Introduction

Block caving and its variations are massive underground methods that are commonly applied to massive low-grade mine deposits. Block caving methods rely on the use of gravity to break and transport large amounts of caved rock from their in situ location to drawpoints located at a production level. Thus, in caving methods, the flow characteristics of the caved rock are fundamental to determining the extraction layout design and the draw strategy. Identifying the best extraction layout includes determining the spacing between drawpoints.

In the literature there have been several attempts to determine the optimal spacing between drawpoints for block caving mines. Julin (1992) presented a guideline for spacing based on block/panel caving experiences worldwide. He estimated that the spacing should be on the order of 26 m to 236 m, being larger for coarser fragmentation. Hustrulid (2000) elaborated further on Julin’s method and established that the radius of the flow zone seemed to be in the range of 8 to 12 times the mean fragment size. Thus, for a mean fragment size of 0.5 m, he predicted an isolated draw zone of 10 m in diameter; this would also be related to the spacing between drawpoints. Both authors made a collection of current practices which do not necessarily represent optimal conditions. Laubscher (1994, 2000) suggested a relation between the size of the caved rock and the isolated draw zone diameter and its associated spacing to achieve interactive draw. Henriquez (1989) defined the drawpoint layout for Panel III at Codelco-Chile’s Andina Division using Laubscher’s method and considered the development costs for a range of potential layouts. Susaeta (2008) proposed a design guide for production level layouts in terms of the rock type, the layout, and the draw strategy required to minimize dilution. Lately Kvapil (2004) has proposed a graph to determine the diameter of isolated draw for three types of rock for block/panel caving mines. Other authors have proposed the use of flow emulators as tools that, through back analysis, may be used to determine drawpoint spacing. For example Castro et al. (2009) used FlowSim, a flow simulator, to determine the dilution entry. The flow model was validated with data from the Esmeralda and Inca Oeste mines in Chile.
Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine

A review of the different approaches and descriptions in the literature indicates that the selection of the drawpoint spacing depends on several factors including recovery estimates, dilution entry, geomechanical aspects, equipment size, and development costs. A summary of the different approaches is indicated in Table I. This table also includes a critical review of the above methods to help mine practitioners understand the information presented by the different authors. It is concluded that until enough full-scale experiments are conducted at caving mines (which may take several years to develop), the best option for selecting drawpoint spacing should be based on current practice and back analysis using numerical flow models. In this paper the authors propose a method that uses a flow model and takes into account both economic and technical factors to arrive at the optimal spacing. A study of the spacing for the New Mine Level at the El Teniente mine (NML) is presented as an example of the approach.

Drawpoint spacing based on recovery

The concept of drawpoint spacing based on recovery described in this paper is based on the concept of interaction of adjacent draw zones. In this concept, mass flow occurs only when adjacent flow zones are spaced so that they interact at a given height. This model of flow for caved rock is based on the results of a large physical model in which interaction was extensively studied using a large gravel model (Trueman et al., 2008). As shown in Figure 1, when a drawpoint is pulled at its base, a flow zone develops that could be characterized, among other variables, by the angle of flow. This angle can be calculated from the friction angle of the caved rock. The height of interaction can be calculated from the flow properties of the caved rock and the spacing as:

\[
HIZ = \left(\frac{d_p - w_p}{2} \right) \tan(\alpha)
\]

where \(HIZ\) is the maximum height at which flow zones intercept from the roof of the production level drift in metres, \(w_p\) is the width of the extraction drift in metres, \(d_p\) is the distance between adjacent drawpoints (drawbell, production, or drawpoint distance), \(\alpha\) is the angle of flow, and \(\phi\) is the friction angle of the caved rock.

As shown in Figure 1, the height of interaction is related to the spacing of the drawpoints \((d_p)\). The height of

![Figure 1—Draw at the base of a block cave. The ore expected to remain unrecovered due to a higher HIZ is shown in blue](image)

Table I

<table>
<thead>
<tr>
<th>Author</th>
<th>Input parameters</th>
<th>Fundamental basis</th>
<th>Allows ore recovery calculation</th>
<th>Considers stability</th>
<th>Costs included</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laubscher (1994)</td>
<td>Fragmentation</td>
<td>Sand models were used to establish a relationship between fragmentation and draw zone diameter</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>Interaction at 1.5 IDZ observed in sand models. Draw zones were not validated at mine scale</td>
</tr>
<tr>
<td>Laubscher (2000)</td>
<td>Fragmentation</td>
<td>Review of current practice at caving operations</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>Method based on current practice. This may not be the optimal condition</td>
</tr>
<tr>
<td>Herron (1989)</td>
<td>Fragmentation</td>
<td>Same as above</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>Based on 1. The spacing for Andina was chosen based on the development costs</td>
</tr>
<tr>
<td>Julin (1992, 1995), Hustrulid (2000)</td>
<td>Fragmentation</td>
<td>Drawpoint spacing used at different operations</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>Method based on current practice at 1992. This may not be the optimal condition</td>
</tr>
<tr>
<td>Susaeta (2008)</td>
<td>Fragmentation</td>
<td>Sand models and back analysis</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>Method based on current spacing and draw type draw conditions</td>
</tr>
<tr>
<td>Castro et al. (2009)</td>
<td>Flow parameters</td>
<td>Flow model</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>A flow current spacing and draw conditions model is used to build a dilution entry chart at different drawpoint spacing</td>
</tr>
<tr>
<td>Krup (2004)</td>
<td>Fragmentation</td>
<td>Sand models</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A chart is presented which includes the draw zone diameter as a function of fragmentation. There is no data to back up the information presented</td>
</tr>
<tr>
<td>Van As and Van Hout (2008)</td>
<td>REBOP parameters</td>
<td>Use of REBOP simulations</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>The influence of drawpoint spacing on recovery is presented. No comparison to actual data is presented</td>
</tr>
</tbody>
</table>
Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine

interaction is a very important concept in drawpoint spacing because it determines the potential recovery due to the spacing between adjacent draw zones.

As shown in Figure 2, when establishing the spacing in block/panel caving there are three distances that should be determined: the drawbell length \((d_l) \), the drawpoint drift \((d_{dp}) \) and the production drift distance \((d_c) \). Thus, the height of the interaction zone (and therefore the HIZ) changes along the section being measured. From a business perspective it is important to note that material beneath the zone interaction is not going to be recovered by the extraction level without changing the mining method, as for example the application of a front caving that may would occur at the end of the life of the mine. These two factors have an effect on the recovery of high-grade ore located near the extraction level.

A simple economic model to determine the optimal drawpoint spacing is presented below. Consider a mine that benefits from the extraction of copper and molybdenum. The income associated with a particular extraction configuration is given by:

\[
I = I_{CU} + I_{MD}
\]

where

\[
I_{MD} = R_{mine} R_{pre} A_{pre} \frac{P_{M2}}{100} \rho_{rock} A(H_c - d_c)\rho_{rock}
\]

\[
I_{CU} = R_{cu} R_{cu} \frac{P_{M2}}{100} \rho_{rock} A(H_c - d_c)\rho_{rock}
\]

is the column height \((m) \)

\(P_{Cu,Mo} \) is the copper and molybdenum grade \((%) \)

\(d_l \) is the distance between production and undercut level \((m) \)

\(\rho_{rock} \) is the in situ rock density \((\text{t/m}^3) \)

\(R_{cu} \) is the metallurgical recovery \((%) \)

\(R_{pre} \) is the mine recovery \((%) \).

In this equation, recovery is considered to be dependent on caved rock flow. The development costs \(D_c \) associated with a given number of drawpoints \(N_{dp} \) in a given area is given by:

\[
D_c = \left[c_{j} m_{x} F_{j} + c_{b} m_{y} F_{b} + \frac{C_{p} F_{c}}{2} + c_{dp} \right] N_{dp} + C_{pre} A
\]

where

\(C_{j} \) is the cost of drift through \((\text{US$ per metre}) \)

\(C_{b} \) is the cost of production drift \((\text{US$ per metre}) \)

\(C_{dp} \) is the unit cost of drawbell \((\text{US$ per unit}) \)

\(C_{pre} \) is the cost of undercutting, transport, and ventilation \((\text{US$ per m}^2) \)

\(m_{x} \) is the length of the trough drift associated to the drawpoint \((m) \)

\(m_{y} \) is the length of the production drift associated to the drawpoint \((m) \)

\(N_{dp} \) is the number of drawpoints in a given production footprint of area \(A \)

\(F_{j} \) is a factor related to an increase in the support costs due to instability at the production level with respect to a case base.

This increase in costs is related to the ratio to a case base the pillar area and tributary area of the pillar, that is:

\[
F_{j} = \frac{A_{p}}{A_{pp}} \frac{A_{t}}{A_{pt}}
\]

where

\(A_{p} \) is the pillar area \(\text{and} A_{t} \) is the tributary area, and

\(A_{pp} \) and \(A_{pt} \) are the most stable condition.

The benefit associated with a particular layout is given by:

\[
B = I - D_c - C_{mine}
\]

where

\(B \) is the operational costs associated with the extraction of minerals.

\[
C_{mine} = R_{mine} C_{ex} + A_{pre} A_{pre} \frac{P_{M2}}{100} \rho_{rock} A(H_c - d_c)\rho_{rock}
\]

\(C_{ex} \) is the sum of the extraction and processing costs \((\text{US$ per ton}) \)

\(A \) is the footprint area under study, \(m^2 \)

\(H_c \) is the column height, m

\(d_l \) is the distance between the production and undercut levels, m

Then the drawpoint spacing, which is determined by the drawbell length \((d_l) \), drawpoint drift spacing \((d_{dp}) \), and production drift distance \((d_c) \), should be that which maximizes the total benefit—that is, \(Max(B) \). From the above equations, the term that comprise the spacing are the flow of caved rock, which is that related to the recovery at the mine \((R_{mine}) \), and \(m_{x} \) and \(m_{y} \), which are the development lengths associated to a given drawpoint spacing.

Comparison of the flow model with El Teniente data

El Teniente’s sector layout and draw control

In this investigation we compared the small-scale flow model at El Teniente mine, considering the layouts and draw history of four sectors that have extracted coarse caved rock (Table II). In this table the distortion is defined as the ratio between the maximum and minimum distance between adjacent drawpoints; the drawpoint stability number is \((1-r) \% \), where \(r \) is the area excavation ratio for a given spacing \((r = A_{r}/A_{p}) \) and the drawpoint area of influence as \((d_l \times d_{dp})/2 \).
Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine

Those sectors extract competent ore with an RMR greater than 50. Validation of the methodology was carried out with draw control data from Esmeralda, Reservas Norte, El Teniente 4 Sur, and Diablo Regimiento (Figure 3). From the possible clusters, a selection was made based on the amount of sample data available based on the sampling rate and the presence or absence of drill holes. In the case of Teniente 4 Sur, only 6 of the potential 12 clusters were used due to sampling frequency (less than 3000 t between sampling at drawpoints). From those, the only sector that did not have drill holes in broken ore was Diablo Regimiento, so a simulation of the whole sector was carried out to estimate the error in determining the extracted copper grades.

The draw control data collected at El Teniente is based on diverse sources of information: metal content from sampling at drawpoints, dilution entry, and artificial markers. Additionally, to evaluate the ore left between drawpoints, it is usual practice to drill holes through the caved rock after draw has ceased in a given area. During the drilling campaign, the caved material precedence is usually identified by the geologist as either what is termed secondary ore (which is rounded and red in colour due to the presence of oxides and clays) and the primary ore (which is gray and breaks into angular fragments) (Seguel and Millan, 2004). The secondary rock is mostly remnant ore from previous extraction levels. In some areas there are also reports from the time when material from old workings (concrete, wood, rails) entered the drawpoints. This data is used to estimate the dilution entry point when available.

Height of interaction zone

The height of interaction may be determined, as described previously, as a function of draw angle (or friction angle) and distance. At El Teniente mine the height of interaction was calculated from the data observed through a drilling campaign used to define the copper grades and the lithology in the broken rock (Seguel and Millan, 2004). The data shows that the flow model had an error of 9 to 4 m for coarse caved rock, as indicated in Table III.

Mine production data

The interaction of adjacent flow zones as presented earlier has been included in REBOP, a flow model that could be used...
Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine

as a draw control tool for block caves (Pierce, 2010). REBOP considers not only the flow at the base of the drawpoint, but also the material movement due to different draw sequences. REBOP has been calibrated and validated with experimental results using a sensitivity analysis and compared to block caving operations (Pierce, 2009). In the present investigation, additional comparison to El Teniente sectors using the cluster concept was performed. Simulations were carried out using four sets of parameters as part of a sensitivity analysis (Vargas, 2010). The simulations were compared to historical data to determine the errors in the cluster analysis in terms of copper tonnage extracted, broken material entry, height of interaction, and the grades of the remnant ore. The estimation of relative and absolute error indicates that the estimated copper tonnage per month ranges from 0.1 per cent to a maximum of 24 per cent, with an average of 18 per cent and a mean square error of a 12 t of copper per month. For the Diablo Regimiento mine, it was possible to run a sector simulation including the propagation of the cave as it was observed during the initial part of the extraction. In this case the total error decreases from 30 per cent to 0.2 per cent, as the simulated dilution entry showed values near the actual measurements. This means that the incorporation of caving into the analysis could have a significant impact on determining dilution entry. Therefore, for forecasting of grades and dilution, a full analysis should be pursued. For drawpoint spacing analysis, a cluster analysis seems appropriate.

Primary ore recovery estimates

Before discussing of drawpoint spacing, as mentioned in this article, some definitions are required. Primary ore recovery is defined as the percentage of the in situ ore column or solid rock extracted during the mining process. The remnant ore is defined as the amount of reserves that are not extracted at the base of the production level and above the undercut level. The calculation of the extracted tonnage and the remnant ore is based on the overlap of adjacent draw zones and the HIZ, assuming interaction (see Table IV). The results demonstrate the effect of spacing between drawpoints on the ore recovery and the remnant ore estimates. The current production level layouts of Diablo Regimiento have a greater amount of potential remnant ore compared with Teniente 4 Sur, which has the smaller spacing.

Drawpoint spacing for the NML

Given the flow zone for a drawpoint it is possible to quantify the potential ore recovery for different production level layouts for distances between production drifts, drawpoint drifts, and drawbell length. For the NML we considered 24 possible configurations, each with a given primary ore recovery potential (see Table IV). The primary recovery estimate determines the potential remnant tonnage per drawpoint. It is noted that when the spacing between drawpoints increases, there is a greater amount of non-recoverable ore; this is because the separation is larger along the major apex, generating an increase in the height of the interactive zone (HIZ) and leaving more ore between drawpoints. As indicated in Table V, the extraction layout proposed for the project at the prefeasibility (30 m x 20 m) stage has a potential ore loss of 8 861 t. Simulated alternatives show that this situation can be improved by a smaller layout (30 m x 18 m) having a potential loss of 6 673 t per drawpoint, which is 2 188 t less than originally proposed.

To complete the study, an economic evaluation was performed based on the costs and benefits attained from the different configurations defined in the previous section. The evaluation was performed using ore recovery extraction per drawpoint and considers the costs of development and ground support. The economic analysis was performed based on an extraction layout located in an area of 1 700 000 m² and considering a column height of 240 m. The remnant ore matrix (Table V) was used to determine the ore to be extracted by each production level layout while Equations [4] to [9] were used to define the benefit for each configuration.

It is important to emphasize that the economic evaluation was conducted in terms of ore recovery and construction costs. Other topics, such as the productivity of the design, are more related to the ore pass spacing to achieve an optimal design. The results indicate that the optimal drawpoint spacing is 32 m x 20 m for a through length of 18 m.

Discussion and conclusions

This paper describes a technical and economic method to estimate the optimal drawpoint spacing for a panel caving mine with application to the New Mine Level of the El Teniente mine. Primary recovery estimates using the method indicate recoveries from 85 per cent to 97 per cent of the total column height. The proposed drawpoint spacing for the project at the feasibility stage is 32 m x 20 m with a drawbell length of 18 m. The drawpoint flow model has been derived

<table>
<thead>
<tr>
<th>Sector</th>
<th>Drill holes under analysis</th>
<th>Friction angle</th>
<th>Error, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmeralda</td>
<td>7</td>
<td>$\phi = 50^\circ$</td>
<td>9.0</td>
</tr>
<tr>
<td>Reservas Norte</td>
<td>4</td>
<td>$\phi = 30^\circ$</td>
<td>6.1</td>
</tr>
<tr>
<td>Teniente 4 Sur</td>
<td>6</td>
<td>$\phi = 50^\circ$</td>
<td>10.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector</th>
<th>Production level layout, m</th>
<th>Drawbell length, m</th>
<th>Primary ore recovery, %</th>
<th>Remnant ore/ drawpoint, t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmeralda</td>
<td>30 x 20</td>
<td>12</td>
<td>91.5–95.9</td>
<td>6 297–3 088</td>
</tr>
<tr>
<td>Reservas Norte</td>
<td>30 x 20</td>
<td>14</td>
<td>95.3–97.5</td>
<td>6 938–3 703</td>
</tr>
<tr>
<td>Diablo Regimiento</td>
<td>34 x 20</td>
<td>16</td>
<td>93.1</td>
<td>8 288</td>
</tr>
<tr>
<td>Teniente 4 Sur</td>
<td>30 x 17</td>
<td>11</td>
<td>85.9–95.1</td>
<td>5 611–6 965</td>
</tr>
</tbody>
</table>
Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine

from flow theory and experiments using gravel (Seguel and Millan, 2004) and the data supported by the current information at El Teniente. The results therefore will require to be confirmed by means of marker trial measurement at mine scale during the operational stage of the project. Regarding the height of interaction, in Figure 4 the proposed HIZ and Laubscher’s original HIZ for an RMR of 50 (and a range of RMR within the ore column) and the height of the caved rock estimated through drill holes for the different mines are presented. The results indicate that Laubscher’s proposed HIZ tends to overestimate the height of interaction for coarse caved rock. These results would need to be further confirmed by trials using markers, which are under way at various mines (Castro and Armijo, 2012).

Acknowledgements

We would like to thank Codelco for funding and for permission to publish this paper. Our thanks also go to El Teniente’s mine planning and draw control engineers, who contributed greatly to the ideas and to our understanding of the operational data presented in this article.

References

Table V
Remnant ore per drawpoint (tonnage)

<table>
<thead>
<tr>
<th>Drawbell length = 15 m</th>
<th>Drawbell length = 18 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc/dpe</td>
<td></td>
</tr>
<tr>
<td>18 m</td>
<td>20 m</td>
</tr>
<tr>
<td>30 m</td>
<td>6 673</td>
</tr>
<tr>
<td></td>
<td>11 219</td>
</tr>
<tr>
<td>32 m</td>
<td>8 688</td>
</tr>
<tr>
<td></td>
<td>10 867</td>
</tr>
<tr>
<td>34 m</td>
<td>7 573</td>
</tr>
<tr>
<td></td>
<td>8 836</td>
</tr>
</tbody>
</table>

Table VI
Relative decrease of benefit for different drawpoint spacings at the NNM

<table>
<thead>
<tr>
<th>d=15 m</th>
<th>d=18 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>0.7%</td>
</tr>
<tr>
<td>32</td>
<td>0.2%</td>
</tr>
<tr>
<td>34</td>
<td>0.5%</td>
</tr>
<tr>
<td>36</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

(*) is the maximum benefit scenario

Figure 4—Maximum and measured HIZ as a function of drawpoint spacing

Table V
Remnant ore per drawpoint (tonnage)

<table>
<thead>
<tr>
<th>Drawbell length = 15 m</th>
<th>Drawbell length = 18 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc/dpe</td>
<td></td>
</tr>
<tr>
<td>18 m</td>
<td>20 m</td>
</tr>
<tr>
<td>30 m</td>
<td>6 673</td>
</tr>
<tr>
<td></td>
<td>11 219</td>
</tr>
<tr>
<td>32 m</td>
<td>8 688</td>
</tr>
<tr>
<td></td>
<td>10 867</td>
</tr>
<tr>
<td>34 m</td>
<td>7 573</td>
</tr>
<tr>
<td></td>
<td>8 836</td>
</tr>
</tbody>
</table>

Table VI
Relative decrease of benefit for different drawpoint spacings at the NNM

<table>
<thead>
<tr>
<th>d=15 m</th>
<th>d=18 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>0.7%</td>
</tr>
<tr>
<td>32</td>
<td>0.2%</td>
</tr>
<tr>
<td>34</td>
<td>0.5%</td>
</tr>
<tr>
<td>36</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

(*) is the maximum benefit scenario

from flow theory and experiments using gravel (Seguel and Millan, 2004) and the data supported by the current information at El Teniente. The results therefore will require to be confirmed by means of marker trial measurement at mine scale during the operational stage of the project. Regarding the height of interaction, in Figure 4 the proposed HIZ and Laubscher’s original HIZ for an RMR of 50 (and a range of RMR within the ore column) and the height of the caved rock estimated through drill holes for the different mines are presented. The results indicate that Laubscher’s proposed HIZ tends to overestimate the height of interaction for coarse caved rock. These results would need to be further confirmed by trials using markers, which are under way at various mines (Castro and Armijo, 2012).

Acknowledgements

We would like to thank Codelco for funding and for permission to publish this paper. Our thanks also go to El Teniente’s mine planning and draw control engineers, who contributed greatly to the ideas and to our understanding of the operational data presented in this article.

References

