
Introduction

In many situations decision-makers are faced
with selectivity: extract ore above some cutoff
grade, remediate soils whose pollution exceeds
some threshold, restrict traffic speed when the
ozone concentration exceeds some limiting
value. In each case, data relates to a small
support (e.g., a core, an air pollution sensor)
that we regard as a point, whereas the decision
is taken for a much larger support – selective
mining units, decontamination units, average
ozone concentration across a city in a given
time interval (typically with a low threshold
applied to the daily average concentration and
a higher threshold for an hourly average
concentration). To predict the effect of
selectivity it is necessary to take into account
that the grade or concentration distribution
becomes less dispersed as the support becomes
larger. In the framework of random function
theory, the result depends on the whole spatial
distribution. It can be obtained by means of
Monte Carlo simulations (non-conditional
simulations in the global case, conditional
simulations in the local case). Even if Monte
Carlo simulations are more accessible now
than in the past, there are always situations
where they require excessively intensive
computation. It is therefore useful to have
access to the approximate solutions provided
by change-of-support models. Many such

models have been developed by Georges
Matheron (a synthesis is given in chapter 6 of
Chilès and Delfiner, 2012). The most popular
model is the discrete Gaussian model. It should
not be used in just any situation because it has
been developed for random functions such as
transforms of stationary Gaussian random
functions. The initial model was proposed in
1976 by Matheron (1976a). A simpler variant
was proposed more recently by Emery (2007).
We investigate here the accuracy of this
change-of-support model for the modelling of
the marginal distribution of block values. This
investigation is carried out in the special case
of lognormal random functions, which
constitute a large and important class of
random functions, studied notably by Krige
(1978).

We first recall the assumptions of the
discrete Gaussian model (DGM) and its
variant, and explain why they lead to approxi-
mations to the true solution. We then describe
the principle of the validation method. Finally,
we explore the validity range of both models
depending on space dimension, variance and
covariance function of the logarithmic variable,
and support size. In the conclusion we give
some indications on the modelling of the local
block distribution.

The discrete Gaussian model

Let us consider a stationary random function
(SRF) Z(x) that can be expressed as the
transform of an SRF Y(x) with standard
normal marginal distribution. It is therefore of
the form Z(x) = ϕ(Y(x)) with the transfor-
mation function ϕ = F-1˚G, where F is the
marginal cumulative distribution function
(c.d.f.) of Z(•) and G the standard normal c.d.f.
Similarly, we can consider that the mean grade
Z(v) of the block (v) is of the form Z(v) =
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ϕv(Yv) where Yv is a standard normal random variable and ϕv
the block transformation function that we want to determine
(because we are here interested only in determining ϕv, we
consider a single block v but assume strict stationarity of Y to
ensure that ϕv does not depend on the block location).

Model DGM1

Consider a uniform random point x within the block v. The
random variable Z(x) has for c.d.f. the marginal distribution
F of the SRF Z(•) and can be expressed as the transform
ϕ(Y(x)) of the random variable Y(x). The basic assumption of
the discrete Gaussian model proposed by Matheron (1976a),
hereafter referenced as model DGM1, is that the bivariate
distribution of the (Y(x), Yv) pair is Gaussian, with a positive
correlation coefficient r. Matheron deduces from Cartier’s
relationship that the block transformation function ϕv is given
by

[1]

This defines the distribution of Z(v).
In practice ϕ is expressed through its Hermite polynomial

expansion

[2]

where the χn are the normalized Hermite polynomials (see,
e.g. Chilès and Delfiner, 2012, Appendix A.5), and the coeffi-
cients ϕn are given by

[3]

Relationship [1] then implies that ϕv can be expressed in
the form

[4]

The variance of Z(v) can be derived from the coefficients
ϕnrn of the expansion of ϕv or from the covariance C(h) of the
SRF Z. For consistency, r is obtained by equating these two
expressions, that is

[5]

Considered as an equation in r, Equation [5] has a
unique solution between 0 and 1. The correlation coefficient r
is called the change-of-support coefficient.

Extensions of the model (not considered here) enable the
local estimation of a block by disjunctive kriging or in a
multivariate Gaussian framework. A step further makes it
possible to estimate the ore tonnage and metal quantity that
will be obtained when selecting blocks on the basis of future
grade estimates (once blast-holes become available). This is
the so-called information effect. On these points, see
Matheron (1976a) and Chilès and Delfiner (2012, pp.
455–466).

Model DGM2

The variant DGM2 proposed by Emery (2007) is simpler but
requires the additional assumption that the bivariate distri-

bution of Y(x) and Y(x′) for two independent random points
within the same block v is Gaussian. In that case, Emery
shows that r2 is the variance of the average Y(v) of Y(•) in
the block v:

[6]

where ρ(h) is the covariance (here a correlogram) of the
SRF Y(•). Moreover, Yv is simply the average Y(v) rescaled to
a unit variance by the change-of-support coefficient r:

[7]

This induces large simplifications in the extensions of the
model to local estimation (with and without information
effect), notably in the framework of a multivariate Gaussian
assumption (Emery, 2005, 2008; Chilès and Delfiner, 2012,
pp. 455–466).

Discussion of the assumptions

Do there exist random functions satisfying the assumptions
of models DGM1 and/or DGM2? It is easy to simulate
Gaussian samples with pair-wise correlation r, thus
corresponding to samples of Y with independent random
locations in the block v (see Emery, 2007). However, the
author is not aware of any random function model for fixed
locations leading to such correlations for random locations in
v. Should such a model exist, it would be specific to that
support v. The above assumptions should therefore be
considered as approximate only.

Let us first consider the situation where Z is a Gaussian
SRF, that is, ϕ amounts to an affine transformation (in that
case we have no need of the discrete Gaussian model, but it
is interesting to see what it would mean). Models DGM1 and
DGM2 yield the same value for r because C(h) is proportional
to ρ(h), and relationship [7] is exact. Since x is random in v,
the bivariate distribution of Y(x) and Yv is a mixture of
standard bivariate normal distributions with correlations

[8]

for x having any possible location in v. The average value
of ω(x) when x scans v is r, so that the average correlation
between Y(x) and Yv is r but, depending on r, it can be an
average of very different values. A mixture of such bivariate
Gaussian distributions is not a bivariate Gaussian distri-
bution: it is a Hermitian bivariate distribution (Matheron,
1976b; see also Chilès and Delfiner, 2012, pp. 418 and 423).
In the one-dimensional case, that is, when v is a segment of
length L, and for an exponential covariance with unit sill and
with scale parameter a, the change-of-support coefficient r
and the function ω(x) are respectively given by

▲
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ω(x) is minimal at the extremes (x = 0 or L) and
maximum for x = L / 2. The contrast between the largest
correlation and the smallest one is

This ratio is equal to 1 for L / a = 0, remains close to 1
when L / a remains moderate (with a value of about 1.245
for L / a = 1), and increases to 2 when L / a increases to
infinity. Figure 1 shows the graph of ω (x) for some values of
L / a. The approximation of a constant correlation ω (x) thus
seems to be acceptable when L / a is not too large.

The situation is more critical for the bivariate distribution
of Y(x) and Y(x′) because it is a mixture of standard bivariate
Gaussian distributions with correlations ρ(x' – x), thus
ranging from 1 when x = x' to ρ(L) when x and x' are at
opposite corners of the block v and L denotes their separation
vector (we assume here isotropy and monotonicity of the
correlogram). In the above one-dimensional case, L is the
length of the segment and this minimum correlation is equal
to exp(–L / a): it can be very small if L is large with respect to
a.

When Z is not Gaussian, the transformation function ϕ is
not linear. The variogram of Z is therefore not proportional to
the variogram of Y. Note that the change-of-support
coefficient of model DGM2 depends only on the variogram of
Y and does not depend on the transformation ϕ. This is not
the case for model DGM1, because the covariance C of Z
depends also on the transformation ϕ:

The correlograms ρ(h)n are less and less structured when
n increases. For example, if ρ(h) is an exponential covariance
with scale parameter a, ρ(h)n remains exponential, but with
scale parameter a / n, and therefore tends to a pure nugget
effect when n tends to infinity. As a consequence, the
change-of-support coefficient r of model DGM1 is larger than
that of model DGM2, with a difference that increases as the
block v becomes larger and the terms ϕn with large n
dominate in the development of the transformation function
ϕ. The efficiency of model DGM2 will be similar to that of
model DGM1 when the block size is small and the ϕn
decrease rapidly with n.

Note that the change-of-support coefficient r cannot
simultaneously satisfy relationships [5] and [6] (except if Z
is bivariate Gaussian). Unlike model DGM1, model DGM2
therefore does not preserve the variance of Z(v) expressed in
the right-hand side of relationship [5], which is an important
parameter of the block distribution. This may be critical if the
ratio r1/r2 of the coefficients r provided by models DGM1 and
DGM2 is significantly larger than 1.

Validation of the discrete Gaussian model

We will check the validity of the assumptions of the discrete
Gaussian models for modelling the marginal block distri-
bution. This corresponds to the so-called global change-of-
support, in contrast with the local change-of-support which
consists of predicting the distribution of block values
conditional on data available in the block and its
neighbourhood.

The result depends on the spatial distribution of the
random function Z and we consider the ideal situation where
this spatial distribution is known. In practice, we will
consider the case where Z is a lognormal SRF (that is, its
logarithm is a Gaussian SRF). We can assume without lack of
generality that it has a unit mean. It is then characterized by
its logarithmic standard deviation σ and by the correlogram
ρ(h) of its logarithm. The random function Z(x) is thus of the
form

It can also be expressed as

which corresponds to an expansion of the transformation
function ϕ with

The ϕn decrease rapidly when n increases if σ is small,
but less rapidly if σ > 1. For σ = 3, for example, ϕn increases
up to n = 8 and then decreases slowly. The logarithmic
assumption thus includes very contrasted behaviours. This
can also be seen on the variance of Z: it is given by

Since Z(x) has unit mean, its coefficient of variation is
close to σ when σ is small (0.53 for σ = 0.5) but takes large
values when σ is large: 1.31 for σ = 1, 7.32 for σ = 2, 90.01
for σ = 3. A logarithmic standard deviation as large as 3 is far
beyond what is seen in mining applications (such a value has
been reported for permeability in hydrogeology (e.g.
Zimmerman et al., 1998) but the main variable in that case is
log-permeability rather than permeability). When dealing
with ore grade or pollution concentration, we are of course
interested in Z(x) itself rather than its logarithm, and such a
logarithmic standard deviation would be extreme. Would it
correspond to an actual situation, we would be in a very
uncomfortable position because a simple parameter such as
the arithmetic mean of Z would require a large number of
observations to be estimated reliably. Of course, it is possible
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Figure 1—Graph of the correlation ω(x) of Y(x) and Yv = Y(v) / r for
several values of L / a (Y: Gaussian SRF; v: segment with length L; a:
exponential-covariance scale parameter)
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to deduce the mean of Z from the mean and the variance of
log Z, but then we rely heavily on the assumption of a
lognormal distribution, which cannot be taken for granted.

A specificity of lognormal SRFs is that DGM models lead
to a lognormal distribution for Z(v), with logarithmic variance
r2 σ2: This is the well-known permanence of lognormality. It
can be shown easily by application of Equations [1] or [4].
Another specificity is that the correspondence between the
covariance C(h) of Z and the correlogram ρ(h) of Y takes the
simple form

which facilitates the computation of the right-hand side of
Equation [5].

Validation method

Several authors have already checked the validity of model
DGM1 or DGM2 in the lognormal case (Matheron, 1981;
Cressie, 2006; Emery, 2007; Chilès and Delfiner, 2012). The
principle is to compare the block transformation function
given by the DGM model with the 'exact' block transformation
function obtained with a large number of simulations.

The first exercise was conducted by Matheron (1981).
Owing to the computation capabilities available at that time,
this check was limited to the one-dimensional case with an
exponential covariance (the random function is then a
Markov random process), and used a limited number of
simulations. We extend it to two and three dimensions, with
a finer discretization of the block and a much larger number
of simulations, enabling relatively large values for σ to be
considered. The principle of the checking is as follows:

➤ Consider a block v of the d-dimensional space, defined
as the union of M discrete points forming a regular grid

➤ Build N unconditional simulations Yk(x): k = 1, …, N,
of a point-support stationary Gaussian random
function Y(x) with zero mean, unit variance, and
covariance ρ(h)

➤ Build the corresponding simulations Zk(x) = exp
(σYk(x)–σ2 /2)

➤ Calculate the simulated block values Zk(v), namely the
average values of Zk(x) among all x defining the block
v

➤ Sort the Zk(v) by increasing values; let Wk(v) denote
the sorted series

➤ Use (Wk(v) + Wk+1(v)) / 2 as the k / N th quantile of
the distribution of Z(v), that is as the value of ϕv(y) for
y = G–1(k / N)

➤ Compare to the values predicted by models DGM1 and
DGM2, that is, to exp(r σ y – r2 σ2 / 2) with the
corresponding change-of-support coefficient r.

Note that we do not consider the average value at M grid
nodes as an approximation to the average in a block v of the
d-dimensional space: we substitute the problem in the
discrete space to the problem in the continuous case, so that
there is no approximation in the approach. The simulations
are generated with the discrete spectral method, which
produces perfectly Gaussian simulations (up to the quality of
the pseudo-random number generator). If it were not possible
to exactly reproduce the desired covariance for Y, we would
replace it by a covariance as close as possible to it and check

this model (this is likely to occur with Gaussian covariances,
for example). Note that an alternative would be to build
simulations based on covariance matrix decomposition (e.g.
Chilès and Delfiner, pp. 493–494); this method also produces
perfectly Gaussian simulations, meets any covariance model,
but has stronger limitations than the discrete spectral method
in terms of size of the grid. For consistency, the integrals in
Equations [5] and [6] are replaced by discrete sums. We use
a large number of simulations (up to 100 000).

Note that this approach, fully similar to that of Matheron
(1981), is slightly different from that used by Emery (2007)
to check model DGM2. Indeed, Emery simulated standard
Gaussian values with pairwise correlations all equal to r, thus
corresponding to the values of Y at independent random
points in v.

Results

We focus on a spherical correlogram for Y, and on three
contrasted block sizes L with respect to the range a of the
correlogram: L / a = 0.1, 1, and 10.

When L / a = 0.1, the change-of-support coefficient r2 of
model DGM2 is close to 1 (0.980 in 1D, 0.951 in 2D, 0.933 in
3D) and the coefficient r1 of model DGM1 remains very close
to r2 even for a large σ value (for σ = 3 we obtain 0.981 in
1D, 0.955 in 2D, 0.938 in 3D). Both models lead to similar
block distributions, very close to the true one (see Chilès and
Delfiner, 2012, p. 454 for the 2D case with σ = 1.5).

When L / a = 1, the coefficient r2 is equal to 0.79 in 1D,
0.59 in 2D, and only 0.46 in 3D. Moreover, r1 increases
significantly with σ when σ exceeds 1, as can be seen in
Figure 2.

Figures 3 and 4 show the results obtained with 100 000
simulations for σ = 1 and 2 respectively. Model DGM1 quite
perfectly reproduces the true transformation function – and
thus the block distribution. Model DGM2 gives good results
as far as large values are not considered but comes with a
slight bias for y > 2 when σ = 1, and a significant bias when
σ = 2.

When L / a = 10, the coefficient r2 is equal to 0.271 in
1D, 0.077 in 2D, and only 0.022 in 3D, and like in the
preceding case r1 can have much larger values when σ

▲
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Figure 2—Graphs of the change-of-support coefficient of model DGM1
for L / a = 1 as a function of the logarithmic standard deviation σ, in the
1D, 2D, and 3D cases. The value at the origin coincides with the
change-of-support coefficient of model DGM2, which does not vary
with σ



exceeds 1. Model DGM1 presents a slight bias at the extremes
of the distribution, whereas DGM2 is biased everywhere but
close to the median (see Chilès and Delfiner, 2012, p. 454 in
the 2D case with σ = 1.5).

Conclusion

This validation exercise shows that the original DGM1 model
of Matheron (1976a) gives a very good approximation to the
true block distribution, except for extreme values when the
logarithmic standard deviation is very large. The variant
DGM2 of Emery (2007) is also a very good approximation to
the true distribution provided that we are in one of the
following situations: (i) the block size is small with respect to
the range, (ii) the logarithmic standard deviation is not too
large, or (iii) we are not interested in the distribution of high
grades. In such a case, this variant can be applied safely.
Application of the models, and especially of DGM2, should be
done carefully with highly skewed grade distributions and/or
very large blocks or panels.

Further checks should be carried out. The approximation
of the DGM models has to be quantified also in 1D (time
series) and in 3D (the approximation is less valid as the
space dimension increases). It is also interesting to examine

other covariance models for ρ(h). When σ is fixed, the
solution provided by DGM models depends only on r, but two
covariance models that would give the same r value do not
necessarily give the same true block distribution. Finally, the
presence of a nugget effect extends the validity of DGM
models, but this has to be quantified.

We have addressed only the global change-of-support
problem. The local change-of-support (prediction of the block
distribution conditional on neighbouring data) has been
examined by Cressie (2006), who considers unbiased
lognormal estimators that are exponentials of the simple or
ordinary kriging estimators of Y(v), which amounts to the
assumptions of model DGM2. The experiment compares this
ordinary lognormal kriging with the optimal solution
provided by conditional expectation, obtained by a Monte
Carlo method. The results indicate that ordinary lognormal
kriging performs well in situations where the block size is
small with respect to the range, the lognormal standard
deviation is not too large, and the neighbourhood is sparse.
The first two conditions are required for the global model to
be efficient. The third expresses the fact that conditional
expectation makes better use of numerous data than an
estimator whose form is limited to the exponential of a linear
combination of the logarithms of the data.
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Figure 3—Validity of the DGM approach for a 2D block with size L equal
to range a and a logarithmic standard deviation σ = 1: ‘True’ block
transformation function ϕv (determined from 100 000 simulations) and
approximations provided by models DGM1 and DGM2

Figure 4—Validity of the DGM approach for a 2D block with size L equal
to range a and a logarithmic standard deviation σ = 2: ‘True’ block
transformation function ϕv (determined from 100 000 simulations) and
approximations provided by models DGM1 and DGM2




