
Introduction

In mineral resources/reserves modelling, the
main and sometimes only source of
information is the exploratory drilling data-set.
During different stages of the project
evaluation, various drilling campaigns are
carried out in different periods of time and/or
with different goals. As such, the exploratory
data-set is continually updated by each
campaign. The lifetime of an exploration
project can be several decades, and in this
context different technologies may be used
during these drilling campaigns. Legacy data
from campaigns drilled at early stages of the
project may not have been subjected to any
quality assurance and quality control (QA/QC)
procedures1. Even recent campaigns drilled
will have different precision due to the drilling
technique used, for example, diamond or
reverse circulation drilling, or due to different
QA/QC standards.

The effect of poor-quality data at different
stages of a project has been widely discussed
in the literature2–4. The quantification of
sampling error during sample collection and
preparation for chemical analysis is also well
documented; most operations perform routine
checks of the quality of their sampling
procedures5–8. 

One outstanding problem in the evaluation
of mineral resources and reserves is the use of
data with inherent errors. The use of imprecise
data has been studied in the literature4,9–11,
but it is uncommon to find that the errors have
been accounted for in the evaluation of the
mineral inventory12,13. 
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Synopsis
Geostatistical modelling aims at providing unbiased estimates of the
grades of elements of economic interest in mining operations, and
assessing the associated uncertainty in these resources and
reserves. Conventional practice consists of using the data as error-
free values and performing the typical steps of data analysis –
domaining, semivariogram analysis, and estimation/simulation.
However, in many mature deposits, information comes from
different drilling campaigns that were sometimes completed decades
ago, when little or no quality assurance and quality control
(QA/QC) procedures were available. Although this legacy data may
have significant sampling errors, it provides valuable information
and should be combined with more recent data that has been subject
to strict QA/QC procedures.

In this paper we show that ignoring the errors associated with
sample data considerably underestimates the uncertainty (and
consequently the economic risk) associated with a mining project.
We also provide a methodology to combine data with different
sampling errors, thus preserving the relevant global and local
statistics. The method consists of constructing consistent simulated
sets of values at the sample locations, in order to reproduce the
error of each drilling campaign and the spatial correlation of the
grades. It is based on a Gibbs sampler, where at every sample
location, the actual sample value (with error) is removed and a
conditional distribution is calculated from simulated values at
nearby sample locations. A value is drawn from that distribution
and kept only if it satisfies some statistical requirements—specif-
ically, the global relative error and local means and variances must
be reproduced. All sample locations are visited and simulated
sample values are generated iteratively, until the required statistics
are satisfactorily attained over all sample locations. This generates
one realization of possible sample values, respecting the fact that
the actual samples are known to carry an error given by the global
relative error. Multiple realizations of simulated sample values can
be obtained by repeating the procedure. At the end of this
procedure, at every sample location a set of simulated sample
values is available that accounts for the imprecision of the
information. Furthermore, within each realization, the simulated
sample values are consistent with each other, reproducing the
spatial continuity and local statistics. These simulated sets of
sample values can then be used as input to conventional simulation
on a full grid to assess the uncertainty in the final resources over
large volumes. The methodology is presented and demonstrated
using a synthetic data-set for clarity.
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Transferring sampling errors into geostatistical modelling

Regardless of the type of sample obtained during drilling
campaigns, this data is the starting point for evaluating the
quantity and quality of the various elements of interest. The
quality of the final resource evaluation and the uncertainty
quantification performed for risk assessment depend strongly
on the data quality. Accounting for data quality from
different campaigns has been addressed through very simple
approximations such as adding an independent random error
to each sample value3.

The present article deals with a methodology to
incorporate sampling errors from different drilling campaigns
into the geostatistical modelling process. The aim is to
propagate the uncertainty associated with the data quality to
all subsequent steps of the project evaluation, including risk
related to the mine plan, classification of resources and
reserves, transfer of geological risk into the financial
performance of a project, and so forth.

We first review some fundamentals of sampling theory
and of the geostatistical approach This is followed by an
overview of the methodology and some details related to the
simulation of multiple sample data-sets, in order to account
for their precision. We provide some implementation details;
and finally, we show an application to a synthetic data-set.
We conclude with a discussion, recommendations, and future
work.

Sampling error

When dealing with particulate materials, sampling theory
provides a set of rules to ensure that some basic principles
are followed when extracting a subset of the original volume
in a representative manner. The original volume of material
that is being characterized through the sampling process is
called a lot5,7. A sample is a small quantity of material
extracted from the lot in such a manner that the sample
represents the essential characteristics of the lot. Sampling as
a process, however, aims at ensuring that the integrity of the
sample is preserved.

The sampling process involves a stepwise reduction of the
mass and the fragment size from the lot to the sample. The
number of steps involved is a function of material character-
istics and the requirements of the analytical procedure.

Diversions from this goal may be due to the characteristics of
the material, the equipment used for increment extraction,
the handling of increments after collection, and finally the
analytical process itself.  

In the case of samples from drilling campaigns, the lot
corresponds to the drilled core of a given length or the
detritus obtained in reverse circulation drilling, representing
the extracted cylinder. From these lots, and after a series of
stages of division of the total mass and reduction of the
particles size through crushing and pulverizing, a sample,
usually of a few grams, is obtained.

The goal of sampling is to obtain a selected sample that
represents correctly some properties of the lot. Particularly,
we are interested in the concentration (grade) of some
elements that have economic interest. Inevitably, when
selecting a subset of the lot, the sample will have properties
slightly different from those of the lot. If sampling rules are
strictly followed, there will be no bias, but some fluctuation
or error around the true value should be expected.

The theory of sampling (ToS) has developed a systematic
taxonomy of errors and principles for minimizing or
eliminating sampling errors. The combination of errors from
these sources identified by Gy5,7,14 is termed the total
sampling error (TSE). The relevant individual errors for this
paper are shown in Table I. 

Regardless of their type, the errors generate a difference
between the sample properties and those of the lot. As long
as each particle of the lot has an equal probability of
belonging to the sample, there should be no bias; that is, in
expected value the sample will have the same properties as
the lot. However, some dispersion around the true value
should be expected. A relative error quantifies this
dispersion. 

When accounting for all the sample locations, a global
relative error (GRE) can be quantified:

[1]

where n is the total number of sample locations, Zs (xi) is
the sample value at location xi, and ZL (xi) is the true value of
the lot sampled at location xi.

�
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Table I

Taxonomy of sampling errors in regard to material characteristics, plant processes, sampling equipment, and
analytical procedures7,14,15

Sources of error Nature of error

Material characterization (sampling uncertainties, known, Fundamental sampling error (FSE), related to compositional heterogeneity due 
but never eliminated, minimized by strict adherence to principles) to the material properties of the lot

Grouping and segregation error (GSE) related to distributional heterogeneity due 
to grouping and segregation in the lot

Sampling equipment and materials handling (sampling errors, Increment delimitation error (IDE), geometry of outlined increment is not 
unknown but eliminated by strict adherence to ToS principles) completely recovered; can be completely eliminated

Increment extraction error (IEE), material extracted does not coincide with th
delineated increment; can be completely eliminated

Increment preparation error (IPE), all sources of non-stochastic variation after 
extraction of the material; error should always be nil

Analytical processes (mainly sampling errors) Analytical error (AE), all sources of error associated with materials handling and 
processes in the laboratory



Sampling theory allows us to quantify some of the
components of this global relative error, particularly, the
fundamental sampling error (FSE). Other components cannot
be directly quantified, but can be minimized through best
practices, as they are related to the FSE and to the
homogeneity of the lot, the number of increments to be used
to compose the sample, proper sampling equipment design,
etc.

Geostatistical approach

In geostatistical applications, a probabilistic approach based
on the concept of random variables is used to account for our
lack of information at unsampled locations. Similarly, we can
consider that at those locations where we have a sample, but
whose values are uncertain, random variables can represent
these uncertainties. Specifically, we can assign a probability
distribution to the attribute of interest, which in our context
is the mineral or metal grade. It should be emphasized that
locally the relative error should be of equal magnitude as the
global relative error, but since the grade changes from one
location to another, the dispersion is proportional to the
grade value. This is, of course, a model of the spread of error
around the true value. Other approaches could be
considered4. 

The distribution of the samples from a lot is frequently
assumed to be Gaussian. However, experimental results have
shown that this is not always the case, especially when
dealing with precious metals with high nugget effect and
highly skewed distributions7.

From a geostatistical point of view, the lack of precision
in the sample data can be accounted for by performing
estimation or simulation conditional to data values that are
independently drawn from the distribution at each sample
location. This approach has been used before3. However,
when significant relative errors are considered, one should
also ensure that the spatial correlation between these
simulated values at sample locations is preserved. If the
values are simulated independently at every location, the
spatial correlation will be partially lost and this will be
reflected in the estimated or simulated models at subsequent
stages. In the following section, we propose a methodology to
handle data with different errors, imposing their spatial
correlation and accounting for their precision.

Dealing with the sampling error

As mentioned, the common approach to accounting for
sampling errors is to draw at each sample location a value
from a distribution, usually Gaussian, centred at the sample
value and with a variance proportional to the relative error
associated. Since this process is done independently at each
sample location, some spatial correlation is lost, and the
simulated sample values show a higher nugget effect than
the original values (with error), and the underlying actual
values, which are unknown. This increase may not be
relevant when the sampling error is low. However, when
dealing with large relative errors, it may hide the actual
continuity of the variable. This is illustrated in Figure 1. 

One other consequence of adding an independent sample
error to the data values is an explicit addition to the variance
of the data. As the sill of the variogram should be the
variance of the data, this approach to explicitly account for

sample error results in an inflation of the data variance and
consequently, an increase in the variogram above the
intended sill. Note further that while the variogram clearly
rises above the sill, this should not be misinterpreted as a
trend in the data. A trend demonstrated via the experimental
variogram tends to show a consistently increasing slope
beyond the range of correlation16. As such, the rise in the
apparent sill above the standard sill is believed to be due to
the sample error.

In conventional practice, the exploratory data-set of the
mineral deposit is assumed to be error-free, and the experi-
mental semivariogram of the data-set with its sampling error
(from now on referred to as the available data-set) is used
directly both for estimation and simulation. Since these
techniques reproduce exactly the conditioning data, the
conditional variance at such locations is zero, reflecting a
misleading certainty about these values and underestimating
the propagated uncertainty due to the actual imprecision at
sample locations. This practice leads to an understatement of
the actual uncertainty related to the resources of the deposit.

Based only on the available data-set and its respective
sampling error (i.e. GRE), inference of the actual mean and
variance is difficult; means and variances of the possible
data-sets with sampling error could be smaller than, similar
to, or larger than that of the data-set with no sampling error.
Since we do not know the actual values without error, we
must centre our statistical inference on the available data-set,
which includes errors. 

Transferring sampling errors into geostatistical modelling
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Figure 1—Experimental semivariograms of synthetic data-set (black
dots), 100 simulated data-sets with sampling relative error of 30% (grey
lines), average of the experimental semivariograms of the 100 simulated
data-sets with error (dashed line), and semivariogram model of the true
data-set (solid line) for 0º azimuth (top) and 90º azimuth (bottom). All the
values were transformed to normal score units
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This can be illustrated with a simple example (see 
Figure 2). Let us assume the original data-set with no
sampling error is accessible, and 100 realizations are
sampled, assuming the distribution of samples with error for
each data location is Gaussian, with a constant coefficient of
variation in order to mimic a sampling process with error.
Notice that means and variances of the simulated data-sets
with sampling error can be smaller, similar or larger than
those of the original data-set. Once we have a data-set with
sampling error, we cannot infer if its statistical parameters
are different than those of the error-free distribution, as this
is dictated purely by chance. Since the error is added
independently at every location, on average the distribution
will show a higher global variance, as depicted in Figure 2
(right). This requires assuming the spatial correlation
inferred from the data is not significantly affected by the
sampling error, as we do not have access to the true
underlying variogram.

The proposed approach considers simulating at the
sampling locations, honouring the sample values in expected
terms, and reproducing globally the GRE. Furthermore, the
simulated values must retain the spatial correlation inferred
from the available information. Notice that these constraints
do not require the distribution at sample locations to be
Gaussian-shaped. Each realization will represent a plausible
set of samples obtained at the sample locations with the
known precision provided by the GRE.

The Gibbs Sampler17,18 works by selecting realizations
from a second-order stationary random function, so that at
the conditioning data locations they reproduce the GRE with
respect to the available data-set; the variability due to the
sampling error is transferred to the simulated model in terms
of local means and variances (Figure 3).

Gibbs sampler algorithm for simulating additional
data-sets

Since the experimental semivariogram has to be reproduced,
a Gibbs sampling algorithm is used to generate the
alternative data-sets, imposing the reproduction of the spatial
structure and of global and local statistics. The sampling
strategy splits the algorithm in two parts to speed up the
processing time; however, this strategy is not rigid and many
other alternatives based on the Gibbs sampler algorithm
could be proposed to obtain the same results described here.
Basically the aims of each part are as follows:

� Reproduce the global mean, experimental semivar-
iogram in normal score units, and the GRE values in
the simulated subsets of values at sample locations; all
of them within given tolerances. Each subset represents
a drilling campaign and can have different GRE values 

� From the selected data-sets in the first part, adjust
locally the local means to match the sample values; the
reproduction of the experimental semivariogram in
normal score units, and the GRE values are still
preserved 

� For the Gibbs sampler algorithm, the back-transfor-
mations are carried out using the transformation table
of the declustered available data-set. The sampling
process is performed in Gaussian units since the
conditioned distributions are parametric and the
parameters can be easily and correctly calculated using
the simple kriging (SK) approach. The experimental
semivariograms are calculated from the normal score
transformed values, since it is this semivariogram that
is reproduced in simulation 

� The respective targets of the two parts of the Gibbs
sampler algorithm are approached within some

�
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Figure 3—Sketch of the proposed approach compared to the conven-
tional methodology for a 1D second-order stationary RF; the dashed
lines represent some confidence intervals that denote the local
variances along the second-order stationary RF and the solid line in the
centre the conditioned mean. Notice the conditioned local means are
the same for the two approaches and the local variances are different.
The outer confidence limits are of the proposed approach and the inner
confidence limits of the conventional approach

Figure 2—Histograms of global means (top) and global variances
(bottom) of 100 realizations where each location was simulated
independently assuming a local Gaussian distribution of samples with
error and local and constant coefficients of variation. The black dots at
the bottom of each histogram represent the reference values of the
original data-set with no sampling error



tolerance intervals. The use of tolerances helps to
reduce the calculation time; they act as bandwidths of
acceptable solutions with respect to the target values
(see Figure 4). Conditions that have reached their
respective targets within the tolerances do not continue
trying to approach the target but move freely within the
tolerance limits. This allows the algorithm to
concentrate on the conditions that have yet to be met
and not be stressed by conditions that are already
acceptable, thus expediting the entire process

� For the first part of the algorithm, a semivariogram
model is fitted to the experimental semivariogram
values of the available data-set in normal score units.
Using this semivariogram model, several data-sets are
simulated unconditionally to initialize the algorithm.
Since the domain of the samples is finite, a smaller
variance is obtained on average in the simulated data-
sets, since it represents the dispersion variance over
the domain, rather than the theoretical variance. Since
this bias affects equally high and low values in
Gaussian units after back-transformation to original
units, this may carry a bias in the global mean,
depending on the skewness of the distribution. This
bias is illustrated in Figure 5. When the starting
realization has a significantly lower variance than the
target, convergence to target statistics is hard to obtain.
Therefore, for optimization purposes these realizations
are discarded after a maximum number of iterations is
performed without satisfactorily converging to the
target statistics within their allowable tolerances.

The result of the first part of the algorithm (see Figure 6)
is a set of simulated data-sets that honour the experimental
semivariogram of the available data-set in normal score
units, the GRE values for all the subgroups in the available
data-set (each representing a drilling campaign), and the
global means. Basically, this part of the algorithm filters out
those unconditional realizations that are hard to solve, and
delivers data-sets that are easy to solve for local correction to
the second part of the algorithm. The workflow of the first
part of the algorithm is summarized as follows:

1.  Initialize the algorithm simulating an unconditional
realization using the semivariogram model of the
available data-set. The unconditional realization is
simulated at sample locations. Back-transform the

simulated values and calculate the respective GRE
values for each subset, each representing a drilling
campaign with different sampling error

2.  Visit all the sample locations following a random path.
The term iteration is used for one round when all the
sample locations have been visited

a.  Temporarily remove the value of the visited
location and calculate the parameters of the
conditioned distribution by simple kriging of the 
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Figure 4—Sketch of the process of approaching one of the Gibbs sampler conditions to its respective target. By using tolerances the Gibbs sampler
conditions do not have to be approached to their targets indefinitely; this is helpful when the Gibbs sampler algorithm has multiple conditions

Figure 5—Distributions of global means (top) and global variances
(bottom) in original scale units of 100 unconditional simulated data-sets
at the available data-set locations. The black dots below the two plots
represent the referential global mean and global variance of the
available data-set 
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Figure 6—Flow diagram of the first part of the algorithm to simulate data-sets that reproduce GRE, semivariogram, and global mean

normal scores using the nearby values at sample
locations. These are the values simulated
unconditionally in the previous step

b.  Draw a simulated value from the conditioned
distribution

c.  With the sampled value both in normal score and
in original units respectively check if:

� The GRE value of each subset approaches its respective
target

� The normal scores experimental semivariogram of the
simulated data-set approaches the reference semivar-
iogram. This is checked for several lags and directions

� The global mean of the simulated data-set approaches
the reference mean, in original units.

d.  The term attempt is used for each time a sample
is drawn from the conditioned distribution. For
implementation, a limit in the number of
attempts is restricted to a maximum value. If the
sampled value satisfies all the conditions of step
2c accept the sampled value, keep it as part of
the simulated data-set; otherwise reject it and go
to step 2b.

3.   The number of allowable iterations is restricted to a
maximum value. When this value is reached the
algorithm discards the simulated data-set and restarts
from step 1. If the maximum number of iterations has
not been reached, go to step 2. This part of the
algorithm stops when all required realizations are
completed.

The second part of the algorithm (see Figure 7) takes the
simulated values from the first part and corrects the
reproduction of the local means so that they are be equal to
the available data-set within some tolerance intervals. The
experimental semivariogram and the GRE were imposed in
the first part of the algorithm and now move freely within the
tolerance limits. Correcting the local means generates the
following effects:

� The GRE reproduction is better for all subsets, as it gets
closer to the target values with less dispersion 

� The global means and global variances match the
targets more closely 

� The nugget effect of the experimental semivariograms
of the simulated data-sets increases; however, this is
controlled by the tolerance in the reproduction of the
experimental semivariograms. 

The summary of the second part of the algorithm is:
1.  For each realization, take the simulated values from

the first part of the algorithm
2.  Visit all the locations following a random path

a.  Temporarily remove the value of the visited
location and calculate the parameters of the
conditioned distribution by simple kriging of the
normal scores of the nearby values at sample
locations 

b.  Draw a simulated value from the conditioned
distribution

c.  With the sampled value both in normal score and
in original scale units check if:
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Figure 7—Flow diagram of the second part of the algorithm that corrects the local means of the data-sets generated in the first part

� The GRE values approach to their respective targets
� The experimental semivariogram of the simulated data-

set approaches to the experimental semivariogram of
the available data-set

� Over all realizations, the mean of the simulated values
at that particular sample location approaches the actual
sample value (with error), which is assumed as the
correct mean, since we do not have access to the error-
free value.

d.  For implementation, the number of attempts is
restricted to a maximum value. If the sampled
value satisfies all the conditions of step 2c
accept the sampled value, keep it as part of the
simulated data-set; otherwise reject it and go to
step 2b.

3.  The algorithm runs until the local means over the
realizations at all sample locations are similar to the
available data-set values within the given tolerances.

The resulting simulated data-sets now honour the GRE
for all the subsets representing different drilling campaigns,
the experimental semivariogram in normal score units, and
the local means in original scale units. 

The data uncertainty due to sampling errors captured in
the previous steps must now be transferred into the next step
of geostatistical modelling. Each set of simulated data values
is used as input in a three-dimensional conditional
simulation model of the grades (see Figure 8). 

Example implementation

To illustrate the practical implementation of this algorithm

and how it would allow combining information from two
different campaigns with different sampling errors, the
following synthetic example has been prepared.

The goal is to account for these sampling errors in the
subsequent step of simulation. The procedure is:

� Generate 100 realizations of the values at sample
locations, honouring the GRE, local values, and
semivariogram in normal score units, using the
proposed Gibbs sampler methodology

� Simulate 100 realizations of the full grid conditioned
on each case to one of the simulated sample data-sets

� Compare the results with the uncertainty assessed
when disregarding the sampling errors.

Let us consider an available data-set with 400 sample
locations placed over a regular grid of 500×500 units of
distance. The available data-set was split into two sub groups
with a different sampling error associated with them. This
was done in order to mimic the integration of two sampling
campaigns in the study (see Figure 9). This available data-
set was built sampling one realization over a regular grid and
adding randomly a categorical code to each sample. The
sampling errors were assigned according to categorical codes,
GRE equal to 20% for code 1 and 40% for code 2.

The Gibbs sampler algorithm runs in two parts. The first
part tends to reduce the global means and global variances;
however, this effect is corrected in the second part, where the
dispersion is also reduced. Even when the global mean is
fairly reproduced, the global variances are greater than the
target of the available data-set (see Figure 10).
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The variability in the reproduction of the GRE values for
the two subsets is also reduced by the second part of the
algorithm. In the first part, the GRE values are reproduced
within the tolerance limits, and in the second part the
dispersion is reduced (see Figure 11).

In the first part of the algorithm only the global
conditions are targeted; the second part targets the
reproduction of the local features. Although the first part of
the algorithm starts with unconditional realizations, the GRE
converges to the target values for each subset with

�
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Figure 9—Locations of the two sub-data-sets with different sampling errors of GRE 20% (empty dots) and GRE 40% (solid dots)

Figure 8—Sketch of uncertainty transfer due to sampling error into the simulated models. Each simulated data-set is the input of a simulated realization;
when summarizing the realizations, the sampling error features are reproduced in the simulated maps on average at the conditioning data locations as
well as the available data-set values
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Figure 11—Reproduction of the two groups of GRE 40% (blue line) and GRE 20% (red line) for the first (top) and the second part (bottom) of the algorithm;
for two GRE targets of 20% and 40% with 5% tolerance, global mean tolerance 10%, and semivariogram tolerance 5%

Figure 10—Reproduction of the global means (blue line) and global variances (red line) for the first part (top) and the second part (bottom) of the algorithm;
for two GRE targets of 20% and 40% with 5% tolerance, global mean tolerance 10%, and semivariogram tolerance 5%
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subsequent iterations. This implies that the simulated values
tend locally toward the measured sample values (with error),
as shown in Figure 12 (top). When considering the average
of the simulated values at a sample location, the second part
of the algorithm allows a much better reproduction of the
target values, that is, the values of the available data-set
(Figure 12, bottom). 

Figure 13 shows the reproduction of the semivariogram
while accounting for the sampling error.  Further, we note
that the simulated data-sets also reproduce the semivar-
iogram of the available data following the first part of the
algorithm. It can be observed that the projection of the nugget
effect is lower than in the case of adding an independent
error to every location (Figure 1).

After the second part of the algorithm, the semivariogram
reproduction improves and the dispersion between
realizations is slightly lower (Figure 14). 

Discussion

Recall that in the conventional approach, resource modelling
depends on the available data-set, which is known to have
errors. It is common to ignore the sample error and/or
assume that an increased nugget effect in the semivariogram
adequately accounts for sample errors in the final model.
Conventional simulation modelling of resources then
proceeds by (1) transforming the conditioning data
(disregarding the sampling error) to normal score units, (2)
fitting a semivariogram model, (3) simulating many
realizations, (4) back-transforming to original units, and (5)
summarizing the realizations in order to assess uncertainty
(Figure 15 shows an example of one such summary).

�
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Figure 14—Experimental semivariogram reproduction in normal score
units of the 100 simulated data sets independently transformed to
normal score units from the simulated values in original units (grey
lines), average of experimental semivariograms (dashed lines) and
experimental semivariogram of the available data set (black dots) for
the second part of the Gibbs sampler algorithm for 0º azimuth (top) and
90º azimuth (bottom)

Figure 13—Experimental semivariogram reproduction in normal score
units of the 100 simulated data sets (grey lines), average of experi-
mental semivariograms (dashed lines) and experimental semivariogram
of the available data set (black dots) for the first part of the Gibbs
sampler algorithm for 0º azimuth (top) and 90º azimuth (bottom)

Figure 12—Correlation plots of the local mean values versus the values
of the available data set with sampling error for the first (top) and
second part (bottom) of the algorithm



This paper proposes a methodology that accounts directly
for sample error in the available data at the sample locations.
The result of this proposed approach is a set of realizations of
sample data at the sample locations. Each simulated data-set
acts as the conditioning sample data used to generate each
simulated realization. Resource modelling in this context
requires that for each simulated data-set, we (1) transform
the data to normal score units, (2) simulate one realization,
and (3) back-transform the realization to original units.
Semivariogram modelling is performed only once, on the
original data-set.  The uncertainty from this approach can be
assessed once all realizations are generated. Figure 16 shows
a similar summary of local means and variances as those
shown in Figure 15, but the results in Figure 16 are based on
the modelling approach outlined here. Notice that the
variability at the sample locations is no longer zero but in
fact reflects the uncertainty related to sampling quality.

The average value at a sample location, over the set of
realizations generated with the Gibbs Sampler algorithm,
should be equal to the sample value (with error), since this is
the only hard data available. However, since some tolerances
were used in the second part of the algorithm, some fluctu-
ations occur, as illustrated in Figure 17 (left). Globally, the
allowable departure can be controlled at the expense of
computation time for convergence (if more strict tolerances
are imposed). In the case of the local variances, these are

indirectly imposed by the global sampling error, but without
local control (Figure 17, right).

When comparing the distributions of the global means
and variances of the conventional approach (see Figure 18)
and of the proposed approach that reproduces the GRE at the
sample locations (Figure 19), it can be seen that global
means and global variances spread over a larger range in the
proposed approach.

The global means for the proposed approach are centred
on a value slightly lower than in the conventional case.
However, global variances appear centred at a very similar
value, with more dispersion in the case of the proposed
approach. This can be explained by the fact that every
realization is conditioned to a different set of samples and,
therefore, the reference histogram changes. Depending on the
distribution of high and low samples, accounting for the
sampling error yet preserving the spatial correlation allows
the global distribution to fluctuate. This is the result of
transforming each simulated data-set independently and
back-transforming the simulated maps using individual
transformation tables. 

Conclusions

Most widely used geostatistical techniques in the mining
industry for building resource/reserve models assume that
the conditioning information is error-free; conditioning data
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Figure 16—Average of 100 simulated values (top) and conditional
variances (bottom) using transfer variability for data sets with sampling
error

Figure 15—Average of 100 simulated values (top) and conditional
variances (bottom) using conventional approach
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are perfectly reproduced at their respective locations in the
geostatistical model. The uncertainty in the conditioning
information cannot be accounted by using these techniques;
therefore, it is not transferred into the geostatistical model.
Since the exploratory data-set in mining consists of many
different subsets corresponding to different drilling
campaigns (e.g. reverse circulation drilling, diamond core
drilling, or sampled information taken using technologies
from different time periods or with different QA/QC
standards), the presence of errors in the exploratory data-set
is unavoidable.  This should be accounted for in the charac-
terization of the mineral deposit.

The present paper deals with errors in the data-set that
arise from the sampling process, that is, the fundamental
error. In practice there are additional sources of errors, such
as errors in laboratory analysis or errors in manipulation of
the sample, which cannot be easily quantified. A total error
could be used with the proposed methodology, instead of
only the fundamental error, as presented in the example.

The proposed approach is able to deal with many
different subsets of information that comprise the exploratory
data-set, each subset with a different sampling error. The
general procedure consists of simulating alternative data-sets
such that global statistics are preserved and the sampling
error is imposed by considering that, at sample locations, the
sample value is an outcome of a random variable with a
mean given by the actually sampled value, which has an
error, and a variance controlled by the amount of global
relative error. These random variables are not independent,
therefore the values are drawn using a Gibbs sampler in

�
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Figure 19—Global means (top) and global variance (bottom) of 100
simulated maps using data sets with sampling error

Figure 18—Global means (top) and global variances (bottom) of 100
simulated maps using conventional approach

Figure 17—Scatter plots of local means (top) and global variances
(bottom) of the sets of simulated maps. For the two scatter plots the
conventional approach versus the proposed approach are compared



order to preserve the spatial correlation. Once the alternative
data-sets have been simulated, each one feeds a simulated
model constructed in the conventional way. The result is that
overall uncertainty is increased when the sampling error is
considered, demonstrating that assuming the samples to be
error-free, when in fact they are not, leads to an
understatement of the actual uncertainty in the resources and
reserves.
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