geostatistics

Synopsis

Historically, linear and lognormal krigings were first created to estimate
the in situ mineral resources of blocks. Nonlinear geostatistics and
indicator kriging were subsequently developed to evaluate also the
portion recovered when applying a cut-off on selective mining units
(SMUs) within blocks. In practice these methods are generally based
either on the Gaussian model with a transformation generalizing the
lognormal case or on the indicators above cut-offs. Very often the
indicator approach is simplified by kriging separately each indicator,
and when starting from a continuous variable, a practical advantage of
the discretization into classes lies in the easy treatment of a zero effect
and of the high values. However, a number of so-called isofactorial
models have also been developed for a discrete or continuous variable,
where the full cokriging of indicators (i.e. disjunctive kriging) simplifies
to the separate kriging of factors. Moreover, these models are equipped
with a change of support, allowing a consistent estimation of
recoverable resources on SMUS.

Min-Max Autocorrelation Factors (MAF) analysis of the indicators
offers a new approach for indicator modelling. In particular the first
factor, the one with the highest spatial continuity, can help in choosing
the type of model. For example a monotonic experimental first factor can
be used directly as the basis of a discrete diffusion model, unless a
continuous diffusion model such as the Gaussian model can be used on
the original variable. This approach is illustrated on a uranium deposit
mined selectively: estimates of recoverable resources by discrete
disjunctive kriging and uniform conditioning in a Gaussian model are
compared locally to short-term estimates based on two areas densely
drilled.

Keywords
disjunctive kriging, indicator kriging, Min-Max Autocorrelation Factors,
recoverable resources, discrete diffusion model.

Introduction

Linear kriging is a recognized and commonly
used technique. It allows estimation of a
regionalized variable (represented here by Z(x)
where x denotes a point-support location) at
target points, or estimation of sets of points
such as blocks in the case of an additive
variable.

Although it was a domain of intense
research many years ago, nonlinear geosta-
tistics (Rivoirard, 1994; Chileés and Delfiner,
1999) is still a complex and difficult part of
geostatistics. In contrast with linear geosta-
tistics, which considers only linear
combinations of the variable, nonlinear
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geostatistics deals with transformations of the
variable, for example a Gaussian transfor-
mation or indicators.

One purpose of nonlinear geostatistics is
the estimation of the target variable itself at
points or over blocks. Another one is the
estimation of a transformation of the variable
(Vann and Guibal, 2000). Typically it is used
to predict the exceedence of the threshold at
points (e.g., the indicator Ind{Z(x)=z}) or for
blocks (Ind{Z(v)=z} where v denotes the block
support). The latter case, which corresponds in
particular to the recoverable resources of
selective mining units (SMUs) above cutoff z,
is more complex as it cannot be reduced to a
simple block averaging and demands a change
of support.

In practice today, the two most commonly
applied nonlinear approaches are Gaussian-
based methods such as uniform conditioning
or multiple indicator kriging (IK) (Journel,
1982; Vann et al., 2000). The choice of one
technique or the other is often made a priori,
and the existence of other methods is ignored.
In particular, the fact that local estimation is
better supported by the transformation of the
variable that presents the highest spatial
correlation is largely unexploited.

In this paper we propose to use the
Min/Max Autocorrelation Factors (MAF)
(Switzer and Green, 1984; Desbarats and
Dimitrakopoulos, 2000) of indicators as a tool
to determine the transformation that yields the
highest spatial correlation and to choose the
model for nonlinear geostatistics accordingly.
This model can then be used to compute local
estimates using disjunctive kriging. This
approach extends the normal practice of
multiple IK as it takes into account cross-
correlations between the indicators and
includes an appropriate change-of-support
model, rather than an arbitrarily chosen one.
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The paper is structured as follows. We first present an
overview of the main nonlinear models and methods. Then
we consider the use of MAF of indicators for the choice of the
model. Finally, we present a case study for the local
estimation of mineral resources on real data.

Overview of methods and models

The Gaussian transformed model is very commonly applied,
both in nonlinear geostatistics and in conditional simulation.
The transformation generalizes the lognormal distribution
used at the origin of geostatistics (Krige, 1951, 1952, 1978).

Thanks to a multi-Gaussian hypothesis, the Gaussian
model easily provides the conditional distribution (and so the
conditional expectation) at target points (Verly, 1983). It is
adapted to an original variable which has a continuous distri-
bution and in particular has no zero effect (a high proportion
of zeroes can cause a problem for the inversion into Gaussian
values). The Gaussian model is also equipped with a change-
of-support model. A variant technique is the uniform
conditioning (UC) under the Gaussian model (Rivoirard,
1994; Deraisme et al., 2008), which predicts the distribution
of SMU values in a panel, conditional on an estimate of this
panel (relaxing the constraints on zero effect and
stationarity).

In the indicator approach, the variable is either discrete or
if continuous is discretized into classes. This can be
convenient in case of a zero effect, as well as in case of high
values that can be grouped into one class. IK consists of
independently kriging the indicators of (cumulated) classes,
or in estimating linearly each class with a common
variogram. Its advantage relies on its simplicity. It does not,
however, exploit the joint structure of indicators nor, when
using a common variogram, the common destructuration of
high grades (Vann et al., 2000). In addition, it is often used
with a posterior change of support that does not guarantee
consistency (Emery, 2008). Furthermore, post-processing is
required to obtain estimates of indicators at all possible
cut-offs.

Disjunctive kriging (DK) is the original name for indicator
cokriging (Matheron, 1976). The required knowledge of
bivariate distributions between points is actually equivalent
to the multivariate structure of indicators. DK is possible with
both discrete and continuous distributions.

In the case of a mosaic model with independent
valuations (Rivoirard, 1984), all structures are the same and
DK reduces to independent kriging of each indicator class
(this is the model where IK would be optimal at point
support).

A number of so-called isofactorial models were developed
years ago (refer in particular to the numerous papers by
Matheron cited in Chil¢s and Delfiner, 1999). The factors
have no spatial cross-correlation, so that DK is obtained by
kriging these separately. Moreover, internally consistent
change-of-support models exist for all of these models. An
example of such an isofactorial model is the Gaussian model,
where bivariate distributions are Gaussian, and factors are
the Hermite polynomials of the Gaussian transformed
variable. Another example is the gamma model, whose
factors are the Laguerre polynomials (Hu, 1988).

Such models are diffusion-type models: intermediate
values are met when going from low to high values and vice-
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versa. Moreover, they are based on a defined probability
distribution: Gaussian, gamma, etc. The observation of
elliptically-shaped scatter plots between points separated by a
given distance, typical of bi-Gaussian distributions, for
instance, is in practice a good vector for the choice of a
Gaussian model, before modelling the variogram of the
Gaussian transformed variable.

On the other hand, the indicator approach considers
directly structural tools such as simple or cross-variograms.
We have already seen the very particular case of the mosaic
model. Two isofactorial models are especially interesting
here, which correspond to finite discrete distributions and
which are not based on a defined probability distribution.
This makes them suitable to describe an indicator
transformed data-set. One is the discrete diffusion model
developed by Matheron (1976) and Lajaunie and Lantuéjoul
(1989). Its modelling is based on the experimental determi-
nation of its first factor, the one which carries the highest
spatial continuity. This should be monotonic with respect to
the variable under study (this is a condition for diffusion,
representing the transition from low to high values through
medium ones). All other factors are derived from this first
factor. The other model is the model with indicator residuals
(IR) (Rivoirard, 1989). It is not a diffusion-type model, but a
hierarchical one, where the first factor is one basic indicator
and the other factors are the successive residuals of
indicators.

Discrete disjunctive kriging (DDK), based on a discrete
isofactorial model, can handle zero-effect or atoms (i.e. 0 or
other values observed with a high proportion), extreme
values, and includes a change of support. It can be viewed as
an extended IK as it overcomes recognized limitations of the
IK approach: specifically, it takes into account the cross-
correlations between the indicators and includes a consistent
change-of-support model. The parameters of these discrete
models (discrete diffusion or IR) can be derived from the
analysis of MAF computed on indicators, since the MAF of
indicators correspond to an experimental version of the
factors of an isofactorial model.

Using MAF of indicators for the choice of model

The fact that the local estimation should be driven by what
corresponds to the major spatial continuity in the variable is
largely unexploited in many geostatistical approaches. For
instance, in a transformed Gaussian model, the Gaussian
variable is known to be the transformed variable that has the
highest continuity (and the estimation is based on the kriging
of the Gaussian variable), but this fact is not used for
choosing the model. This is where MAF of indicators (after
discretization of the variable) can be useful (as linear
combinations of indicators, MAF are the same whether
cumulated indicators are used or not). Remember that MAF
are multivariate statistics which are for spatial statistics or
geostatistics what principal components (PCs) are for
statistics: in both cases they are orthogonal linear
combinations of the initial variables, but in the case of MAF
they are based on spatial continuity instead of statistical
variability in the case of PCs. MAF are ranked by decreasing
spatial continuity at a chosen separation vector /, and their
cross-correlation at this distance and at distance 0 is zero.
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Modelling MAF assumes that their cross-correlation is
zero for other distances, which can be checked on the experi-
mental cross-variograms of the MAF. The absence of cross-
correlation over all distances implies that an isofactorial
model fits the data. In addition, computing the MAF of
indicators provides valuable structural information. In
particular the first MAF is the linear combination of
indicators that presents the highest spatial continuity. It is a
function of the discrete variable under study, and its
composition in term of values or classes on the original
variable is meaningful.

A first factor which is a stepwise function of the variable
(i.e. an indicator) could orientate towards an IR model. With
a monotonic first factor, the structure is essentially due to the
gradual transition from low to high values. This corresponds
to a diffusion-type model, and could support the use of a
discrete diffusion model or another diffusion-type model such
as a Gaussian or gamma model. MAF that do not correspond
to existing models (e.g. a first factor that is not monotonic)
would require the development of new models, enabling
kriging MAF and possibly including a change of support.

Application to a uranium mine

In the following section, discrete disjunctive kriging is applied
to drill-holes from a uranium project in a horizontal
stratabound sediment-hosted deposit: two areas were densely
drilled to establish the grade variogram, especially for short
distances, and to evaluate long-term resource models. The
data-set used to illustrate the methodology contains
composites derived from radiometric measurements in
vertical drill-holes and has been split in two subsets: (a)
holes drilled on a regular 50 m centred grid used to establish
long-term models on 25x25x2 m3 panels (or long-term data-
set); (b) holes drilled on a regular 12.5 m centred grid in two
50x50 m areas (or short-term data-set). Basic statistics on
2 m length composites are reported for both data-sets in
Table I.

Two long-term resource models have been computed

define indicators of ore classes and a discrete average grade
can be calculated as follows:

N
Z=>"2x00, —1,.. )

=0

(1]

The histogram of the discrete grade is completely
specified by the proportion and the average value of each
class (Table I1). In case of clustered data, a declustering
procedure should be applied to derive the appropriate
proportions attributable to each class interval.

The selectivity curves of the raw variable and its discrete
counterpart are compared in Figure 1: the mean is preserved
(i.e. the metal content) and the selectivity is slightly reduced
(-3% of the selectivity index, i.e. the Gini coefficient). The
reduction of the variance is higher (-50%) as the values of

Normalised quantity of metal | (%)

o
=

06 |

o
tn

o
E-S

o
W

-]
L8]

0.0
0% 20%

~a— Discrete model

— Composites

40% 60% 80%
Ore tonnage (%)

100%

Figure 1—Selectivity curves Q(T) of the continuous grade and its
corresponding discrete distribution for 10 classes

considering 5x5x2 m3 SMUSs, the first one using the uniform Table Il
cgndltlon{ng na Gaus'51_an model (UC); the second using Parameters of the discrete distribution derived from
discrete disjunctive kriging (DDK); both are based on the .
same long-term data-set. Finally, a uranium grade model on composite grades
5x5x2 m3 blocks is computed using composites from the
. . Class index Limits (%, Proportion (% Average grade (%o
short-term data-set. This model, restricted to the 50x50 m (o P 0ol ge grade (%)
areas, is similar to those used to guide the production and 0 [0,0.2] 43.90% 0.08
has been considered as the reference. . {g'g' o3 { 10.08% o2
The application of uniform conditioning follows the 3 (04,05 6.56% 0.45
classical approach (e.g. Rivoirard 1994); it is not described g {g.g, 8.673 { i.ggzo g.gg
. . . P . P .6, 0. . (J .
further and only the application of c!lscrete dlsjupctlve kriging 6 0.7 09] 6.90% 0.79
and the comparisons are presented in more detail. 7 [09,1.1] 3.97% 0.99
The discrete approach requires a disjunctive coding of the 8 [1.1,1.5] 4.77% 1.28
e . 9 [1.5+ [ 5.48% 2.80
initial variable: a set of thresholds (0 < zi= ... z; ...< 2v)
Table |
Statistics of uranium grade (%.) from drill-holes (2 m composites)
Data-set Number Minimum Maximum Mean Variance o/m
Long-term 9886 0.00 57.88 0.49 0.90 1.94
Short-term 4090 0.00 36.17 0.70 1.55 1.77
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the upper tail of the histogram are summarized with a single
value. The thresholds were selected between 0.2 and 1.5%o
for practical considerations. It is not necessary that the
thresholds be evenly spaced. They could be defined as those
minimizing the reduction of the selectivity index (or the
variance) for a given number of classes, but such optimal
thresholds were not considered here.

MAF (Switzer and Green, 1984) of the indicators have
been computed for different lag values, along the drill-holes
and horizontally. Figure 2 reports the experimental values of
the first factor as a function of the class index. The first factor
is fairly independent of the lag value used to calculate the
MAF. This result shows that the isofactorial assumption is
reasonable for this application.

The first factor is strictly monotonic, which is a good
indication for the use of a discrete diffusion model. Details on
this model and its implementation can be found in Lajaunie
and Lantuéjoul (1989). The development of the model is
sophisticated and out of the scope of the present paper. In
contrast, the model is very easy to use for a practitioner
having access to dedicated software. The reason is that the
model is entirely defined by the marginal distribution of the
discrete variable (i.e. the proportions of the N+1 classes) and
by the first factor. The first factor is the function of the
discrete variable which presents the highest spatial
correlation: it is directly derived from data and coincides with
the first MAF of the indicators. It has to be monotonic. All the
other factors of the model are automatically deduced from
this first factor. Figure 3 compares the experimental factors
derived from the MAF analysis of the indicators and the
factors of the fitted diffusion model. As we can see, the
diffusion model describes accurately the experimental factors.

Experimental variograms of MAF are reported in Figure 4.
They have been computed along the vertical drill-holes and
horizontally (no anisotropy was observed horizontally). They
show that the spatial correlation of factors decreases with
their rank (this is consistent with their definition) and are
significant only for the first three factors. It has been checked
that the cross variograms show no significant spatial
structure between factors.
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Figure 2—First Min/Max Autocorrelation Factor derived from indicators.
Experimental factors have been computed for different reference lags
(h =2, 4, and 6 m along lines, 35 m horizontally in SE-NW and SW-NE
directions)
> 248
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In the case of the discrete diffusion model, the covariance
functions of the factors (y;) are derived from the covariance
of the first factor, according to the following formula:

Cov(y,(x), x,(x+h)) = p.(h)y = p” () [2]
4
— MAF-1
3
2 MAF-2
@1 ——MAF3
g
w o ---o-- Factor #1
- Factor #2
-2
- - - Factor #3
-3

012 3 45067879
Class index

Figure 3—Comparison of Min/Max Autocorrelation Factors (A=2 m) of
the indicators and the factors of the discrete diffusion model. This is
determined from the 1st MAF and the marginal distribution
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Figure 4—Experimental variograms of the diffusive factors and models.
Factor models are derived from 1st factor model
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In this formula the power coefficients (1 < 2; < A;41 for
i > 1) are characteristics of the diffusion model, which are
computed automatically from the marginal distribution and
the first factor.

The covariance of the discrete grade can be derived also
from the covariance of the first factor:

C(h) = Cov(Z(x),Z(x + h)) = ﬁ:cf xp™ (h) [3]

where the c; are the linear coefficients to compute the discrete
grade (with mean m) from the factors:

R N

200 =m+ e, xz,(x) [4]

i=l1

The variogram models fitted to the experimental
variograms are reported in Figures 4 and 5: all models are
derived from the covariance model of the first factor; this
covariance is exp{-t(h)} where  is the variogram:

7= power (a=0.7, a,,=100m, @,=7m) + 1.5 power (o=1.5,

a,y=400m, a,=7m)

This model can be used to compute the cokriging of any
linear combination of the factors, thus any function of the
discrete grade. An application is the disjunctive kriging
estimate of the grade on SMU or panels, i.e. the short-term
model, or the in situ resources of the long-term model.

To compute local estimates of the part of in situ resources
that can be recovered by selective mining, a change-of-
support model is necessary. For the discrete diffusion model
(Matheron 1984; Lajaunie and Lantuéjoul, 1989), the change
of support is specified by a coefficient s (s > 0) derived from
the variance of the grade for the block support (calculated
from the variogram of the grade):

Var(Z(v)) = nﬁ:cj X[1+1/1 j $>0 5]

n

The variance of the discrete grade computed on the
composites is 0.42. The variance of the grade for the block
5x5x2 m3 is derived from the sill of the regularized model; its
value is 0.32. The coefficient of the change of support
computed from Equation [5] is s = 0.33.

Once this coefficient s has been computed, the covariance
of the first factor of the blocks, py, is deduced from the
regularized model of the discrete grade of the composites:

Cov{f(v),f(v')} = R J.MvC(x—y)dxdy =

b [6]

N ) 1 s 27
c. % x P (v, v
Z e bl R

Similarly to the model for composites, the model for the
first factor of the blocks is exp{-r,(h)} where 7, is the
variogram :

7, = 0.5 exp (@=20m, @;=5m) + 1.5 power (o=1.1,

a,,=85m, @,=5.5m)

The simple and cross-covariance functions between point
and block factors are then derived from the Cartier relation
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(Chiles and Delfiner, 1999). They are used to compute the
kriging of any linear combinations of the block factors, in
particular the disjunctive kriging of the metal and ore above a
cut-off.

On the two areas densely drilled, the selectivity curves
giving the metal vs. the tonnage at a given cut-off, Q(T), for
the Gaussian uniform conditioning and the discrete
disjunctive kriging are reported in Figure 6. These estimates
are based on the composites of the 50 m centered grid (i.e.
the long-term data-set). They are compared with the
selectivity curve of the short-term model computed using the
composites of the 12.5 m centered grid (i.e. the short-term
data-set).

Table I1I gives the comparison for cut-off 0.3%o eU. The
experimental selectivity curves of the short-term and long-
term data-sets are reported also in Figure 6: there is a
significant difference between the average grade of the long-
term data-set, 0.5%o €U, and the average grade of the short-
term data-set, 0.7%o eU. The local estimation of the
recoverable resources fits, for both methods, the local experi-
mental mean and predicts the selectivity deduced from the
short-term model.
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Figure 5—Experimental variograms of the discrete grade and models.
The model of variogram is derived from the variogram of the 1st factor
model
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Table Il

Comparison of long-term models and short-term
model at 0.3%. cutoff

zc = 0.3%0 Quantity of Ore Grade
metal (%) tonnage (%) (%)
UC vs. short-term model -4% 2% -1%
DDK vs. short-term model -2% 2% 0%
DDK vs. UC 1% 0% 1%

In the present application, two different nonlinear
techniques, UC and DDK, give similar results. Both
techniques are based on a diffusive model, a continuous one
for UC and a discrete one for DDK.

Conclusion

Nonlinear geostatistics can be viewed as a research technique
for the transformation of the variable leading to the highest
spatial continuity and being consequently the most
appropriate to drive local estimations. One approach to
consider is the analysis of the MAF of indicators. This novel
point of view makes a direct link between the elementary
indicator approach and the more sophisticated models of
nonlinear geostatistics. In the present application, the MAF of
indicators can be seen to support the choice of a diffusion
model.

MAF of indicators analysis also appears as a structural
tool on which a methodology can be developed to estimate
recoverable mineral resources using DDK. Practical
applications may reveal the need to develop new models for
MAF of indicators including their change of support. Other
subjects of research concern the relaxation of stationarity and
the extension to multivariate situations.
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