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Synopsis

In this investigation, the effects of different coal chemical properties
were studied to estimate the coal Hardgrove Grindability Index
(HGI) values index. An artificial neural network (ANN) method for
300 data-sets was used for evaluating the HGI values. Ten input
parameters were used, and the outputs of the models were
compared in order to select the best model for this study. A three-
layer ANN was found to be optimum with architecture of five
neurons in each of the first and second hidden layers, and one
neuron in the output layer. The correlation coefficients (R2) for the
training and test data were 0.962 and 0.82 respectively. Sensitivity
analysis showed that volatile material, carbon, hydrogen, Btu,
nitrogen, and fixed carbon (all on a dry basis) have the greatest
effect on HGI, and moisture, oxygen (dry), ash (dry), and total
sulphur (dry) the least effect.

Keywords
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Introduction

Coal is a heterogeneous substance that
consists of combustible (organic matter) and
non-combustible (moisture and mineral
matter) materials. Coal grindability, usually
measured by the Hardgrove Grindability Index
(HGD), is of great interest since it is an
important practical and economic property for
coal handling and utilization, particularly for
pulverized-coal-fired boilers.

The grindability index of coal is an
important technological parameter for
understanding the behaviour and assessing
the relative hardness of coals of varying rank
and grade during comminution, as well as
their coke-making properties. Grindability of
coal, which is a measure of its resistance to
crushing and grinding, is related to its physical
properties, and chemical and petrographical
composition (Ozbayoglu, Ozbayoglu, and
Ozbayoglu, 2008). The investigation of the
grindability of coal is important for any kind
of utilization such as coal beneficiation,
carbonization, and many others. The energy
cost of grinding is significant at 5 to 15 kWh/t
(Lytle, Choi, and Prisbrey, 1992).

Evaluation of the effect of coal chemical
properties on the Hardgrove Grindability
Index (HGI) of coal using artificial neural
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Ural and Akyildiz (2004), Jorjani et al.,
(2008), and Vuthaluru et al. (2003) studied
the effects of mineral matter content and
elemental analysis of coal on the HGI of
Turkish, Kentucky, and Australian coals
respectivly. They found that water, moisture,
coal blending, acid-soluble mineral matter
content, and Na,O, Fe,03, Al,03, SOz, K30,
and SiO, contents affect the grindability of
coals. High ash and water- and acid-soluble
content samples were found to have higher
HGI values, whereas samples with high ash,
high TiO,, MgO, and low water- and acid-
soluble contents had lower HGI values. The
relationships between grindability, mechanical
properties, and cuttability of coal have been
investigated by many researchers, who
established close correlations between HGI and
some coal properties. Tiryaki (2005) showed
that there are strong relationships between the
HGI of coal and its hardness characteristics.

In order to determine the comminution
behaviour of coal, it is necessary to use tests
based on size reduction. One of common
methods for determining the grindability of
coal is the HGI method. Soft or hard coals were
evaluated for the grindability - toward 100. A
coal’s HGI depends on the coalification,
moisture, volatile matter (dry), fixed carbon
(dry), ash (dry), total sulphur (organic and
pyretic, dry), Btu/lb (dry), carbon (dry),
hydrogen, nitrogen (dry), and oxygen (dry)
parameters. For example, if the carbon content
is more than 60%, the HGI moves to maximum
range (Parasher, 1987).

VOLUME 113

* Department of Mining and Metallurgy
Engineering, Amirkabir University of Technology,
Tehran, Iran.

t Department of Industrial Engineering, Faculty of
Engineering, Torbat Heydariyeh Integrating Higher
Education.

© The Southern Affican Institute of Mining and
Metallurgy, 2013. ISSN 2225-62553. Paper received
Jun. 2009; revised paper received Feb. 2013.

JUNE 2013 505 <«



Evaluation of the effect of coal chemical properties on the Hardgrove Grindability Index

An artificial neural network (ANN) is an empirical
modelling tool that behaves in a way analogous to biological
neural structures (Yao ef al., 2005). Neural networks are
powerful tools that have the ability to identify underlying
highly complex relationships from input-output data only
(Haykin, 1999). Over the last 10 years, ANNs, and in
particular feed-forward artificial neural networks (FANNS),
have been extensively studied to develop process models, and
their use in industry has been growing rapidly (Ungar et al.,
1996). In this investigation, ten input parameters — moisture,
volatile matter (dry), fixed carbon (dry), ash (dry), total
sulphur (organic and pyretic, dry), Btu/Ib (dry), carbon (dry),
hydrogen (dry) nitrogen (dry), and oxygen (dry) - were
used.

In the procedure of ANN modelling the following steps are
usually used:

1. Choosing the parameters of the ANN

2. Data collection

3. Pre-processing of database

4. Training of the ANN

5. Simulation and modelling using the trained ANN.

In this paper, these stages were used in the developing of
the model.

Material and methods

Data-set

The collected data was divided into training and testing data-
sets using sorting method to maintain statistical consistency.
Data-sets for testing were extracted at regular intervals from
the sorted database and the remaining data-sets were used
for training. The same data-sets were used for all networks to
make a comparable analysis of different architectures. In the
present study, more than 300 data-sets were collected,
among which 10% were chosen for testing. This data was
collected from Illinois state coal mines and geological
database (www.isgs.illinois.edu).

Input parameters

The Input parameters for evaluating the HGI comprised
moisture, ash (dry), volatile matter (dry), fixed carbon (dry),
total sulphur (dry), Btu (dry), carbon (dry), hydrogen (dry),
nitrogen (dry), and oxygen (dry). The ranges of input
variables to HGI evaluation for the 300 samples are shown in
Table L.

Artificial neural network design and development

ANN models have been studied for two decades, with the
objective of achieving human-like performance in many fields
of knowledge engineering. Neural networks are powerful
tools that have the ability to identify underlying highly
complex relationships from input-output data only
(Plippman, 1987; Khoshjavan, Rezai, and Heidary, 2011).
The study of neural networks is an attempt to understand the
functionality of the brain. Essentially, ANN is an approach to
artificial intelligence, in which a network of processing
elements is designed. Further, mathematical methods carry
out information processing for problems whose solutions
require knowledge that is difficult to describe (Khoshjavan,
Rezai, and Heidary, 2011; Zeidenberg, 1990)

Derived from their biological counterparts, ANNs are
based on the concept that a highly interconnected system of
simple processing elements (also called ‘nodes’ or ‘neurons’)
can learn complex nonlinear interrelationships existing
between input and output variables of a data-set (Tiryaki,
2005).

For developing an ANN model of a system, feed-forward
architecture, namely multiple layer perception (MLP), is most
commonly used. This network usually consists of a hierar-
chical structure of three layers described as input, hidden,
and output layers, comprising I, J, and L processing nodes
respectively (Tiryaki, 2005). A general MLP architecture with
two hidden layers is shown in Figure 1. When an input
pattern is introduced to the neural network, the synaptic
weights between the neurons are stimulated and these
signals propagate through the layers and an output pattern is
formed. Depending on how close the formed output pattern is
to the expected output pattern, the weights between the
layers and the neurons are modified in such a way that next
time the same input pattern is introduced, the neural network
will provide an output pattern that will be closer to the
expected response (Patel et al., 2007).

Various algorithms are available for training of neural
networks. The feed-forward back-propagation algorithm is
the most versatile and robust technique, which provides the
most efficient learning procedure for MLP neural networks.
Also, the fact that the back-propagation algorithm is partic-
ularly capable of solving predictive problems makes it so
popular. The network model presented in this article was
developed in Matlab 7.1 using a neural network toolbox, and
is a supervised back-propagation neural network making use
of the Levenberg-Marquardt approximation.

Table |
The ranges of variables in coal samples (as determined)
Coal chemical properties Max. Min. Mean St. Dev.
Moisture (%) 15.94 6.03 10.32 221224
Volatile matter (dry) (%) 45.10 25.49 36.87 2.458 445
Fixed carbon (dry) (%) 60.39 30.70 50.58 4.152 964
Ash (dry) (%) 43.81 4.41 12.56 4.861 197
Total sulphur (organic and pyretic) (dry) (%) 9.07 0.62 3.00 2.018 264
Btu/Ib (dry) 14 076.00 8 025.00 12 631.08 841.543 6
Carbon (dry) (%) 79.32 44.03 70.43 5.026 348
Hydrogen (dry) (%) 5.36 3.39 478 0.310 245
Nitrogen (dry) (%) 3.03 0.35 1.40 0.290 988
Oxygen (dry) (%) 12.57 2.16 753 1.660 288
HGI 72.00 30.00 58.80 5.710 457
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Input Hidden-1

Figure 1—MLP architecture with two hidden layers (Patel et al., 2007)

This algorithm is more powerful than the commonly used
gradient descent methods, because the Levenberg-Marquardt
approximation makes training more accurate and faster near
minima on the error surface (Lines and Treitel, 1984).

The method is as follows:

AW =TT+ ) J7e [1]

In Equation [1] the adjusted weight matrix AW is
calculated using a Jacobian matrix J, a transposed Jacobian
matrix J7, a constant multiplier 7, a unity matrix // and an
error vector e. The Jacobian matrix contains the weights
derivatives of the errors:

';)“'r;
ol FLa 2]
aE
(?H'm

If the scalar p is very large, the Levenberg-Marquardt
algorithm approximates the normal gradient descent method,
while if it is small, the expression transforms into the Gauss-
Newton method (Haykin, 1999). For more detailed
information the reader is referred to Lines and Treitel, 1984.

After each successful step (lower errors) the constant m
is decreased, forcing the adjusted weight matrix to transform
as quickly as possible to the Gauss-Newton solution. When
after a step the errors increase the constant m is increased
subsequently. The weights of the adjusted weight matrix
(Equation [2]) are used in the forward pass. The
mathematics of both the forward and backward pass is
briefly explained in the following paragraphs.

The net input (net,;) of neuron /in a layer L and the
output (O,,) of the same neuron of the pth training pair (i.e.
the inputs and the corresponding HGI value of sample) are
calculated by:

last

net, =y w, o [3]

in pn
=

where the number of neurons in the previous layer (L -1) is
defined by n =1 to the last neuron and the weights between
the neurons of layer L and L -1 by wj,. The output (0, is
calculated using the logarithmic sigmoid transfer function:

: 1
U‘r;_; = .fp_j(netp_}') = 1+ e—: net,+6,) [4]
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where 6 is the bias of neuron j.

In general the output vector, containing all 0, of the
neurons of the output layer, is not the same as the true
output vector (i.e. the measured HGI value). This true output
vector is composed of the summation of ,;. The error
between these vectors is the error made while processing the
input-output vector pair and is calculated as follows:

1 )
E, =EE(IM-0;,,)‘ [5]

When a network is trained with a database containing a
substantial amount of input and output vector pairs, the total
error £, (sum of the training errors E,) can be calculated
(Haykin, 1999) as:

E=YE, [6]

To reduce the training error, the connection weights are
changed during a completion of a forward and backward pass
by adjustments (Aw) of all the connections weights w.
Eqations [2] and [3] calculate those adjustments. This
process will continue until the training error reaches a
predefined target threshold error.

Designing network architecture requires more than
selecting a certain number of neurons, followed by training
only. Especially phenomena such as over-fitting and under-
fitting should be recognized and avoided in order to create a
reliable network. Those two aspects — over-fitting and under-
fitting - determine to a large extent the final configuration
and training constraints of the network (Haykin, 1999).

Training and testing of the model

As mentioned, the input layer has six neurons Xi, i=1, 2, ...
6. The number of neurons in the hidden layer is supposed Y,
the output of which is categorized as Pj, j,=1, 2, ... Y. The
output layer has one neuron which denotes the amount of
gold extraction. It is assumed that the connection weight
matrix between input and hidden layers is Wj;, and the
connection weight matrix between hidden and output layers
is WH, K denotes the learning sample numbers. A schematic
presentation of the whole process is shown in Figure 2.

Nonlinear (LOGSIG, TANSIG) and linear (PURELIN)
functions can be used as transfer functions (Figures 3 and
4). The logarithmic sigmoid function (LOGSIG) is defined as
(Demuth and Beale, 1994):
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Figure 2—ANN process flow chart
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a=logsig(n)

Figure 3—Sigmoid transfer functions

L * (1+e™) [7]
whereas, the tangent sigmoid function (TANSIG) is
defined as follows (Demuth and Beale, 1994):

e

gk T [8]

e +e™
where e, is the weighted sum of the inputs for a processing
unit.

The number of input and output neurons is the same as
the number of input and output variables. For this research,
different multilayer network architectures were examined
(Table I1).

Multilayer network architecture with two hidden layers
between the input and output units is applied. During the
design and development of the neural network for this study,
it was determined that a four-layer network with 10 neurons
in the hidden layers (two layers) would be the most
appropriate. The ANN architecture for predicting the HGI is
shown in Figure 5.

Table Il

Results of a comparison between some of the
models

No. Transfer function Model SSE
1 LOGSIG-LOGSIG 10-4-1 15
2 LOGSIG-LOGSIG-LOGSIG 10-8-7-1 1.2
3 TANSIG-LOGSIG-LOGSIG 10-5-5-1 0.9
4 TANSIG-LOGSIG-LOGSIG 10-10-4-1 0.4
5 TANSIG-LOGSIG-PURELINE 10-14-5-1 0.25
6 TANSIG-TANSIG-PURELINE 10-5-5-1 0.016

+1

a=tansig(n)

n

Figure 4—Linear transfer function
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10

Figure 5—ANN architecture for predict the HGI

The learning rate of the network was adjusted so that
training time was minimized. During the training, several
parameters had to be closely watched. It was important to
train the network long enough so it would learn all the
examples that were provided. It was also equally important to
avoid overtraining, which would cause the memorization of
the input data by the network. During the course of training,
the network is continuously trying to correct itself and
achieve the lowest possible error (global minimum) for every
example to which it is exposed. The network performance
during the training process is shown in Figure 6. As shown,
the optimum training was achieved at about 200 epochs.

For the evaluation of a model, the predicted and
measured values of HGI can becompared. For this purpose,
MAE (E,) and mean relative error (E,) can be used. Ea and
E, are computed as follows (Demuth and Beale, 1994):

E,=|T,-0)| [9]

E, [M] [10]

&

where 7; and O; represent the measured and predicted
outputs.

For the optimum model, £, and E, were equal to 0.503
and 0.0125 respectively.A correlation between the measured
and predicted HGI for training and testing data is shown in
Figures 7 and 8 respectively. It can be seen that the
coefficient of correlation in both of the processes is very
good.

Sensitivity analysis

To analyse the strength of the relationship between the
backbreak and the input parameters, the cosine amplitude
method (CAM) was utilized. The CAM was used to obtain the
express similarity relations between the related parameters.
To apply this method, all of the data pairs were expressed in
common X-space. The data pairs used to construct a data
array X were defined as (Demuth and Beale, 1994):

X={X,X,,X,,.. X} [11]

Each of the elements, X, in the data array, X, is a vector
of lengths of m, that is:

A= X XX [12]

Thus, each of the data pairs can be thought of as a point
in m-dimensional space, where each point requires m-
coordinates for a full description. Each element of a relation,
ryj, results in a pairwise comparison of two data pairs. The
strength of the relation between the data pairs, x; and x;, is
given by the membership value expressing the strength:
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Figure 6—Network performance during the training process
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Figure 7—Correlation between measured and predicted HGI for training
data
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Figure 8 - Correlation between measured and predicted HGI for testing
data
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[13]

The strengths of the relations (r;; values) between HGI
and input parameters (coal chemical properties) are shown in
Figure 9. As can be seen, the effective parameters on HGI
include the volatile matter (dry), Btu/Ib (dry), carbon (dry),
hydrogen (dry), fixed carbon (dry), nitrogen (dry), oxygen
(dry), moisture, ash (dry), and total sulphur (dry). It is
possible to consider and examine the effective parameters in
the coal HGI, and modification was also applied by changing
the further effective parameter.

Discussion

In this investigation the effect of coal chemical properties on
the HGI were studied. Results from the neural network
showed that volatile matter (dry), Btu (dry), and carbon (dry)
were the parameters with the most effect on HGI, respec-
tively. The least effective input parameters on HGI were total
sulphur (dry) and ash (dry) respectively. Figures 7 and 8
shows that the measured and predicted HGI values are
similar. The results of the ANN show that the correlation
coefficients (R2) achieved for training and test data were
0.9618 and 0.8194 respectively.

Conclusion

In this research, an artificial neural network approach was
used to evaluate the effects of chemical properties of coal on
HGI. Input parameters were moisture, volatile matter (dry),
fixed carbon (dry), ash (dry), total sulphur (organic and
pyretic) (dry), Btu/Ib (dry), carbon (dry), hydrogen (dry),
nitrogen (dry), and oxygen (dry). According to the results,
the optimum ANN architecture has been found to be five and
five neurons in the first and second hidden layer, respec-
tively, and one neuron in the output layer. In the ANN
method, the correlation coefficients (R2) for the training and
test data were 0.9618 and 0.8194, respectively.

Sensitivity analysis of the network shows that the most
effective parameters influencing the HGI were volatile matter
(dry), Btu/Ib (dry), carbon (dry), hydrogen (dry), fixed
carbon (dry), nitrogen (dry) and oxygen (dry), respectively,
and those with the least effect were moisture, ash (dry), and
total sulphur (dry), respectively (Figure 9).
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Figure 9—Strengths of relation (rj) between HGI and each input
parameter
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As regards network training performance, the error of the
training network minimized when the number of epochs was
200, and after this point the best performance was achived
for the network. The values of E, and E, from the ANN were
0.503 and 0.0125, repsectively.
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