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Introduction

Although coal accounts for approximately 50
per cent of the national reserve of fossil fuel,
its use in Brazilian energy generation has
fallen continuously in the last few years, and
coal now contributes less than 1.5 per cent to
the total consumption of fossil fuels. This has
prompted mining companies to diversify their
customer base by supplying thermal coal to
other industries such as the petrochemical,
ceramic, paper, and cellulose industries, where
coal is used for the generation of heat, steam,
and/or electrical power for industrial plants;
the food industry, where coal is used in the
process of drying food grains; and the cement
industry, where coal is used in the clinker mix
in the kilns.

This diversification has forced the mining
companies to develop new products to meet
the specific needs of each customer.
Companies that produced thermal coal with a
calorific value ranging from 3 000 to 4 500
kcal/kg in the past, with practically no
restrictions on the sulphur content, have had
to increase their range of products. Nowadays,
the local market for industrial-purpose coal
demands products with higher calorific values
(4 700 to 6 800 kcal/kg) and a lower sulphur
content (usually below 1.2 per cent). In this
context, and with the constant expansion of

the global economy, local coal-mining
companies are continually looking for
alternatives that facilitate the production of
better products with competitive prices in
comparison with other energy-yielding
products such as natural gas, fuel oil, and
imported coal. An additional complexity is
added to production planning by the fact that
major coal producers frequently operate
multiple mines with multiple pits feeding
multiple processing plants within these mines.

The alternatives commonly chosen to
attend to multiple customers in this multiple-
option production scheme include the
following:

(i)    Simultaneously mining multiple
mines, multiple pits, and multiple
benches (seams) to increase the
availability of run-of-mine (ROM)
coal with different characteristics

(ii)   Washing of coal from each seam
separately to enhance the yield at the
plant and approximate the character-
istics of the washed coal to the
desired final product

(iii   Minimizing the mining dilution so
that the characteristics of the ROM
coal are as close as possible to the
final saleable product.

The definition of the production strategy to
meet a certain market demand is usually
achieved by testing a few production
scenarios: the finally chosen method should
generate the highest economic benefit.
However, this methodology does not guarantee
that the chosen solution is really the best
possible one. With the use of linear
programming, it is possible to find the best
production strategy to meet the demand of
each market.

A case study application of linear
programming and simulation to mine
planning
by J.A. de Carvalho Junior*, J.C. Koppe†, and J.F.C.L. Costa†

Synopsis
This paper analyses the impact of the uncertainty associated with the
input parameters in a mine planning optimization model. A real
example was considered to aid in the building of a mathematical
model that represents the coal production process with reference to
the mining, processing, and marketing of coal. This model was
optimized using the linear programming concept whereby the best
solution was perturbed by the stochastic behaviuor of one of the main
parameters involved in the production process. The analysis of the
results obtained permitted an evaluation of the risk associated with
the best solution due to the uncertainty in the input parameters.

Keywords
mine planning, optimization, risk analysis.

* CopelmiMineração LTDA, Porto Alegre, Brazil.
† Mining Engineering Department, UFRGS,Porto

Alegre, Brazil.
© The Southern African Institute of Mining and

Metallurgy, 2012. SA ISSN 0038–223X/3.00 +
0.00. Paper received Aug. 2010; revised paper
received Dec. 2011.

477The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 112                                       JUNE  2012 �



A case study application of linear programming and simulation to mine planning

This problem can be tackled from an operational research
(OR) perspective. An adequate thermal coal can be produced
with a minimum cost and/or with a higher possible profit.
The production depends on a variety of parameters and
restrictions such as raw material availability, coal quality
(different coal seams), specific product requests, recovery in
the processing plant (which depends on the raw material
used and on the characteristics of the desired product), and
the mining and processing costs. These parameters specify
the production of coal within certain limits.

There are various models and mathematical programming
tools for solving this kind of problem. Among the several
optimization techniques developed, the linear programming
(LP) method has been the most studied, and hence the most
widely used in several of the applied sciences. LP is not only
the simplest technique in mathematical programming, but
also the most versatile, offering the possibility of analysing
the appropriateness of the chosen model concurrent with a
guarantee for obtaining its global best, if it exists.

Due to their complex behaviour, some of the process
parameters, can be regarded as stochastic. To quantify the
impact of these parameters on the optimized outputs derived
from LP, simulation techniques can be used, taking into
consideration not only the averages or the deterministic
patterns, but also the statistical distributions of the
parameters considered.

This paper introduces a methodology for evaluating the
impact of the uncertainty associated with input parameters on
a given objective function using an optimization program that
is based on LP. A case study concerning a major Brazilian
coal-producing company illustrates the process by which the
economil benefits of using the optimal solution are evaluated
in comparison with the solution conventionally used by this
particular mining company. Moreover, incorporating the
uncertainty associated with the input parameters permits an
assessment of the risk in reaching or not reaching the
optimized solution.

Model of linear programming

According to Prado1, LP is a technique that allows the
merging of several variables on the basis of a linear function
of effectiveness (objective function) while simultaneously
satisfying a group of linear restrictions for these variables.
The construction of a LP model follows three basic steps
(Ravindran et al.2):

(i)    Identifying the unknown variables to be determined
and representing them using algebraic symbols

(ii)   Listing all the restrictions of the problem and
expressing them as linear equations in terms of the
decision variables defined in the previous step

(iii)  Identifying the objective or criterion for optimizing
the problem and representing it as a linear function
of the decision variables. The objective can be either
a maximizing or a minimizing function.

Given an LP problem consisting of many variables in the
maximization or minimization mode from a specific linear
function, which is also known as the objective function (OF),
the variables are submitted to a group of restrictions that are
also linear. Generally, a problem in LP is formulated as
follows. The restriction of ’no negativity in the decision
variables’ constitutes a necessary condition for the

application of the solution algorithm. Although this
restriction usually holds good due to the nature of the
variables used in the model, under certain circumstances it
can lead to situations where the variables become
unrestricted. In this situation, an artificial variable should be
used to substitute each unrestricted variable by the difference
between the other two variables for which the restriction of
’no negativity’ is applied (Loesch and Hein3).

Briefly, the algorithm can be described as follows:
(i) Maximize or minimize the OF of the type

or

[1]

[2]

(ii) Submit the variables to the following restrictions:

[3]

Where xn are the decision variables, cn are parameters of
the OF, amn are parameters of the restriction equations, bnn
is an independent term of the restriction equations, n is the
number of decision variables, and m is the number of
functional restrictions.

The values of all the coefficients, or control parameters,
are known during the modelling of the problem. These coeffi-
cients can have either deterministic or probabilistic character-
istics depending on the nature of the problem modelled
(Montevevechi4).

Algorithms for the solution
The simplex method is the algorithm typically employed in
the solution of linear programming problems (LPPs). This
technique uses the available tool in linear algebra to
determine the best solution for the LPP by an algebraic
iterative method.

Generally, the algorithm is created by a viable solution of
the system of equations that constitute the restrictions of
LPPs, and starting from that initial solution, it identifies
either new viable solutions for the same or a better value for
the problem than the current one. The algorithm, therefore,
possesses (i) a choice criterion that provides the opportunity
for always finding new and better vertexes of the convex
boundary of the problem, and (ii) a stop criterion that can
verify whether the chosen vertex is the one giving the
optimum solution (Goldbarg5).

The basis for the simplex algorithm is in the formatting of
the limited area for the restrictions, common in all OR
problems (Dantzig6). Such an area is called simplex. Any two
points selected in the outline of a feasible region, when
united by a line, result in a line positioned entirely inside the
simplex. Starting from the verification, the search for the
solution in OR problems becomes limited to the extreme
points of the simplex area. This observation has facilitated
the development of an algorithm of low computational
complexity for solving this problem by Dantzig6.

�
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The algorithm of LP can be explained using a simplified
graphical sketch; however, the illustration is limited to two
decision variables. The example used to illustrate the method
uses the following OF:

[4]

The OF is subjected to the following restrictions:

[5]

After plotting the lines corresponding to the above
restrictions, an area within which all restrictions are simulta-
neously satisfied (hatched region in Figure 1) is defined. The
polygon defined by the corners A, B, C, D, and E is known as
the ’admissible region’.

To define the optimum solution, the line corresponding to
the OF, for a specific value of Z, is initially plotted. In the
next step, various values are defined for Z, and the OFs for
each defined Z are plotted. A group of parallel lines, known
as the lines of the OF levels, is obtained (traced red lines in
Figure 2). The OF grows towards the direction of its gradient
(arrow in Figure 2), and the optimum solution is obtained at
the maximum OF that intersects the feasible region.

In a two-dimensional solution, the feasible region is
shown in plan. The equation that represents the OF can be
depicted by a vector, so that it is possible to reach the highest
point by following the direction of improvement of the OF as
determined by the vector inside the space of feasible
solutions. The search guarantees that (i) one of the extreme
points respectively maximizes or minimizes the OF, and its
value is the maximum or the minimum, respectively; (ii) once
the search for the highest point is restricted to the space of
viable solutions of the problem, the optimum vertex satisfies
the group of restrictions composing the problem of LP
(Fogliatto7).

This reasoning can be extended to problems of larger
dimensions. Bazaraa8 establishes that while searching for the
highest point during the tracking of the space of viable
solutions for an LP problem, the solution should correspond
to one of the extreme points of the simplex. In practice, this
can correspond to a point, a straight line, a plan, or any other
pattern with a larger dimension.

The detailed mathematical presentation of the simplex
algorithm can be found along with practical examples in most
of the articles referring to LP; see, for example, Ravindran 
et al.2, Loesch and Hein3, Goldbarg5, Dantzig6, Bazaraa8, and
Bronson9.

Stochastic simulation 

While creating a representative model of any industrial
process in which the behaviours of all the parameters are not
perfectly known, it is not possible to be certain about the
results generated by the model. However, it is always
possible to use methodologies of risk analysis to mitigate the
effects of the uncertainty and to visualize the risk problem
(Motta10).

For each group of restrictions that encircle the problem, a
group of answers can be obtained from the model using
simulation techniques to imitate the stochastic behavior of

the process parameters that are not deterministic. This group
of answers can be associated with the uncertainty space and
can be used to quantify the inherent risk of the given
process.

According to the functional visualization proposed by
Menner11, in simulation studies, the models possess (i) a
number of entrances or inputs x1, x2,..., xr; (ii) a number of
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Figure 2— Graphical explanation for the optimum solution (point):
parallel traced lines represent the lines of the several OF levels

Figure 1— Graphical representation of the algorithm of LP as derived
from the restrictions presented in Equation [5]
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parameters related to the system p1, p2,..., pt; and (iii) a
number of exits or results y1, y2,..., ys, which are the results
defined by a function of the type f (x, y).

Simulation in the sense used in this study constitutes
some mathematical techniques used to mimic any type of real
operation or process (Freitas12). There are a few other
definitions for the term ’simulation’. According to Schriber13,
simulation in modelling implies a process or system that
imitates the responses of the real system during a succession
of events occurring over an extended period.

Pegden et al.14 present a more comprehensive definition
of the simulation process. According to these authors, a
simulation should fulfill the following objectives:

(i)    Describe the behaviour of a certain system
(ii)   Help in building a theoretical framework and explain

an arbitrary hypothesis, given the observations
provided by the simulation model

(iii)   The model finally adopted should be able to predict
new responses due to either a modified system or
modifications in the production processes.

Contrary to the optimization methods, simulation does
not yield an optimal result. Simulations provide a set of
responses for a certain group of variables that condition the
system (Figure 3).

The main advantages of a simulation process include the
following (Pegden et al.14; Banks and Carson15):

(i)    Simulation is simpler to use than an analytical
solution

(ii)    Although analytical optimization models normally
require many simplifications to obtain a treatable
solution, simulation models do not require these
simplifications 

(iii)   Any hypothesis about how certain variables
influence the system can be evaluated using the
simulation model

(iv)   An appraisal of the variables that are more relevant
to the performance of the system and details of the
interaction between the input variables leading to a
certain response becomes possible

(v)    New variations in the production process can be
screened before practical implementation and their
performances can be assessed.

Some systems do not show any probabilistic variables
and hence are known as deterministic. In these circum-
stances, the responses are conditioned only by the input
variables and their interrelations. In various situations, the

system is controlled by random input variables and,
consequently, a stochastic simulation is used to obtain the
response of the system to a set of inputs. In this latter
situation, the responses are also variable and are modelled
using a probability function.

In the following section, a simulation model is presented
that mimics the production process of thermal coal. The
model is constituted by the following factors: (i) the input
variables, x: the amount of ROM coal originating from
different seams or mines; (ii) the parameters of the system, p:
the operational cost associated with the mining and
processing of the ROM, the indexes of recovery in the
improvement process, and the selling prices of the different
products; and (iii) the exit variables, y: the cash flow and the
values of the liquid assets available. In these terms, the two
groups that contain the input variables and the parameters of
the system comprise the elements associated with
uncertainty, and these can therefore be treated as random
variables.

Settings, products, and production routes

Similar to other mineral commodities, coal production can be
divided into two main stages: exploitation and processing.
Coal mining occurs by open-pit mining, whereby the topsoil
and other sedimentary formations that cover the coal seams,
constituting the overburden, are stripped first, uncovering the
coal seams underneath; these are later mined in an individual
and selective manner (Hartman16). Generically, the mining
operation involves the production of large amounts of waste
material for each ton of coal extracted, constituting one of the
more costly operational stages of the productive process.

The case under consideration is at Copelmi Mineração
Ltda. Copelmi is the largest private coal-mining company in
Brazil, supplying 80 per cent of the industrial market and 18
per cent of the total Brazilian coal market. Its facilities are
located at Rio Grande do Sul State, in the southernmost part
of the country. 

The company currently operates four coal mines,
commercializing approximately 1.5 Mt of coal per year. Its
flexibility in producing at multiple mines enables a diverse
product range with calorific value products ranging from
3100 kcal/kg up to 6000 kcal/kg. 

Copelmi’s main products are steam coal for a power plant,
a petrochemical plant, and a large paper mill, all located
within a maximum distance of 150 km from the mines.

During the period analysed, four mines were under
simultaneous operation: Recreio Mine, ButiáLeste Mine,
Faxinal Mine, and the Cerro Mine. Each mine exploited a
number of coal seams with different qualities and reserves.

After the mining stage, the coal from the mines is
transported to a washing plant, where it is processed to
obtain a saleable product. The coal from each mine is
processed at the closest washing plant. During this
processing stage, impurities such as pyrite and clay present
in the ROM coal are removed to reduce the emission of ash
and gas during coal combustion. When the mine production
exceeds the feed capacity of the plant due to any operational
contingency, the excess ROM is diverted to the stockpile for
future use. The washing process yields several types of
products. The different production strategies are explained in
the specifications of the OF section of the paper.

�
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Figure 3—Graphical representation of a simulation process
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One of the most relevant operational parameters in the
washing process is the yield or recovery. This parameter
corresponds to the ratio between the amount of product
generated and the amount of ROM coal fed into the plant,
which may be stated as follows:

[6]

Where R is the yield (%), Product is amount of product
generated (t), and ROM is amount of run-of-mine coal fed
into the washing plant (t).

In addition to the product, the washing plant generates
tailings, which are disposed at the tailings dam. These
tailings are predominantly composed of clay and pyrite;
however, due to the inefficiency of the processing plant,
organic matter can be added to the tailings. In the latter
instance, depending on the ash content of the tailings, the
tailings can be redirected to be blended with other products.

Mathematical modelling of the production process
The central subject of the mathematical modelling is the
description of the production process and its decision
variables. The quantity (in tons) to be extracted and
processed from each seam can be determined, thus fulfilling
the demand for each product commercialized by the
company. Optimization is achieved when the production
process generates the largest possible operational contri-
bution after abiding by all the restrictions imposed on the
production process, in addition to considering the demands of
the consumer market.

The decision variables are defined as follows:

� Qij: amount of ROM coal of j seam extracted from mine
i

� Eji: amount of ROM coal of j seam used (or added)
from the stock of mine i

� Ajilk: amount of ROM coal of j seam extracted from
mine i and processed by the washing plant to obtain a
product k.

The process parameters are, among others: coal yield
(plant recovery), production costs, selling prices of the
products, and the tonnage and quality of the product
specified by the consumers.

Objective function
Once the decision variables are defined, the next step is the
definition of the OF. This function is represented by Equation
[7], and its goal is to maximize the operational contribution
satisfying a certain market demand.

[7]

The operational contribution is the financial result
obtained by the commercialization of the generated products
(gross earnings), except for the costs exclusively associated
with the production process (production costs) (Equation[7]).

This function can be better understood if it is subdivided
into four corresponding portions: mining costs (MC), costs of
stocks (SC), washing costs (WC), and gross earnings (GE).
For this variant, a series of parameters representing the
economical, operational, commercial, and geological factors
are used, which can present either deterministic or

probabilistic behaviours depending on the methodology used.
The four portions that constitute the OF can be expressed in
the form of Equations [8] to [12].

[8]

[9]

[10]

[11]

[12]

Where: i = index of the mines; j = index of the seams; l =
index of the improvement plants; k = index of the generated
products; REMi = stripping ratio of mine i (m³/t ROM); CEi
= cost of waste removal from mine i (R$/m³); CDi= blasting
cost of mine i (R$/t ROM); CCi = cost of extraction and
transport of coal from mine i (R$/t ROM); Qji = amount of
coal from seam j extracted from mine i (R$/t ROM); CUEi =
cost of handling unit stock of ROM coal in mine i (R$/t
ROM), Eij = amount of ROM coal of seam j moved on the
basis of the stock of the mine i (t ROM); CBlk = processing
cost of ROM coal in the washing plant for the production of
substance k (R$/t ROM); Ajilk = amount of seam j of mine i
fed and processed in the washing plant to obtain product k
(%); Rjilk = yield from seam j of mine i processed in washing
plant to obtain product k(%); and PVk = selling price of the
product k (R$/t).

Restrictions
The restrictions defined in the outline conditions form the
system and define the domain of the possible values for the
decision variables. In the current case study, the group of
restrictions comprises the following:

� Geological proportion of the seams (percentage of seam
j in the total quantity mined) in each mine

� Maximum capacity of ROM coal production from the
mines

� Maximum coal tonnage able to be fed into each
washing plant

� Recovery of each product at each washing plant
� Market demand
� Qualitative/quantitative restrictions.

Table I shows typical numeric values for the restrictions
in one of the scenarios examined in the case study.

This group of restrictions defines a mathematical
formulation formed by 64 linear equations represented in
terms of decision variables. The theoretical background and
the mathematical formulation used to represent the group of
restrictions in this case study are found in Carvalho17.

An optimization model composed of both the OF and the
group of restrictions after considering the simplifications
detailed above was implemented using Excel®, using the
educational version of the program ’What's Best® 7.0’ as an
optimizer (Lindo Systems18).
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Results of optimization

The outputs generated by the optimization model have been
analysed, taking into account the different production
scenarios. The production scenarios correspond to the
monthly production strategy adopted by the company in 10
different periods during  the years 2004 and 2005.

The results are analysed in two steps: the first quantifies
the earnings that would be obtained by using the
optimization model, and the second verifies the risk
associated with each production scenario, considering that
the parameters corresponding to the yield (coal recovery at
the washing plant) behave stochastically, not determinis-
tically.

Analysis of the responses

To quantify the earnings that an optimization model can
generate in the production process, a comparison of the
financial results obtained from the optimization model with
those obtained in the same period adopting the non-
optimized production scheme was conducted. The production
strategy proposed by the mine planning staff without using
optimization tools was adopted as the benchmark.

The scenarios chosen for comparison correspond to the
production strategy adopted by the company in 10 different
situations during the years 2004 and 2005. These situations,
denominated ’Scenario 1’ to ’Scenario 10’, represent
conditions where the market or the operation caused a
significant change in the baseline conditions that define the
production strategy of the company.

The optimization process yields as the final result the OF
and the production strategy that need to be adopted. These
strategies correspond to the amount of coal that should be
extracted from each mine, its destination in terms of the
processing plant, and the seam that provides the highest
value for the specific OF.

To quantify the earnings that the optimization process
can generate in a non-optimized process, the final results of
the OF obtained from the optimization model were compared
with the final results obtained following a non-optimized
practical planning process adopted by the company, subject to
the same conditions. The relative differences in the values of
the OF for each of the 10 tested scenarios are presented in
Figure 4.

Figure 4 portrays the results for 10 production scenarios,
with a minimum increase of 2.2 per cent and maximum of
8.7 per cent in the gross earnings, when the optimized
scenarios are compared with the respective non-optimized
procedures adopted by the company. An important practical
aspect that needs to be pointed out is that this gain in
earnings can be obtained by optimizing the production
process within its operational limits, without the need for any
additional investment in the process.

In addition to measurable gains as described previously,
the use of an optimization model provides greater flexibility
in the decision-making process. The method provides the
resource to analyse the impact of possible changes in the
production process, such as changes in the quantity of
product sold and increase or decrease in the production costs.

�
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Table I

Typical numeric values for the restrictions in one of the scenarios examined in the case study

Maximum capacity of ROM coal production from mines
Mines

Recreio Faxinal Cerro Butia Leste

Capacity of ROM Production (t/month) 60 000 75 000 50 000 50 000

Geological proportion of the seam in each mine
Mines

Seam proportion (%) Recreio Faxinal Cerro Butia Leste

AB Seam 16% 0% 0% 0%
S Seam 34% 39% 81% 50%
S3 Seam 10% 0% 0% 0%
L Seam 6% 37% 0% 0%
M Seam 24% 0% 19% 50%

Maximum coal tonnage able to be fed into each washing plant
Washing Plants

Recreio Faxinal Cerro

Fed capacity (t/month) 60 000 75 000 50 000

Market demand and qualitative/quantitative restrictions
Products

CV54 CV47 CV35 CV30 CV20

Market demand (t/month) 21 000 5 000 21 000 24 000 3 500
Calorific value (kcal/kg) 3 100 3 700 4 700 5 200 6 000
Maximum ash content (%) 54 47 35 30 20
Maximum sulphur content (%) 1.2 1.2 1.1 1.1 1.1



Risk analysis of the optimization model

An optimization model as introduced above searches for the
highest result, assuming that the input parameters are
deterministically known. However, when the model is
influenced by parameters that are not perfectly known, there
is no guarantee that the optimized results will be observed in
reality.

In this situation, three questions arise:

� How different can the practical result be in relation to
the optimized one? 

� What is the probability of the highest financial result
being smaller than a certain expected minimum value? 

� Which parameter has the most significant impact on
the OF?

To answer these questions, the yield parameter was
stochastically varied, by which the deterministic values were
replaced by simulated values. These values were randomly
derived based on the probability-distribution function
constructed from a historical series of results (Bratley 
et al.19).

For each group of simulated values, the OF generates a
different outcome. A statistical analysis of the group of
possible answers shows the space of uncertainty (risk)
associated with the expected optimal financial result.

Additionally, the coefficient of linear correlation between the
group of possible outcomes of the model and each group of
parameters identifies which parameter is the most relevant to
the final outcome of the model.

To illustrate the risk-analysis methodology, one of the
optimized scenarios was chosen and the yield of different
washed coals from different coal seams was considered as
the parameter of stochastic behavior. The probability distrib-
utions of the yields were constructed using a historical series
of results corresponding to the previous 12 months. The
statistical summary for these variables is presented in 
Table II.

Two thousand draws from these probability distributions
were retrieved and used to calculate the OF.

The variability obtained in the OF and in the coal yield
are presented in Figure 5, which shows the relative variation
between the results of the OF generated based on the
simulated parameters and the results obtained by the
optimization process considering coal yield as a fixed
parameter. Analysis of the results obtained shows that: 

� The distribution of the results has a low asymmetry.
This indicates that, in practice, there is no tendency for
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Figure 4—Relative differences in gross earnings (y-axis) for each
production scenario (x-axis) after comparing the optimized versus the
non-optimized processes
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Table II

Statistical analysis of yield values

Statistical analysis of historical data for the yields
Mine Seam Product Minimum Maximum Average Median Stand. Dev. #Samples

BL M CV30 34.37 50.38 44.14 44.97 4.38 22
BL M CV35 35.67 64.33 53.42 55.70 7.69 26
BL S CV20 12.82 25.64 18.00 18.04 2.51 67
BL S CV30 37.05 59.83 51.14 51.83 4.86 158
CE M CV35 26.01 70.27 48.38 47.22 10.14 60
CE S CV35 36.99 76.97 59.50 61.10 8.72 40
FX l CV30 18.84 51.16 39.00 39.00 6.80 132
FX l CV47 61.83 96.07 80.00 83.04 11.19 21
FX M CV30 15.70 42.87 31.24 31.70 6.83 159
FX S CV30 17.27 48.22 29.00 28.55 4.87 236
FX S CV47 38.61 92.76 58.71 57.37 10.88 95

CV30 CV20 20.36 33.18 28.00 27.96 2.51 67
REJ CV54 12.10 45.42 25.00 24.09 5.90 228

Figure 5—Cumulative distribution function for the objective function
considering the variability in the coal yield. The results are expressed
as the percentage variation in relation to the optimum value obtained
when the average yield value was used as the input

-50%     - 50%    -50%     -50%     -50%     -50%     -50%     -50%      -50%    -50%

Variation related to the optimum value

x < = -0.22 x < = 0.22
100%

80%

60%

40%

20%

0%

C
u

m
u

la
ti

ve
 F

re
q

u
en

cy



A case study application of linear programming and simulation to mine planning

over- or underestimation of the OF value in relation to
the optimum value obtained when the average yield
was used as the input

� The results present a high variability, ranging from −42
per cent to +39 per cent in relation to the optimum
value of the OF, and 90 per cent of the values are
between −22 per cent and +22 per cent.

To quantify the influence of each stochastic parameter in
the results of the OF, the coefficient of linear correlation was
calculated for the simulated values with respect to each
parameter, and, subsequently, the OF values were calculated.
The results of these calculations are shown in Figure 6.

From Figure 6, it is noted that all the simulated
parameters show a positive correlation with the results of the
OF.

Discussion and conclusions

The results obtained fom mathematical modelling tools,
optimization using LP, and risk analysis, suggest that
financial gains can be obtained by using these techniques in
mine planning. With these tools, the decisionmaker can
evaluate a series of choices and hypotheses regarding the
production process and thereafter conveniently propose
structural changes in the process to generate a higher profit.
Among the 10 scenarios analysed, the results of the
optimization process indicate that the economic gains could
increase by an average of 5.8 per cent, compared with the
results obtained by the production strategies originally
adopted by the company without any optimization process.

The results also show a large variability in the OF when
the yields for the various coal products are used as stochastic
inputs. This variability in the input is probably overestimated
due to the use of historical data in the simulation process.
The historical data used corresponds to a period of 12
months, during which mining occurred in different locations
within the deposit. This fact can lead to significant variations

in the product quality and yield. Hence, geostatistical
simulation should be used to build coal-yield models and,
after these simulations of the models are completed, the
results obtained should be used to feed the yield values into
the optimization process.

The use of a representative mathematical model for the
production process generates other benefits, in addition to the
tangible gains described previously. It allows a compre-
hensive understanding, transparency, and interaction of the
production process, helping to quickly determine the
influence of various factors on the response by different
parameters related to this process. Consequently, the model
can be used not only for the optimization of the current
production process, but also to test alternatives such as the
evaluation of new mine areas or the commercialization of
other products. The correlation coefficient relating each
stochastic parameter and the answers obtained by the OF can
be used to rank the parameters that generate the greatest
impact on the final value of this function. After the definition
of the most relevant parameters, their behaviour can be more
closely followed, and whenever possible, be directed toward
values that improve the result of the OF.

The use of simulation techniques provides the
opportunity to quantify the impact that the stochastic
parameters produce in the optimum response. The stochastic
approach enlarges the range of information available to the
decisionmaker, allowing him or her to evaluate the risk of a
given result, instead of depending on a single deterministic
value of the OF.
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Figure 6—Hierarchy of the linear correlation coefficients (x) between
the results of the objective function and the simulated coal yield for
various saleable coals (y)
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