
v

. Two surfaces can be formed by the
sweep of elements EBEE 2

u
. and EBEE 3

v
, with heat fluxes of QBQQ 2

u
and

QBQQ 3
v

respectively, calculated by Equations [16] and [17].

[16]

[17]

wwhere h is the length of an element and q the heat flux
density. It should be noted that the special parameter hB3

o
in

Equation [17] is equal to zero. The heat loss of the 3D model,
denoted by Γ, is the sum of heat flux through S1 and S2,
wwhich can be calculated by Equation [18].

[18]

Six vertical sections were selected to arrange the thermo-
couples in the SAF, as shown in Table III. The positions of
the sensors in each vertical sections were similar. Table III
also shows three different calculated temperatures and the
corresponding heat fluxes of 3D models per unit time,
assuming three possible results for the erosion profile could
be obtained in each section. Total heat loss of the lining per
unit time could be calculated as follows:

[19]

Where superscript a is the number of the vertical section,
and subscript b is the possible number of calculated temper-
atures in vertical section a. Since three possible results for
the erosion profile are obtained in each vertical section, the
amount of possible QRQQ 2 is equal to (C3CC1)6. All computed results
for QRQQ 2 need to be compared with QRQQ1

((
. The optimal solution of

QRQQ 2 is the value closest to QRQQ1.
An optimal calculated result for QRQQ 2 is acquired after 729

comparisons, as illustrated in Equation [20]. The difference
between optimal QRQQ 2 and QRQQ1 is 168.2 KJ/s. 

[20]

In the process of calculating QRQQ 2, the SAF lining is
supposed to be an ideal 3D solid that is similar to a cylinder,
with tap-holes ignored. It should be noted that the
temperature at the region near the tap-holes is higher. In the
current model, the computed results for heat  loss, ignoring
the tap-holes, are lower than for a realistic situation. Erosion
profiles obtained after validation could meet the requirements
of temperature comparison method; furthermore, the
calculated heat loss obtained by the current model approx-
imates that computed with industrial data.

Conclusions

In order to monitor the erosion profile of the freeze lining in a
SAF, a new two-step mathematical model was developed.

A methodology for determining the erosion profile of the freeze lining
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Table II

Modes of heat losses from a SAF

Mode % of total heat loss

Off-gases 31.74
Resistance heat generated in circuit 12.80
Linings (bottom and sidewall) 25.17
Other 30.29 Figure 6—Computing model for heat loss with BEM and integral
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Kirchhoff transformation was applied in the first step to deal
with the nonlinear partial differential equation, boundary
conditions, and measured temperatures. The boundary
element method was combined with the Nelder-Mead simplex
optimization method in the second step to solve an inverse
heat conduction problem using the measured data from
thermocouples. The difference between calculated
temperature and measured temperature is less than 5°C after
the erosion profile is obtained.

The solutions are not unique owing to the differences of
initial simplex and ill-posedness of inverse problems. The
computational model was validated by comparison of heat
losses from the lining. The heat release through the linings,
which was calculated by BEM and integral calculus after the
erosion profiles were obtained, could be computed using
industrial data such as actual power consumption, tap-to-tap
time, and output of ferronickel. The results showed that the
difference in lining heat losses per unit time obtained by
these two methods is around 168.2 KJ/s. The possible reason
for this is that the tap-hole region is ignored in the model. A
transient model and 3D lining model including the tap-hole
will be developed in future work.

Acknowledgements

The authors gratefully acknowledge the financial support
from National Natural Science Foundation of China
(No.51274030) for this project. Our thanks to Mr Jichao Li
from Ohio State University for useful discussions, and to Mr.
Peixiao Liu from Sinosteel Jilin Electro-mechnical Equipment
Co. Ltd providing valuable industrial data for the SAF. 

Nomenclature

EB3
v Boundary element that is numbered as v on

boundary B2, {v: v∈ (1,2...,M2)}

TM
i Measured temperature of no. i thermocouple, 

{i: i∈ (1,2,3,4,5,6)}

hB2
u Length of element EB2

u

TC
i Calculated temperature at the location of no. i

thermocouple, {i: i∈ (1,2,3,4,5,6)}

hB3
v Length of element EB3

v

U Temperature transferred by Kirchhoff transfor-
mation

qB2
u Heat flux density of element EB2

u

r Radial coordinates

qB3
v Heat flux density of element EB3

v

z Axial coordinates

QB2
u Heat flux of the surface that is formed by the sweep

of EB2
u at an angle of φ

k thermal conductivity

QB3
v Heat flux of the surface that is formed by the sweep

of EB3
v at an angle of φ

Bo Boundary of domain Ω, {o: oa∈ (1,2,3,4,5)}

a Number of lining vertical section, 
{a: a∈ (1,2,3,4,5,6)}

f Temperatures function of boundary B2 and B3

▲
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Table III

Measured and calculated temperatures at different vertical sections

Temperature (°C) Heat release Γ

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 (KJ/s)

Section 1 Measured 733.58 677.39 333.46 638.87 755.11 773.29 unknown
Calculated 1 735.42 679.82 331.76 641.79 757.94 775.18 329.21
Calculated 2 736.44 676.07 329.63 640.27 754.71 771.50 322.98
Calculated 3 736.81 683.25 332.83 647.27 759.71 777.43 333.52

Section 2 Measured 756.35 690.25 356.78 655.65 774.97 791.74 unknown
Calculated 1 759.45 692.33 354.01 659.41 772.34 792.22 362.14
Calculated 2 758.28 694.49 357.27 658.85 777.52 794.44 359.67
Calculated 3 753.14 688.21 353.72 652.20 769.45 787.50 355.87

Section 3 Measured 725.41 658.17 325.97 626.22 742.01 761.19 unknown
Calculated 1 721.54 656.85 323.02 624.58 739.95 766.01 308.35
Calculated 2 726.85 660.15 326.78 630.96 745.33 765.11 317.57
Calculated 3 728.26 662.41 327.11 628.30 744.02 763.27 315.52

Section 4 Measured 697.12 641.95 306.20 606.08 727.72 744.74 unknown
Calculated 1 695.97 638.55 304.95 605.92 728.95 742.08 287.08
Calculated 2 701.21 644.98 306.60 610.53 730.97 747.52 290.93
Calculated 3 693.33 637.91 303.10 602.01 724.08 739.58 286.65

Section 5 Measured 712.87 654.01 311.36 613.24 737.47 756.09 unknown
Calculated 1 716.29 660.31 313.43 615.47 740.15 759.54 296.96
Calculated 2 713.32 657.03 315.08 614.01 739.92 758.66 298.05
Calculated 3 708.11 649.73 310.14 607.61 735.39 751.53 292.49

Section 6 Measured 704.52 650.25 304.25 604.23 724.51 742.24 unknown
Calculated 1 703.21 648.57 304.10 605.44 725.14 741.14 289.87
Calculated 2 706.42 652.65 306.85 605.70 728.88 743.99 292.20
Calculated 3 708.98 653.02 305.91 606.63 726.20 745.28 290.74



b fNumber of calculated temperature in vertical
section, {b: b∈ (1,2,3)}

g Temperatures function transferred from f by
Kirchhoff transformation

n Amount of structure lines

AA Structure point

M1 Amount of element on boundary B2

LLjL Structure line, {j: j{{ ∈ (1,2,...n)}

M1 Amount of element on boundary B3

ppjp Boundary point of B5, {j: j{{ ∈ (1,2,...n)}

Greek symbols

RR1 Element from the collection of regular ‘simplex’ in
modified simplex method, {l: l∈ (1,2,...n+1)}

αjα Angles between B5 and structure line,
{j: j{{ ∈ (1,2,...n)}

xxC Centriod in modified simplex method

ε Convergence criteria

T*TT Fundamental solution in BEM

γγ Regularization term

q* Derivative of TAST * in BEM

Ω Computing region

C Integrating range

Ψ Objective function

Φ Rotating angle of vertical section

HH Length of B2 boundary

G Length of B3 boundary

QR
1

Heat release calculated with industrial data

Γb
a Heat release of 3D model formed by rotation of

vertical section at an angle φ

QR
2 Heat release calculated by presented model

EEBE 2
u Boundary element that is numbered as u on

boundary B2, {u: u∈ (1,2,...,M1)}
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