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Synopsis

A new heuristic sublevel mining stope optimizer is presented. The optimizer
seeks the best locations and lengths of a series of vertical raises that,
together with the blocks linked to each raise, define a mining stope. Five
design constraints - the footwall angle, the hangingwall angle, the number
of raises, the maximum distance of a block from a raise, and the minimum
width required to move the farthest block towards the raise - allow the
shape of the sub-stopes associated with each raise to be controlled. The
optimization is done on the locations and lengths of raises using a genetic
algorithm to efficiently sample the parameters’ space. For each raise, a
local network is defined in cylindrical coordinates around the raise such as
to impose the design constraints. A maxflow algorithm on the local
network is used to determine the optimal sub-stope for each raise. All sub-
stopes are combined to define the global stope for the entire deposit. The
best global stope is obtained using a genetic algorithm to find the raise
parameters providing the best profit over the entire deposit. Two synthetic
cases and one real deposit are used to evaluate the new algorithm and
compare the results with the single-raise optimizer. The multiple raises
approach leads to significantly improved economics compared with the
single-raise stope optimizer, and the dilution is also substantially reduced
compared to the single-raise case.

Keywords
underground mining, stope optimization, mining constraints, maximum
flow algorithm, cylindrical coordinate transformation, multiple raises.

Introduction

In underground mining, stope design affects
the profit and safety of the operation. Stope
design requires: (1) a prior ore reserve model
as input data, usually obtained by estimation
or simulation using geostatistical tools (David,
1988; Journel and Huijbregts, 1978), and (2)
the geotechnical constraints, including the
hangingwall and footwall angles, the stope
dimensions, the in situ stress tensor, the rock
strength, and the local geological structures.
The general procedure of stope optimization is
to decide which volumes are included in the
stope and which are not so that, under the
geotechnical constraints, the resulting stope
produces the greatest profit possible.

In the last few decades, several approaches
have been developed for stope optimization.
These methods were reviewed by Ataee-Pour
(2005) and Alford et al. (2007). The dynamic
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programming method (Riddle, 1977) and
branch and bound technique (Ovanic and
Young, 1995) were used to optimize a stope in
one or two dimensions. However, these
methods fail to produce realistic stopes for
complex three-dimensional (3D) deposits that
cannot be simplified to two-dimensional (2D)
mining problems. Some 3D techniques were
also reported, including mathematical
morphology tools (Serra, 1982; Deraisme et
al., 1984), floating stope technique (Alford,
1996), maximum value neighborhood method
(Ataee-Pour, 2000), and octree division
approach (Cheimanoff et al., 1989). These
heuristic methods cannot directly integrate the
geotechnical constraints. Recently, Manchuk
and Deutsch (2008) provided a simulated
annealing-based algorithm, with some mining
constraints incorporated. However, simulated
annealing is very slow and the convergence to
a global optimum is therefore not ensured in
practice. Moreover, the restriction of pertur-
bations to moves respecting all constraints on
slopes in a three-dimensional setting can
seriously hamper the capacity of the algorithm
to find a good solution.

Bai et al. (2013) developed a stope
optimizer based on graph theory. The basis of
the approach is the vertical raise initiating the
opening necessary for blasting, which plays a
similar role as the surface in open-pit mining.
A cylindrical coordinate system is defined
around the raise. Then a network is built
where cylindrical blocks are linked towards the
raise such as to impose de facto the
geotechnical constraints. The optimal block
selection is obtained by applying eflicient
maximum flow methods over the network.
Two important design parameters were
defined: the maximum distance a block can be
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to reach the raise (R) (or distance of influence of the raise),
and the minimum width required to move this farthest block
to the raise (yg) (see Figures 1 and 2). The stope obtained is
optimal for the raise location and extent chosen, and for the
R, yg, and footwall and hangingwall angles imposed. The
global stope optimization then simplifies to finding the best
raise location and extent within the orebody. The optimizer
was shown to provide good results on a number of simple
deposits, both synthetic and real.

Although quite appealing, the single-raise optimizer has a
few drawbacks. Firstly, it cannot provide a satisfying solution
for large deposits or lenses where more than one raise is
needed. In that case, repetitive application of the single-raise
optimization needs to take into account the interactions
between the raises. Also, for small deposits or lenses with
curved shapes (e.g. following folds), the single-raise optimal
solution could provide more dilution and less profit than a
manual solution obtained with more raises, each raise having
a smaller distance of influence R.

In this paper, the authors aim at solving these drawbacks.
The algorithm of the single-raise optimizer is extended to
multiple-raise situations, keeping the core component of
generating a sub-stope for each raise. In the multiple-raise
framework, each sub-stope is a feasible geometry with
controllable maximum dimensions. Optimization is done on
the set of raise parameters using a genetic algorithm to
efficiently sample the parameter space. For a given set of raise
parameters, each raise is optimized with the single-raise
optimizer, thus defining as many sub-stopes as there are
raises. Each sub-stope meets the design parameters and is
optimal for that particular raise location and length and set of
design constraints. The union of all points within one or more
of the sub-stopes defines heuristically the global stope. Three
deposits, two synthetic and one real, are considered where
the results obtained with the single raise and multiple raises
are compared and discussed. For the sake of simplicity, the
true grade values of the deposit are assumed known
everywhere or obtained using a conditionally unbiased
estimator (David et al., 1984), so the effect of the uncertainty
on grades with regard to the stope design is not considered in
this study.

Methods

Stope optimization with a single raise

The stope optimizer using a single raise proposed by Bai et
al. (2013) is reviewed. After a brief summary of the required
graph theory for mining optimization, the network
construction used to represent mining constraints is
described and the stope optimizer workflow is presented.

Graph theory in mining optimization

The ore block model and the mining constraints are
represented as a weighted directed graph (or network) G =
(V, A), where the vertices V denote the ore blocks and the
oriented arcs A define the precedence relations between
blocks so as to incorporate the mining constraints. The profit
from mining block i is p;. It is computed from the block i ore
grade and tonnage, the recovery factor, the mining and
processing costs, and the mineral price (Lane, 1988).
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The stope optimization amounts to finding the closed set
of nodes V' € V such that 5,ey p; is a maximum. Let I; be the
subset of immediate successor nodes to node i, representing
the set of blocks that need to be mined prior to block i. The
maximum closure problem is formulated as:

N
- |
Maximize EH DX, [1]
Subject to x,-x;<0,YVi€V,jET, [2]
x,=0o0r, ViEV [3]

where x; equals 1 when the block is selected, 0 if not, and
index j refers to a successor of block i.

For a typical deposit, the integer program involves a
lengthy computational time due to the large number of ore
blocks N. The Lerchs-Grossman algorithm (LGA) (Lerchs and
Grossman, 1965) presented an effective tool to solve the
open-pit mining problem implemented in some commercial
software. Even more efficient methods appeared after the
seminal paper of Picard (1976) proving that the maximum
closure problem of the open-pit mine is equivalent to the
minimum cut problem, hence allowing the application of
maximum flow algorithms (e.g. Goldberg and Tarjan (1988);
King et al. (1992)), which are substantially more efficient
than the LGA (Hochbaum, 2001, 2002). The high efficiency
enables the repetitive application of the algorithm while still
keeping computing costs realistic.

Implementation of stope geometric constraints in network

To apply the network flow concept to stope optimization, the
key is to find the free surface to start stoping, similar to the
ground surface in an open-pit mine. Actually, in sublevel
stoping, the raise, the vertical or sub-vertical tunnel, plays
the role of the initial free surface. The introduction of
cylindrical coordinates starting from the raise (Figure 1a)
facilitates the control of geometric constraints as the stoping
sequence can be expressed by linkages of the cylindrical
blocks toward the raise. Bai et al. (2013) indicated how the
common stope constraints are implemented with the different
linkages in a graph. The hangingwall and footwall slope
constraints define the precedence links in the vertical
direction (Figure 1b). For a cylindrical system with blocks
defined by Ar, A6, Az (see Figure 1b), and Az/Ar = 1, one link
upward and two links downward define a hangingwall slope
of 45° and a footwall slope of 63.4°. Stope width is controlled
by linkages in the horizontal plane, specifically one radial
link and two side links for each block (see Figure 2a) and by
two design parameters: the maximum extent of the stope
from the raise R (or distance of influence of the raise) and
the minimum width (yg) needed to move, by gravity, the
farthest block to the raise. For example, with R = 30 m,
A8/Ar=1 degree per metre, three horizontal links towards the
raise provide yg = 7.7 m, (see Figure 2).

A third type of geotechnical constraint, the maximum
stope height, is simply controlled by the length of the raise.
The blocks above the top of the raise or under its bottom are
not part of the network, hence are not contained in the stope.

Algorithm for a single raise

The optimization algorithm consists of two main parts. The
first part, the stope optimizer, is the core of the approach. It
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Figure 1—Block model under cylindrical coordinates (a), and typical
arcs in vertical section in the proposed method (b)
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Figure 2—Horizontal plane showing (a) blocks and links defined in the
cylindrical system and (b) corresponding blocks and links in the
Cartesian system. Shaded blocks represents blocks to be removed to
access block A. Trace of the envelopes defined by the lateral links in
the cylindrical system (c) as they appear in the Cartesian system (d)

generates an optimal stope for a specified raise location and
height, with chosen design parameters R and yg. The stope
optimizer includes the following steps:

1. Construct an economic block model in cylindrical
coordinates with given raise location and height as the
reference axis

2. Build the graph with vertical arcs to impose slope
constraints, and horizontal arcs to impose width
constraints

3. Construct the flow network by adding the source and
sink nodes to the graph

4. Solve the maximum flow problem. The generated
stope is conditionally optimal to the raise location and
height.
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The second part is to search the best raise location and
height. This is done by global optimization on the raise
location and height parameters, using as the objective
function the stope value found with the stope optimizer.

The single-raise approach has some limitations. For
example, when R is large, a relatively wide stope is produced
as many blocks have to be mined before the farthest blocks
are accessed. When the deposit is curved or inclined, this can
lead to the mining of a substantial amount of waste as shown
in Figure 3. In other scenarios, isolated clusters of ore could
be left in the ground because the ore clusters do not pay for
the additional waste included. In these cases, a better
approach would be to use more than one raise so as to define
smaller sub-stopes, hence diminishing the effects due to
curvature or inclination of the orebody, and simultaneously
allowing more flexibility to reach isolated clusters of ore.

Stope optimization with multiple raises

Similar to the single-raise algorithm, the multiple-raise
algorithm is comprised of two main parts: (1) the stope
generator with multiple raises based on a series of separate
network flow problems, one for each raise; and (2) the
optimization of the best parameters for the raises’ locations,
extents, and zones of influence.

Stope generator with multiple raises

Each raise is first treated separately with the single-raise
optimizer described previously. For each raise, a cylindrical
coordinate system is defined, and the stope constraints are
implemented through the precedence relations in the
associated network. The maximum extent that a raise can
access, or distance of influence R;, is defined to control the
maximum size of the sub-stope for raise i. As a result, an
optimal sub-stope is generated for each raise (see Figure 4).
The sub-stopes in cylindrical coordinates are converted to a
common regular grid in Cartesian coordinates. For the
conversion, the status of a grid point in Cartesian coordinates
(in or out of the stope) is identified by the status of the
nearest cylindrical block centroid in each sub-stope. It suffices
that a grid point belongs to any of the sub-stopes to be
identified as being in the global stope. Hence, the global
stope is the union of all the sub-stopes. The profit from the
global stope is calculated on the Cartesian grid, so as to avoid
counting any part of the stope twice (or more).

Horizontal section

Vertical section

Block B
Envelope create

to access b}
*

b)

Figure 3—lllustration of possible problems with one raise: (a) in a
horizontal section, the envelope from A to the raise includes a large
quantity of waste; (b) in a vertical section, waste has to be mined in the
upper part due to the network associated with the single raise
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c)

Figure 4 - Conceptual model of the stope generator with multiple raises
in a horizontal section: (a) two ore models in cylindrical coordinates,
one for each raise, are established; (b) and (c) first and second sub-
stopes in a cylindrical coordinate obtained by the maxflow method on
the two separate networks; (d) and (e) the sub-stopes (b) and (c)
converted on the Cartesian grid; (f) the final stope in the Cartesian grid
from (d) and (e)

Optimization of multiple raises parameters with a genetic
algorithm

In the model, each raise is parameterized as, (x;, y;, z,b , zit,
and R)),i=1,...,n, where x; and y; denote the coordinates
of raise i in horizontal section, z,-b and z/' represent its bottom
and top elevation, R; is the maximum distance a block can be
from the raise i, and n is the number of raises. The global
stope is obtained as the union of sub-stopes that are each
optimal in their local cylindrical system.

A good set of parameters for the raises is found using a
genetic algorithm (Holland, 1975) to allow an efficient
sampling of the parameters’ space. The genetic algorithm
tries to mimic the natural evolution of a population. An
instructive example of the application of genetic algorithms to
mining optimization is presented in Armstrong et al. (2012).
Here, we define an individual as a single set of multiple raise
parameters. Starting from a population of individuals, one
creates new individuals in the population by crossover and
mutations. In our algorithm, a vector of multiple raise
parameters represents the individual chromosome with 5n
genes, since there are 5 parameters to optimize for each raise.
The profit from the global stope associated with the raise
parameters measures the fitness of the individual to its
environment. The algorithm is initiated by generating an
initial population. The fitness of each individual in the
population is evaluated. A certain proportion among more fit
individuals is randomly selected as parents. Each set of
parents mates and creates a child whose genes are inherited
from them (crossover). Moreover, a certain proportion of
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mutations are generated by introducing, in the child,
chromosome - genes that do not come from the parents. The
mutations enable new areas of the parameters’ space to be
explored. The less fit individuals in the population are
eliminated so as to keep the size of the population constant.
With the iterations, the average fitness of the population
increases, until the convergence or another stopping criterion
is reached (see Figure 5).

The genetic algorithm proposed follows the following
steps:

» Initial population—The initial population comprises
two parts: more fit individuals and random individuals.
The more fit individuals ensure the inclusion of good
genes. They can be obtained in two ways: (a) intuitive
good raise parameters selected by the user; or (b) fast
optimization with an initial low-resolution ore model.
Random individuals covering the whole range of raise
parameters are added to the initial population to allow
sufficient genetic diversity so as to better explore the
parameters’ space and identify interesting area (Haupt
and Haupt, 2004).

» Parent selection—The basic principle of parent selection
is to give more fit individuals a higher priority to be
parents. Less fit individuals have less probability to be
selected for mating. Although the chance is small, it is
important to allow the less fit individuals to pass down
their genes for the purpose of diversifying the
population. The fitness proportionate selection (or
roulette wheel selection) method (Back, 1996) is used
for parents selection. The individual i with fitness value
(profit) f; has the probability of being selected prob; =

fi/zjj‘i , fi» where M represents the number of

individuals in the population. To implement this, all the
fitness values are normalized to be located in [0,1].
The normalized values are sorted in ascending order
and then transformed to a cumulative normalized
fitness value (CNFV). A random number Rnd is drawn

’ Generate initial population of raises vectors

'

Evaluate the fitness
(the stope profit from the raises vectors)

Select parents

Create new generation by
crossover and mutation

l .

Check if the new raises respect the constraints

l Yes

Eliminate least fitted individuals

Yes.

Meet termination criteria? ~ —>- Done

Figure 5—Genetic algorithm diagram to search for the best raises’
parameters
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from [0,1], and the first one with CNFV greater than
Rnd is selected for the mating pool. The individuals in
the mating pool are randomly paired.

» Genetic operator. Two mating methods are employed:
crossover and mutation. The crossover is done by
picking genes randomly from parents and combining
them to define a new individual, following the formula:

Xnew =E/3ixi Wlth Eﬁ, = 1, ﬁi =0 or 1 [4]
i=1 i=1

where X,y denotes the new individual, X; represents
the parent i, and f; is a 0-1 variable indicating whether
the gene is inherited or not. In this way, a child is
basically the recombination of genes from its parents.
Mutation can be applied to a child to allow the child
genes to depart substantially from those of its parents.
This is done using (Haupt and Haupt, 2004):

X, =X, +0(ZoI) [5]

new

where © denotes the Hadamard (or element-wise)
product between the vectors; Z is a column vector of
random numbers drawn from the standard normal
distribution; I is a 0-1 column vector indicating the
genes to be mutated, and the o scalar controls the
extent of the mutation. A posterior check is applied to
the mutated genes so as to ensure they remain in
feasible ranges for the raise parameters.

» Termination of iterations—The loop stops when a
series of successive iterations does not improve the
best individual fitness or the average fitness of the
population, or when a maximum number of iterations
has been reached.

Results

Parameters in the algorithm

To test and evaluate the proposed methods, three orebody
models are used: two synthetic deposits and one real deposit
(ore block model estimated by kriging). The two synthetic
models illustrate typical scenarios where the single-raise
algorithm partly fails and where the multiple-raise algorithm
is expected to perform better. The initial synthetic block
model is expressed on a Cartesian grid of spacing 1 m x 1 m
x 1 m. For the larger real deposit model, the Cartesian grid is
defined at every 2 m so as to save some computing time for
the interpolation (it was checked that the results obtained are
robust to this choice). The networks have one link vertically
upward and two links downward, and three links
horizontally. Therefore, for the three cases, the hangingwall
angle is 45°, and the footwall angle is 63°. The A6 is
computed so as to ensure approximately the desired yp (see
Table 1.

Table |

Geometric and design parameters, discretization, and optimized raise parameters

Parameters Case 1 Case 2 Case 3

Raise type M1 M | S M S
Economic parameters

Mining and processing costs ($/t ore) « 50 i

Metal price ($/kg) « 10 -

Recovery rate « 0.9 i

Rock density « 3 -

Mean ore grade (%) 2 0.25 0.25 0.54 0.54
Geometric parameters for stope

Minimum footwall angle (deg) «— 45 i

Minimum footwall angle (deg) « 63 i

Maximum height (m) 50 50 40 ‘ 40 150 150
Minimum height (m) 10 10 15 50 50
Discretization ‘

dz(m) 0.5 0.5 0.5 ‘ 0.5 1 1
dr(m) 0.5 0.5 0.5 | 0.5 1 1
Optimized raises parameters

Raise 1

Location X (m) 34.4 18.9 30.9 33.1 3164.7 3097.5
Location Y (m) -20.9 20.9 214 18.7 -76.6 -72.5
Bottom level (m) -127.3 -132.5 -124.5 -124.2 -493.8 -497.3
Top level (m) 112.3 -107.0 -105.0 -106.1 -397.8 -352.8
Maximum radius R (m) 16.2 27.3 12.7 33.7 18.9 78.7
Raise 2

Location X (m) 10.2 48.0 3121.7

Location Y (m) 20.2 18.9 -73.7

Bottom level (m) -132.9 -125.2 -498.0

Top level (m) -107.1 -105.2 -352.4

Maximum radius R (m) 16.1 14.8 46.4

Raise 3

Location X (m) 12.0 ‘ 3121.6

Location Y (m) 175 ‘ -74.5

Bottom level (m) -125.2 ‘ -438.5

Top level (M) -105.7 ‘ -352.9

Maximum radius R (m) 14.7 ‘ 45.9

1M: Optimization with multiple raises

2S: Optimization with single raise
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For the genetic algorithm, the initial population size is 40
x n, where n is the number of raises. Two more-fit
individuals are included in the initial population. The first
one is the solution obtained by optimization at a lower
resolution. The second is obtained by spreading the raises
uniformly within the deposit. Three parents are used to create
a new individual. The mutation rate is selected to be 0.1 for
each gene, so that many offspring will include mutations of
their parent genes. In each iteration, 20 x n new individuals
are created and the same number of least fit individuals are
eliminated to keep the size of the population stable. The
optimization stops when the number of iterations reaches
100, or when the most fit individual among the population
does not improve in 10 successive iterations. In the examples
tested, these choices constitute a good tradeoff to ensure
simultaneously a good final solution and to keep the
computation time tractable. Increasing significantly the
number of offspring or the population size, or making the
termination rules more stringent, would possibly provide a
slightly better final solution but at the cost of additional
computation time. Admittedly, these values might have to be
adapted to the particular deposit being studied. Bai (2013)
verified with two simple cases that the preceding choices for
the genetic algorithm were sufficient to ensure retrieving the
known optimal value with high probability.

The design parameter yg controls the minimum width the
sub-stope must have for a block located at distance R from
the raise. This value is likely to vary according to the rock
mechanics condition of the deposit in the area where the
stope is created. A smaller yg allows dilution to be reduced
and profit increased. However, it should not be too small,
otherwise there is the risk of ore jamming within the stope.
Rock mechanical conditions and experience with mining in a
particular geological environment should guide the choice of
this parameter. With the examples tested, a value around yg
=R/3 seems to provide visually sensible shapes. Here, to
diminish the number of factors to study, we choose yg; = R;/3
for all cases. The effect of yr is further discussed later.

The first synthetic case represents two distinct
mineralized lenses (Figure 6). The optimal single-raise
solution (c and d) locates the raise in the waste approxi-
mately at mid-distance of the lens centroids. In contrast, the
multiple-raises solution locates, as expected, the two raises
close to the centroid of each lens (Figures 6e and f).
Moreover, the radius of influence of each raise R; is correctly
identified as larger for the larger lens. This solution provides
13.5% more profit than the single-raise solution and the
dilution of ore is reduced significantly from 21.6% to only
2.3% (Table I1).

The second case is an ore vein with changing direction in
horizontal section (Figures 7a and b). The vein is approxi-
mately 60 m long by 10 m wide by 20 m high. The stope is
designed with three raises (see Figure 7). The value of the
stope with multiple raises is 10.7% higher than with the
single raise ($976 000 vs. $882 000). It includes less waste
(cost $4 400 vs. $57 700) and misses less ore ($4 100 vs.
$45 000). The dilution of the multiple raises solution is one-
third the dilution of the single raise (3.1% vs. 10.4%)

(Table I1).

The kriging block model of a metal deposit in Canada is
used as the third case study (the name and location of
deposit are undisclosed for confidentiality reasons). A portion
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Figure 6—Case 1, simulated ore model and created stopes: (a) 3D-view
of the orebody; (b) x-y horizontal section of the orebody at z=-120 m; (c)
3D view of the optimized stope with a single raise; (d) x-y horizontal
section of the single raise-stope at z=-120 m, showing ore in stope
(blue), waste in stope (red), and ore out of stope (green); (e) 3D view of
the optimized stope by multiple raises; (f) x-y horizontal section of the
multiple raises’ stope at z=-120 m. Raises in black. Design parameters
as in Table |
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Table Il

Economic evaluation of the case studies

Cases Raise type Stope profit (000$) Missed ore value (000$K) Waste value in stope (000$) | Dilution volume rate 1 | Profit improved

Case 1 Multiple 2622 24.2 -24.0 2.3 % 13.41 %
Single 2312 84.6 -273.6 21.6 %

Case 2 Multiple 976 41 -4.4 31 % 10.68 %
Single 882 45.0 -57.7 10.4 %

Case 3 Multiple 8933 90.4 -44.2 3.4 % 7.28 %
Single 8327 543.8 -197.0 8.1 %

1Dilution volume rate = Volume of waste in stope / Volume of stope
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Figure 7—Case 2, simulated ore model and created stopes: (a) 3D-view
of the orebody; (b) x-y horizontal section of the orebody at z=-120 m; (c)
3D view of the optimized stope with a single raise; (d) x-y horizontal
section of the single raise stope at z=-120 m, showing ore in stope
(blue), waste in stope (red), and ore out of stope (green); (e) 3D view of
the optimized stope by multiple raises; (f) x-y horizontal section of the
multiple raises’ stope at z=-120 m. Raises in black. Design parameters
as in Table |

of the deposit of size 108 m x 68 m x 148 m (Figures 8a, b,
and c), is selected for stope design for the sublevel stoping
method. Three raises are used to optimize the stope as shown
in Figures 8g, h, and i. The optimized raise parameters are
given in Table 1. This time, the profit of the multiple-raise
stope is 7.3% higher than the profit of the single-raise stope.
The dilution for the multiple raises is 3.4% of the stope
volume compared to 8.1% for the single-raise solution.

Discussion

We have developed an improved stope optimizer for the
sublevel stoping method. The new multiple-raise stope
optimizer is an extension of the single-raise optimizer
presented in Bai et a/. (2013). In all test cases, the multiple-
raise algorithm provides stopes with higher profit and less
dilution compared to the single-raise optimizer.

In the three test cases presented, the best global stope
from multiple raises generated between 7.3% to 13.4% more
profit than the best stope obtained with a single raise. The
improvement in the multiple raise heuristic solution
compared to the single-raise approach is due to its increased
flexibility.

The distance of influence of a raise R; is the parameter
controlling the size of a sub-stope. It is ensured that the
geotechnical constraints are respected within each sub-stope,
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therefore are respected in the global stope. The effect of the
Ygi parameter is case-specific. For a single raise and a given
R, diminishing yg necessarily increases the profit. However,
yg should not be taken too small otherwise there is a risk of
ore jamming within the stope. Rock mechanical conditions
and experience with the mining in that particular geological
environment should guide the choice of this parameter. A
value around yg = R/3 seems to provide visually sensible
shapes in the tests conducted. The sensitivity of the best
solution to this parameter is not expected to be high. As an
example, in case 3 the profits obtained with yg = R/2, R/3,
and R/4 are respectively $8 909 000, $8 933 000, and $8
948 000, showing differences of only 0.4% between R/2 and
R/4 and 0.17% between R/3 and R/4. Similar small
differences were observed for the ore and the waste in the
stope.

The computation time of the algorithm depends of two
main factors: the time required for one iteration of the
multiple-raise stope generator and the time required to
explore the raise parameters’ space by GA (or eventually an
alternate search method). To give a rough idea, case 2 has 40
x 60 x 31 blocks in a Cartesian grid, and the stope generator
with three raises takes between two and ten seconds (on a
laptop) to produce a stope. The exact time depends on the
raise extent and on R; which, for a given discretization,
control the number of blocks. To find the best raise locations,
the GA evolves during 57 generations, which takes around
three hours of computation, the stope generator being called
a total of 57 x 20 x 3 + 40 x 3= 3540 times.
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Figure 8—Case 3, test with a real ore deposit: (a) 3D-view of the
orebody; (b) y-z vertical section of the orebody at x=3130 m; (c) x-y
horizontal section at z=-424 m; (d) 3D view of the optimized stope with
a single raise; (e) y-z vertical section at x=3130 m; (f) x-y horizontal
section at z=-424 m; (g) optimized stope with multiple raises, (h) y-z
vertical section at x=3130 m; (i) x-y horizontal section at z=-424 m. In (d)
and (g), stopes are in red, ore out of stope is in green. (e), f), (h), and (i),
ore in blue, waste in red, and ore out of stope in green, raises in black.
Design parameters as in Table |
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One limitation of the proposed approach is the restriction
to vertical raises. It would cause a higher dilution rate for
scenarios of inclined deposits, which usually adopt inclined
raises in reality. The generalization of the method to an
inclined raise is far from evident due to the loss of symmetry
with respect to the gravity force vector. The solution to the
problem needs further investigation.

Also, in the proposed approach, the cost of development
of access to the top and bottom levels of the raises was
neglected. When the multiple raises are located at different
levels, the relative additional costs would reduce the benefit
of this approach compared to the single raise. Moreover, it
was supposed that the raises could be located rather freely
within the deposit without imposing constraints on the
elevations of the beginning and the end of the various raises.
An alternative strategy, closer to the practice for larger
deposits, would be to optimize the common height between
levels (within specified bounds) and impose each raise to
span the entire height. The optimization would then simplify
to find the best elevation for the first level and find the best
number and locations of raises within each level. This modifi-
cation is currently being investigated.

At first glance, the adoption of a cylindrical system of
coordinates might appear as an unnecessary complication. In
fact, it seems difficult (if even possible) to define the network
directly in the Cartesian system of coordinates to ensure
simultaneously all slope constraints, the raise width, and the
distance of influence of a raise. Referring to Figure 2d, it is
obvious that the links to impose vary according to the
distance of influence considered. For each block, it would be
necessary to compute the corresponding envelope of
preceding blocks. Moreover, for a given distance of influence,
any given internal block would be covered by many such
envelopes coming from outer blocks. The network associated
with the different envelopes for a given block might easily
differ from one envelope to the other, rendering the network
definition impossible. This complexity vanishes with the
cylindrical system.

Conclusions

The proposed method was shown to provide good heuristic
stope solutions for typical geometries of curved or inclined
deposits. The solutions respect the geotechnical constraints of
the sublevel stoping method, including footwall and
hangingwall slopes, and stope minimum and maximum
heights. The best stopes obtained with multiple raises for the
three cases considered exhibit significantly larger profit
(+7.3% to +13.4% increase) and less dilution (58% to 89%
reduction) compared to the best solution by the single-raise
method. The gain of the multiple-raises approach is due to
the increased flexibility compared to the single-raise case.
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