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Synopsis

This paper shows, through a case study, the impact of multivariate
grade modelling upon mine design and mine planning. A deposit
explored by drill holes is considered, in which the grades of five
elements (copper, silver, molybdenum, arsenic, and antimony) are
of interest. Forty alternative models of the deposit are constructed
by fitting the joint correlation structure of the grade variables and
using conditional cosimulation. In addition, a reference model,
obtained by averaging the alternative models, is also considered.

The study shows that the resulting mine design (final pit
characteristics and production schedules) is sensitive to the grade
model under consideration, and that the design based on the
reference model may not be optimal when compared to the
alternative models based on cosimulation. However, when assuming
a given long-term plan and extraction sequence, the grades and net
present value (NPV) calculated on the reference model are unbiased
with respect to those calculated on the alternative models with the
same extraction sequence. The latter allow assessing the possible
dispersion of the actual grades and NPV around their expected
values, and are useful for the planner in order to determine the
probability of meeting given production targets and of exceeding or
falling short of given threshold grades.

Additionally, unlike cosimulation, the separate simulation of
each grade variable leads to unrealistic resource models and to
biased results in mine design and mine planning. This approach
should therefore be avoided, unless the grade variables are spatially
uncorrelated.

Keywords
coregionalization models, cosimulation, grade uncertainty,
conditional bias.

Introduction

The quantification of mineral resources,

definition of mining reserves, and production
scheduling are key steps of a mining project.
They rely on the construction of a block model
that is used to represent essentially the distri-
bution of ore grades. However, in order to
better meet the several economical, techno-
logical, and environmental constraints, block
models are now designed on a more complex
basis, incorporating information on the
geological, geotechnical, and metallurgical
attributes of interest (mineral and contaminant
grades, rock density, rock type, mineralogy,
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alteration, grindability, recovery, floatability,
solubility, etc.). Geostatistical techniques, e.g.
kriging or its multivariate variant (cokriging),
are often used for constructing such block
models on the basis of information from logs
or assays of core samples1-3.

In order to capture spatial variability and to
assess spatial uncertainty, conditional
simulation is becoming increasingly popular in
geosciences and the minerals industry, for
quantifying, classifying, and reporting mineral
resources and ore reserves4-7. However,
simulation is still often restricted to a single
variable of interest, or to one variable at a
time, while mine planning (particularly in the
case of polymetallic deposits) often involves
several variables with statistical and spatial
dependences. This paper aims at showing how
multivariate modelling and multivariate
conditional simulation can improve the design
and planning with respect to traditional models
and can help assessing the impact of grade
uncertainty on production scheduling.

Presentation of the case study

This study was performed on a porphyry
copper-silver deposit located in northern Chile
that will be mined by open pit. Five elements
are of interest: copper (Cu) as the main
product, silver (Ag) and molybdenum (Mo) as
by-products, and arsenic (As) and antimony
(Sb) as contaminants. Their grades have been
measured in a set of exploration drill hole
samples, with a proper QA/QC process in order
to ensure data accuracy, and composited to a
length of 6 metres. The study will focus on the
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sulphide zone of the orebody, insofar as the oxide zone
represents less than 4 percent of the total tonnage and is not
economically interesting due to low metallurgical recoveries.
The samples are distributed in a volume of approximately
250 m x 600 m x 600 m.

The basic statistics of the composited data are indicated
in Tables and II. It is seen that not all the grades have been
measured for all the samples, especially antimony and, to a
lesser extent, molybdenum grades. Also, there exist
significant correlation coefficients between copper, silver,
arsenic, and antimony grades, which can be explained by the
minerals associations present in the deposit (enargite,
tennantite, argentotennantite, luzonite, bornite, digenite, and
chalcopyrite), whereas the molybdenum grade appears to be
uncorrelated with the other grades.

Resource modelling

Cosimulation of copper, silver, molybdenum, arsenic,
and antimony grades

The objective of conditional simulation is to construct a set of
alternative grade models (realizations) that reproduce the
values at the sample locations and mimic the spatial
variability of the true unknown grades at unsampled
locations, as described by the grade variogram. In the
multivariate case (cosimulation), it is also of interest to
reproduce the spatial dependence between grades, as
described by the cross variograms between grades of different
attributes1.8.

In this study, cosimulation has been performed in the
scope of the so-called multi-Gaussian model, which is suited
to the modelling of disseminated deposits like porphyry
deposits. The steps for constructing the realizations are the
following1-3:

(1)  Cell declustering of the original data, in order to

obtain representative distributions of the grade
variables

(2) Normal scores transformation of each grade variable

(3) Calculation of variogram maps of the normal scores
data, in order to identify main anisotropy directions

(4) Calculation of simple and cross variograms of the
normal scores data along the main anisotropy
directions

(5) Fitting of a multivariate nested model (linear model
of coregionalization). The nested structures are
nugget effect, spherical and exponential structures
with anisotropy axes corresponding to the north-
south, east-west, and vertical directions. For practi-
cality, a semi-automated technique has been used
to fit the sill matrices of each nested structure
(Figure 19,10, According to the sample variograms
and fitted models, the east-west direction turns out
to exhibit less spatial continuity than the other
directions. The molybdenum grade (not shown in
Figure 1) has been modelled and simulated
separately from the other elements, insofar as it is
spatially uncorrelated with the copper, silver,
arsenic, and antimony grades

(6)  Non-conditional cosimulation of the Gaussian
random fields with the previous coregionalization
model. The turning bands method11,12 has been
used at this step, and a total of forty realizations of
the coregionalization have been constructed over a
grid with mesh2mx 6 m x 6 m

(7)  Conditioning to the normal scores data, via simple
cokriging. Conditioning was conducted using a
moving neighbourhood divided into octants,
looking for six data points for each variable in each

octant

(8) Back-transformation from normal scores to grade
variables

(9) Checking of the cosimulation results (see next
subsection)

(10) Regularization to a block support, in this case,
blocks of size 4 m x 12 m x 12 m that will represent

Table |
Basic statistics of assayed grades

Variable Number of data Minimum Maximum Mean Standard deviation
Copper grade (%) 6712 0.01 19.82 1.11 1.25
Silver grade (g/t) 6258 0.50 552.23 22.28 32.41
Molybdenum grade (g/t) 5610 0.09 3706.7 64.10 109.8
Arsenic grade (g/t) 6443 1.01 31332.9 1062.55 2311.74
Antimony grade (g/t) 2513 0.09 4692.0 100.83 248.32
Table Il
Correlation matrix between assayed grades
Variable Copper grade (%) Silver grade (g/t) Molybdenum grade (g/t) Arsenic grade (g9/t) | Antimony grade (g/t)
Copper grade (%) 1 0.72 0.01 0.69 0.64
Silver grade (g/t) 0.72 1 -0.04 0.43 0.34
Molybdenum grade (g/t) 0.01 -0.04 1 -0.07 -0.03
Arsenic grade (g/t) 0.69 0.43 -0.07 1 0.80
Antimony grade (g/t) 0.64 0.34 -0.03 0.80 1
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the selective mining units. The block size along the east-west
direction has been chosen as the smaller because of the
greater spatial variability in this direction than in the other
directions. One finally obtains forty multivariate block
models, each with information on the copper, silver,
molybdenum, arsenic, and antimony grades. The mean
copper grades of these models vary between 0.98 percent
(worst case) and 1.19 percent (best case).

Checks of cosimulation results

To ensure an accurate quantification of the mineral resources
and an adequate modelling of the spatial variability, it is
critical that the statistics of the realizations reproduce the
statistics of the grade data13. The check has been performed
on the basic statistics (means, variances, and correlation
matrix between variables), scatter diagrams, and simple and
cross variograms of the realizations, before and after back-
transformation.

As an example, Table IIl shows the correlation matrix
between the cosimulated grade variables, which is
comparable to the sample correlation matrix (Table II).
Because in the present case the grades of the elements of
interest are cross-correlated, the use of cosimulation is crucial
to obtain realistic resources models. For instance, if the grade
variables were simulated independently one from another,
then the models would not reproduce the correlations
between grades (Table IV).

In practice, when checking the realization statistics, one
usually observes departures between the realization statistics
and the data statistics. In this respect, the following points
must be taken into account:

» Uncertainty in model parameters—The distribution of
the cosimulated grades depends on the distribution of
conditioning data and on the parameters of the chosen
random field model (univariate distributions fitted
through normal scores transformations and simple and
cross variograms fitted through a linear model of
coregionalization). If these model parameters are

deemed uncertain because of data scarcity or non-
representativeness due to a highly irregular sampling
pattern or to the presence of clustered data, alternative
parameters may be heuristically proposed and used for
cosimulation, leading to alternative sets of realizations.
The uncertainty in the parameters can also be
quantified through maximum likelihood or Bayesian
approaches1,14-16, In the present study, however, no
uncertainty in the model parameters has been
considered, mainly because of the abundance of
conditioning data (several thousands) and the well-
behaved sample variograms that allow a good-quality
fitting of a coregionalization model (Figure 1)

» Statistical fluctuations—Even if the simulation
algorithm is perfectly accurate, the statistics of the
realizations do not exactly match the model statistics.
The discrepancy between model and realization
statistics is called a fluctuation and originates because
the domain in which simulation is performed has a
limited size. In some cases, one can check whether or
not the magnitude of the fluctuation is consistent with
the assumed random field model and with the domain
size, via graphical representations or statistical
testing1,11,17, Excessive or, on the contrary, too small
fluctuations would indicate some inaccuracy in the
simulation and a need to revise the implementation
parameters (for instance, the design of the
neighbourhood for searching nearby conditioning data)
or to change the simulation algorithm. In most cases
however, the choice of an algorithm and its implemen-
tation parameters is based on the practitioner’s
experience, rather than on the study of statistical
fluctuations.

Statistical fluctuations are smaller when the simulation
domain is larger. In practice, to judge whether or not
the domain is large, one may compare the domain size
with the range of correlation or with the integral range
of the random fields under study1.18. In the present

Table Il

Correlation matrix between cosimulated grades (realization no. 1)

Variable Copper grade (%) Silver grade (g/t) Molybdenum grade (g/t) Arsenic grade (g9/t) | Antimony grade (g/t)
Copper grade (%) 1 0.71 0.01 0.51 0.41

Silver grade (g/t) 0.71 1 -0.01 0.54 0.41
Molybdenum grade (g/t) 0.01 -0.01 1 -0.04 -0.04

Arsenic grade (g/t) 0.51 0.54 -0.04 1 0.63
Antimony grade (g/t) 0.41 0.41 -0.04 0.63 1

Table IV

Correlation matrix between grades simulated separately (realization no. 1)

Variable Copper grade (%) Silver grade (g/t) Molybdenum grade (g/t) Arsenic grade (g/t) Antimony grade (g/t)
Copper grade (%) 1 0.10 0.04 0.05 0.07

Silver grade (g/t) 0.10 1 -0.02 0.09 0.06
Molybdenum grade (g/t) 0.04 -0.02 1 -0.02 -0.02

Arsenic grade (g/t) 0.05 0.09 -0.02 1 0.14
Antimony grade (g/t) 0.07 0.06 -0.02 0.14 1
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case, the domain measures 260 m x 588 m x 588 m,
whereas the ranges of the basic nested structures used
in the coregionalization model are no more than 75 m
(Figure 1).

»  Number of realizations—To decide how many
realizations should be constructed in order to
adequately quantify uncertainty, one option is to
examine the realization statistics: if the statistics of one
realization are very different from that of the other
realizations, then more realizations should be
considered. As an illustration, Figure 2 presents the
histograms of the mean copper and silver grades for the
forty realizations. No outlying realization can be
observed.

Another consideration in choosing the number of
realizations is to calculate the probability that a given output
of interest (for instance, the mean copper grade) is outside
the range of the outputs calculated on the realizations.
Assuming that one has 7 realizations homologous to the real
deposit, the probability that the real output value is greater
than the n simulation outputs is 1 out of 7+1, the probability
that it is smaller than the 7 simulation outputs is 1 out of
n+1, and the probability that it is in between the n simulation
outputs is therefore 1 - 2/(n + 1) = (n - 1)/(n + 1).
Accordingly, with 7 = 10 realizations, one obtains an 81.8
percent confidence interval on the real output, whereas with 7
= 40 realizations, as this is the case here, one obtains a 95.1
percent confidence interval.
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Figure 1—Sample (dots and thin lines) and modelled (thick lines) variograms for the normal scores data of copper, silver, arsenic, and antimony grades,

along the main anisotropy directions (north-south, east-west, and vertical)
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Figure 3—From top to bottom and left to right: copper grade in drill hole samples, one realization at block support, average of forty realizations, and

cokriging estimate (elevation 2200 m)

Average of the realizations

Mine planning is usually undertaken with a single grade
model instead of multiple realizations. In practice, this model
may be obtained by averaging the realizations or by directly
interpolating the grade data via inverse distance weighting,
kriging or cokriging3.

In this context, the average of the forty realizations has
been calculated for each element of interest, which yields a
block model with the ‘expected’ grades, in the sense that it

The Journal of The Southern African Institute of Mining and Metallurgy

approximates the expectation of the true unknown grades
conditioned to the available grade data. Such a block model
smoothes the actual grade variability and is comparable to
that obtained by cokriging. For instance, before block-
support regularization, the copper grade variance varies
between 1.20 and 1.90 for the individual realizations, but
decreases to 0.19 for the average of realizations.

As an illustration, maps of the copper grade distribution
at a specific elevation are presented in Figure 3, for the
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original sample data, two realizations, the average of
realizations, and the cokriging estimates. The correlation
coefficient between the last two block models (average of
realizations and cokriging) is 0.81, indicating that both
models yield similar values. The differences can be explained
because of the finite number of realizations and because
cosimulation works with non-linearly transformed variables
(normal scores data), whereas cokriging works directly with
the original grade variables: if the transformation functions
are highly non-linear, which happens when the grade distrib-
utions are heavy-tailed, the average of realizations may
deviate from the cokriging estimates1.3.

Despite its smoothness, an interesting property of the
block model obtained by averaging the realizations is the lack
of conditional bias: the regression of the true (unknown)
grades upon the grades given by the block model is the
identity function1,19,20, This property will help to explain
some of the results presented in the following sections (see
also Appendix). In general, conditional unbiasedness also
holds for the cokriging block model, provided that the
cokriging neighbourhood has been adequately defined19.21,

Mine design and planning using multiple block
models

For a given resource model and given economic and technical
conditions, the design step consists of defining the final pit as
well as the limits of the different extraction phases, which
define the sequence for mining the orebody. This step has
been carried out by applying the approach proposed by
Whittle that uses the well-known max-flow algorithm
presented by Lersch and Grossmann22-23, with the
parameters indicated in Table V and without considering the
definition of roads and accesses (unsmoothed pit). The
blocks located above the surface topography and outside the
resource models obtained by cosimulation have been
assigned grades equal to zero.

In this section, it is of interest to determine the
differences in design and production scheduling between the
previously defined resources models (each individual
realization, and the average of realizations).

Determination of final pits and production schedules

For the resource model corresponding to the expected grades
(average of forty realizations), a preliminary analysis
considering only the main product (copper) shows that the
production rate maximizing the net present value (NPV) is
54.92 kt/day of ore sent to mill, associated with a cut-off

copper grade of 0.6 percent. For such a cut-off, one obtains
an economic shell with 197.73 Mt of ore at an average copper
grade of 1.13 percent and 18.84 Mt of waste, with a mine
lifetime of 10 years.

According to these results and after trial and error, the
final production rate has been set to 55 kt/day, the mill
capacity to 20.08 Mt/a, the ratio between waste and ore to
2, the mine capacity to 45.17 Mt/a for the first year and
60.23 Mt/a for the following years. The production schedules
are then valued by considering copper, silver, and
molybdenum as attributes with an economic interest.

The final open pit is found to be the one associated with a
revenue factor (copper recovery multiplied by the difference
between copper price and smelting cost) equal to 0.74 (pit no.
40 in Figure 4). It was decided to divide the pit into four
phases of approximately the same size. In this case, the
production scheduling yields a NPV of US$1 207 million
(considering mine and mill investments).

The same design process is finally applied to each of the
forty realizations, choosing the same production rate and
ore/waste ratio.

Comparison of block models

The final pits and production schedules so obtained are
compared on the basis of the mineral resources (ore and
waste tonnages, average grades) (Table VI) and NPV

(Table VII) for three block models: the average of
realizations, and two single realizations corresponding to the
best and worst scenarios in terms of average copper (main
product) grade for the overall block model.

It is seen that the characteristics of the final pit are likely
to be very different, depending on which block model is
considered (a single realization or the average of forty
realizations): grades are substantially higher in the case of
individual realizations, but ore tonnages are smaller. Such
differences have a considerable impact on the NPV and the
profitability of the project. This can be explained because of
the smoothing effect produced by averaging the realizations:
the amount of intermediate-grade material increases,
entailing a higher ore tonnage above cut-off (low grades are
scarcer) with lower average grades (high grades are scarcer).

The realizations show that the NPV can vary between
US$1 027 million and US$1 538 million. As each realization
is equiprobable and homologous to the true deposit, this
indicates that the actual NPV may vary in between these two
bounds (with 95 percent probability, as per the previous
discussion on the number of realizations). Thus, by

Table V

Technical and economical parameters used in the mine design process

Parameter Value Unit Parameter Value Unit

Rock density 2.6 (t/m3) Mining cost 1.1 (US$/t)

Slope angle 50.0 (degrees) Milling cost 6.0 (US$/t)

Copper price 1.3 (US$/Ib) Copper smelter cost 0.4 (US$/Ib)

Silver price 7.0 (US$/02) Silver smelter cost 0.4 (US$/02)
Molybdenum price 15.0 (US$/Ib) Molybdenum smelter cost 2.0 (US$/Ib)

Copper recovery 85.0 (%) Mine investment 1500 (US$/extracted t/day)
Silver recovery 70.0 (%) Mill investment 4500 (US$/processed t/day)
Molybdenum recovery 50.0 (%) Discount rate 10.0 (%)
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Figure 4—Net present values and tonnages associated with different pits and revenue factors
Table VI
Final pit characteristics (from block models obtained by cosimulation of grades)
Block model Rock tonnage (Mt) Ore tonnage (Mt) Cu (%) Ag (9/t) Mo (g/t) As (9/t) Sb (g/t)
Average of realizations 547.16 181.68 1.11 22.66 71.73 973.37 83.62
Best realization 562.82 157.84 1.42 30.47 74.40 1,167.51 102.81
Worst realization 358.16 121.3 1.25 26.19 70.41 1,191.14 100.87

Table Vi

Production schedules (from block models obtained
by cosimulation of grades)

Block Lifetime NPV Production
model (years) (US$ million) | rate (kt/day)
Average of realizations 10 1207.14 55.00
Best realization 10 1538.48 55.00
Worst realization 7 1027.32 55.00

assuming a production schedule based on the average of the
realizations, the calculated NPV (US$1 207 million) may be
overestimated by up to US$180 million or underestimated up
to US$331 million with respect to a production schedule
based on a single realization. These values represent the
financial uncertainty of the mining project due to grade

uncertainty.

Comparison with block models obtained by separate

grade simulation

It is also interesting to compare the results with those
associated with the block models obtained by separately
simulating each grade variable. It is observed (Tables VIII
and IX) that, with such models, ore tonnages are strongly
underestimated, grades are overestimated, and NPVs are
overestimated. Because the block models do not reproduce

The Journal of The Southern African Institute of Mining and Metallurgy

spatial correlations between grades, all these results are
biased and give the misleading impression that the deposit is
economically more attractive than in reality. This exercise
shows the importance of jointly considering and modelling all
the variables of interest, when these variables are cross-
correlated, in order to avoid conditional biases (Appendix).

Uncertainty associated with a given schedule

Methodology

To characterize the variability that could be observed during
mine operations, following a given long-term plan, we will
assess the variations in the extracted tonnages and grades by
applying this plan to some of the realizations, each of which
represents a plausible scenario of the real deposit.

The steps are the following (Figure 5):

(1) We use the block model corresponding to the
expected grades (average of forty multivariate
realizations) in order to calculate the final pit and
production schedule, by considering the main
product (copper), by-product (silver, molybdenum)
and contaminant (arsenic, antimony) grades for
valuing the plan. From this, we obtain an extraction
sequence that will be considered as the reference
case used in the actual mine operations (Figure 6)
This extraction sequence is applied successively to
ten realizations chosen at random among the forty
available realizations, in order to assess the
probability that the results predicted in the previous
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Table Vil

Final pit characteristics (from block models obtained by simulating grades separately)
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Figure 5—Work flow for evaluating the uncertainty in mine planning

step can be met in the actual operations. As a consequence of
this process, we find different production schedules in which
the ore and waste tonnages are the same, but the grades
vary, so that the NPV also varies from realization to
realization.

Uncertainty in grades

The grades associated with each production schedule are
presented in Figure 7.

For each variable, the grade values associated with the
reference case (average of forty realizations) almost exactly
coincide with the average of the grade values associated with
each individual realization. This indicates that, although it
relies on a smoothed grade model, the reference case allows
predicting accurately (i.e. without any systematic bias) the
grades that are expected to be extracted. This is a
consequence of the conditional unbiasedness property of the
average of realizations: the recovered resources (tonnages,
mean grades, metal contents) are accurately predicted with a
conditionally unbiased grade model1,19.20,
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Block model Rock tonnage (Mt) Ore tonnage (Mt) Cu (%) Ag (9/t) Mo (g/t) As (g/t) Sb (g/t)
Best realization 574.52 120.72 1.71 37.28 106.34 1622.52 147.19
Worst realization 524.89 118.74 1.47 29.66 80.14 1373.50 124.73
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Figure 6—Production schedule (tonnages and grades) obtained by
considering the expected grades (reference case)

Additionally, the use of multiple realizations allows
determining the range of possible results around those
obtained in the reference case, as well as the probability that
the actual (unknown) grades are more or less than the
predicted grades for a given period of time, i.e. the probability
that the production targets can be accomplished. For instance,
in the case of arsenic and antimony, it is found that three of
the ten realizations exceed the value predicted in the
reference case for the first year, meaning that there is about a
30 percent risk of finding greater arsenic and antimony
grades than initially planned. This analysis is all the more
relevant if one considers restrictions on arsenic grades,
insofar that it is not sufficient that the restrictions are
fulfilled in the reference case: they should also be fulfilled in
most of the realizations in order to minimize the risks of not
meeting the planned targets. In particular, high arsenic and
antimony grades may have a negative impact on the
concentrate quality and on the recovery process in the
concentrator, and also on the smelting process, in which a
fraction of the input arsenic and antimony is emitted to the
atmosphere. Most copper smelters apply severe restriction on
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Figure 7—Behaviour of copper, silver, molybdenum, arsenic, and antimony grades for each realization and for the reference case (average of forty

realizations)

the arsenic content of the concentrates that they accept for
processing, therefore the mine planning should integrate this
additional restriction to the production schedule.

Ideally, although it is time-consuming, one should apply
the production schedule to a larger number of realizations.
This would help to better determine by how much extracted
grades may fluctuate around the reference case estimates,
and to better assess the probability of finding grades lower or
greater than given thresholds.

Uncertainty in net present value

The realizations also allow determining the financial risk
associated with the planned sequence (Table X). Again, it is
seen that, although the variation in the NPV can reach 20.1
percent of the initially planned value, the NPV calculated in
the reference case is very close to the average of the NPVs
calculated in each realization. This is again explained by the
conditional unbiasedness property of the reference case
model and because the NPV is a linear function of the grades
(given a fixed mining sequence and fixed economic and
technical parameters).

So far, conditional unbiasedness has been recognized as
an important property for short-term planning and grade
control, but there is still some controversy about its
usefulness in long-term planning24. Here, we show that
conditional unbiasedness is of interest for long-term
planning in order to accurately predict the expected NPV of
the mining project. Note that this result may not hold any
more, and one may therefore have a bias between the NPV
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calculated in the reference case with respect to the NPVs
calculated on individual realizations, if25.26:

» The reference case is not a conditionally unbiased
model. This may happen if one uses inverse distance
weighting or kriging with a poorly-designed
neighbourhoodz21, or if the reference case consists of a
separate modelling of the grade variables (Appendix)

» The NPV is not a linear function of grades. This is
likely to happen if one considers metallurgical
recoveries that depend on the grades, or selling prices
that depend on the grades of contaminants like arsenic

Table X

Net present value for each realization and for the
reference case (average of forty realizations)

Block NPV Percentage of variation with
model (US$ million) | respect to the reference case
Average of 40 realizations 1204.66 0.00

Realization #1 1111.80 -8.35

Realization #2 1173.17 -2.68

Realization #3 124711 3.40

Realization #4 1186.56 -1.58

Realization #5 1028.60 -17.12
Realization #6 1507.65 20.10
Realization #7 1326.84 9.21

Realization #8 1269.28 5.09

Realization #9 1340.93 10.16
Realization #10 1034.75 -16.42
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» The same production schedule and extraction sequence
are not applied to the reference case and to the
realizations. This situation was seen in the earlier
section on ‘Mine design and planning using multiple
block models’.

Conclusions

Geostatistical cosimulation allows constructing models of
multiple grade variables (or of other geological or
metallurgical variables) that reproduce the spatial variability
and spatial dependence of the true grades, as well as the
information available at sample locations (drill hole data). In
contrast, the model obtained by averaging the realizations
yields a smoothed image of the real deposit, although it is
conditionally unbiased, whereas models obtained by
simulating the grade variables separately do not reproduce
the spatial dependences between the variables. The latter
provide biased results in mine design and planning and
should therefore be avoided, excepted when the grade
variables do not have any spatial cross-correlation.

When applying given criteria and planning parameters to
the block models obtained by cosimulation and to the average
of the realizations, considerable differences are found in the
final pit characteristics and net present values of the
production schedules. The optimal planning for one model is
likely not to be optimal for another model. To date, planning
is often performed on a smooth block model obtained by
kriging or by averaging realizations, so that it may not be
optimal. The question of determining the best plan
accounting for grade uncertainty still remains open25.

However, assuming the extraction sequence obtained on
the average of realizations as a reference case, it is observed
that this sequence applied to each realization yields grade
values and NPVs that fluctuate around those obtained in the
reference case, without a systematic bias. This is explained
because the reference case model is conditionally unbiased, a
condition that should be checked when constructing grade
models by kriging, cokriging, or any other method21.
Furthermore, because the realizations are equiprobable, they
allow assessing the uncertainty in grades for each production
period, or in NPV for the whole project, and calculating the
probability of not fulfilling a given target or exceeding a
given environmental norm. This information is helpful to
investors in order to quantify how grade uncertainty could
impact the technical and economical results of the mining
project.

The ability to take account of the grade uncertainty
should be seen as a business opportunity. It should be
supported by a long-term plan that does not necessarily
maximize NPV, but maximizes the probability of meeting the
best possible NPV. Also, considering several variables
(geological, environmental, geotechnical, and metallurgical
attributes, which, in general, are cross-correlated) gives a
holistic vision of the mining operations from the orebody
evaluation to downstream processing. One of the main
challenges would then be the weighting of these variables in
the optimization process for mine design and mine planning.
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Appendix: Conditional unbiasedness

For a given block (v) in the deposit, let Z(v) be the vector of
actual grades (in the present case study, a vector with five
components, corresponding to copper, silver, molybdenum,
arsenic, and antimony grades) and Z "(v) the vector of
estimated grades obtained by averaging the cosimulation
models conditioned to the sample data available in and
around the block under consideration (located at Xy, ... X;).
Such a vector of estimated grades can be identified with the
conditional expectation of the actual grades, that is, the
expected values of the actual grades given the data grades:

Z'(v)= EZW Z(x,),....Z(X,)) [1]

The conditioning data Z(xl) Z(xn) appear to be
summarized, without loss of information, by the estimator
Z (v) which means that the knowledge of the former is
equivalent to the knowledge of the latter. Accordingly, one
can write:1,14

E(ZWIZ(X,),.... Z(X,)) = E(ZZ(W I Z* (v)) = Z" (v) [2]

Equation [2] corresponds to the conditional unbiasedness
property: given the vector of estimated grades, the expected
vector of actual grades is equal to the estimated grades. From
this property, any quantity that is expressed linearly as a
function of the grades is predicted accurately (without
systematic bias) from the same quantity calculated on the
estimated grades (average of cosimulated grades). This is the
case of the recoverable resources - grades and metal contents
- and NPV associated with a given mining plan and
extraction sequence.

Conditional unbiasedness does not necessarily hold if one
simulates the grades separately (univariate modelling
approach) instead of cosimulating them. Indeed, let Z**(v) be
the vector obtained by averaging the grades simulated
separately. The components of this vector are (indexes 1 to 5
refer to copper, silver, molybdenum, arsenic and antimony):

Z" () =EZ W) Z,(X,)s., Z,(X,)) [3]

72 (v) = E(Z, () Zy(X,)y s Zo (X, )) [4]

Considering copper grades alone, the estimator is
conditionally unbiased:

EZWIZ"()=Z" () 5]

However, because the components of Z(v) are cross-
correlated, the knowledge of 7 ), ,Z5 (v) is likely to affect
the expected value of Z;(v) with respect to the knowledge of
ZT*(V) only:

E(Z,(WIZ"(v)=EZWIZ"

(V)seesZs (V) = Z]° (v)

The same arguments can be applied to the other
components of Z(v), so that one finally has:

(6]
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E(ZWIZ" () =Z"(v) [7]

Accordingly, even if they are expressed linearly as a
function of the grades, quantities such as metal contents,
mean grades, and NPVs are no longer predicted accurately
from the same quantities calculated on the estimated grades
(average of separately simulated grades), and biases may be
observed. Two noteworthy exceptions to this rule are:

(1) the case when the components of Z(v) are
independent

(2) the case when these components are informed at all
the data locations and their simple and cross
variograms are proportional.

In these two cases, the average of simulation models
coincide with the average of cosimulation models27-29. Now,
the present study does not correspond to any of these two
exception cases, insofar as the grades are cross-correlated
(Table 11, they are not known at all the data locations (Table
1) and their variograms are not proportional, for instance the
copper grade variogram has a higher relative nugget effect
than the other variograms (Figure 1).
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