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Introduction

Consider measurement of a quality charac-
teristic of a batch of product, e.g. coal, by each
of two instruments. An application of
particular interest occurs when one is
considering the use of an online gauge as a
substitute for a traditional but, in the long run,
more costly and time-consuming sampling and
laboratory analysis procedure. In order to
judge the worth of a gauge, one would want to
know its precision and also whether there is a
bias between the results it reports and the
corresponding results reported by a conven-
tional sampling and analysis operation (the
reference instrument). The standard method
used to estimate gauge precision is the three-
instrument Grubbs1 method. This method
involves a comparison between results
produced by the gauge and corresponding
results produced by two independent reference

instruments. The landmark paper by Rose2 can
fairly be said to have led to the establishment
of the three-instrument Grubbs estimator as
the estimator of choice in the coal industry for
dealing with on-line analyser precision. Rose2

gives examples of how the reference
instruments may be arranged. Invariably, a
second, independent sampling operation is
required. Clearly, an additional sampling and
analysis operation entails significantly
increased costs for the duration of the trial. If
stopped-belt sampling is involved, there will
also be disruption of production.

Rose2 discusses briefly the possibility of
using a two-instrument Grubbs1 estimation
procedure, that is, where only one reference
instrument, instead of two independent ones,
is required. A problem with this method, also
alluded to by Rose2, is that the stability of the
resulting estimate is adversely affected by
large day-to-day variations in the coal quality.
Such variations often leads to an estimate of
gauge variance that is negative. The three-
instrument Grubbs estimator is not troubled by
the effect of day-to-day variation, as this is
eliminated by working with the pairwise
differences between results rather than with
the raw results. An obvious way to increase
the stability of the two-instrument Grubbs
estimator is to increase the duration of the
trial, i.e. the number of samples that are taken.
This, in general, is not cost effective.
Calculations based on realistic scenarios
indicate that hundreds of samples might be
needed in order to obtain an acceptably precise
estimate of gauge measurement error. The
question arises, therefore, whether there is
perhaps another way in which the stability of
the two-instrument Grubbs estimator might be
improved.
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The purpose of the present paper is to show that such an
improvement can indeed be effected under generally
prevailing operating conditions. To understand why such
improvement is possible, one should notice that in calculating
Grubbs estimators no use whatsoever is made of any prior
knowledge that may be available regarding the coal and
gauge measurement variances. In other words, there is an
implicit assumption that one knows nothing about the
properties of the coal analysis technique and of the gauge
measurements. In fact, statistical analysis of historical assay
results can provide a good prior estimate of coal sampling
and analysis variability and overall coal quality variability.
Furthermore, the gauge manufacturer invariably supplies
some guarantee regarding the precision of the gauge, which
implies that there is reasonably accurate information
available in that regard too. In any event, one can obtain a
preliminary estimate of gauge variance from variographic
analysis3 of the run of readings collected during the passage
of a number of lots which are used to calibrate the gauge.
Under normal circumstances, therefore, it will not be difficult
to produce a reasonable prior estimate, w, of the ratio, w0, of
true coal variance to true gauge measurement variance. We
will show that the two-instrument Grubbs estimator of gauge
variance can be improved substantially, at no extra cost, by
the simple device of sorting the observed pairs of
observations into a number of judiciously chosen subsets on
the basis of the estimated ratio w. Two-instrument Grubbs
estimators are then calculated within each of the subsets. 

The effect of the sorting into subsets is that coal quality
variation within any subset is smaller than the overall coal
quality variation, hence the effect on the variance of the two-
instrument Grubbs estimator is similarly smaller. When the
estimators from each of the subsets are averaged, an
estimator which has greatly reduced variance results. In fact,
the new estimator typically performs substantially better than
either of the Grubbs estimators. This finding has far-reaching
implications regarding the costs involved in an operational
comparison between an online gauge and a sampling and
analysis procedure. A two-instrument Grubbs estimation
using n laboratory results might be judged equivalent in cost
to a three-instrument estimation involving n/2 results from
each of two independent sampling and analysis operations.
The actual cost of taking the additional set of n/2 samples
will, however, be considerably greater because an automatic
sampler, which is likely to be available for taking the first
sample (instrument 2), is unlikely to be available for taking
the sample corresponding to instrument 3. Manual
acquisition of the instrument 3 samples will then be more
costly than the instrument 2 samples, and may also be biased
if cut manually from the stream of coal without using
stopped-belt sampling.

The new method proposed here is not a panacea,
however. It will be applicable only if reasonably accurate prior
knowledge of the extent of coal quality variability and of
gauge measurement variance is available. If the prior
information regarding either or both of these uncertainties is
far off the mark, the method could produce a grossly incorrect
estimate of gauge error. However, as remarked above, it is
seldom the case that reasonably accurate prior information is
not available. Hence, it will generally be safe to implement
the new method. The potential savings in respect of time and

additional sampling and analysis costs certainly make the
method worth considering as an alternative to the traditional
three-instrument Grubbs estimator.

Later we give an overview of the Grubbs estimation
methodology and provide examples of the numerical
calculations involved. We give a formal definition of the new
estimator. We also show how the standard error of the new
estimator is calculated. We use Monte Carlo simulation to
compare the variance of the new estimator to the variances of
the original two-instrument and three-instrument Grubbs
estimators. The results suggest that the new estimator can
perform substantially better than either of the Grubbs
estimators in terms of statistical efficiency. We also give an
example of the calculations required to determine ahead of
time the number of samples required to estimate gauge
precision with a pre-specified standard error. Finally, we
discuss how the data might be used to detect biases in the
gauge calibration.

The Grubbs estimators

Table I shows a small subset of a larger set of data collected
in a gauge evaluation. The rows, which correspond to
successive days, are determinations of the specific energy of
coal sampled from a moving stream by three instruments: an
online gauge, a mechanical sampling and laboratory analysis
procedure, and an independent manual sampling and
laboratory analysis procedure. (This data is used purely for
illustrative purposes and is not intended to reflect any
particular reality).

The three numbers (y x z) in any given row can be
represented by the following three equations:

[1]

where t denotes the (unknown) ‘true’ specific energy value of
the coal and g, l, and m denote the measurement errors
associated with the three instruments. The measurement
errors l and m associated with the two sampling and analysis
procedures consist of the sum of the sampling, preparation,
and analysis errors. For simplicity of presentation, we

�
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Table I

Illustrative data

Day y x z

1 24.23 23.57 25.17
2 25.14 25.06 24.54
3 24.74 24.40 24.54
4 23.12 22.54 23.46
5 25.95 25.47 23.50
6 25.57 25.66 25.24
7 25.46 25.21 24.78
8 23.21 23.38 24.81
9 24.56 24.44 25.82
10 25.99 26.36 24.32
Total 247.97 246.09 246.19
Mean y~ = 24.797 x~ = 24.609 z~ = 24.619



assume for the moment that no biases are present between
the three instruments. Bias is dealt with later. The extents of
the measurement errors are quantified by their respective
variances, denoted here by σg

2, σl
2, and σm

2, the primary
objective being to obtain a reliable estimate of σg

2. Notice that
none of the four variables of interest, namely g, l, m, or t are
observable. Thus, the challenge is to estimate σg

2 using only
the three observables y, x, and z. Towards this goal notice
that

[2]

which eliminates t from consideration, and that

[3]

where

[4]

Under the very reasonable assumption that the
measurement errors of the instruments are statistically
uncorrelated it follows that the expected value E(ε) is zero,
whence 

[5]

Here and elsewhere in the paper, the expected value of a
quantity denotes its average value over the ensemble
consisting of all its possible realizations. Consequently, it is
sensible to estimate σg

2 by the average of the n (= 10 in the
particular instance of Table I) observed realizations of the
quantity (y–x) × (y–z):

[6]

A small adjustment must be made to the last formula if
the presence of constant offsets (biases) between the
instruments is to be accommodated. Namely, each of yi, xi
and zi must be reduced by the corresponding mean over all
days (e.g.  yi must be replaced by y~i = yi – y ) and n must be
replaced by n – 1, so that 

[7]

Notice that the variances σ l
2 and σm

2  of the reference
instruments can be estimated in exactly the same way by

simply interchanging appropriately the roles of yi, xi, and zi
in the last formula. The standard error of σg

2 is given by
Grubbs1:

[8]

Table II sets out the calculation of σ̂g
2 for the data shown

in Table I.
We find σ̂g

2 = –0.217/9 = –0.024, which is not a useful
result and which in practice would be interpreted as saying
that the gauge measures specific energy with no error. Using
similar calculations, we find σ̂ l

2 = 0.138 and σ̂ m
2 = 1.645. One

explanation for the negative gauge variance estimate is that
the variances of the reference instruments are apparently one
to two orders of magnitude larger than the gauge variance. If
a reference instrument is of poor quality one can hardly
expect to obtain a useful outcome when evaluating against it
an instrument (such as a nuclear gauge) that has much
better precision, unless the number of samples is increased
from 10 to a substantially larger number. However, we will
see later that the new estimator gives a sensible result from
these 10 observations alone.

Rose2 recommends that in general at least 60 samples of
data should be gathered in order to obtain a useful estimate
of σg

2. If stopped-belt sampling is involved, this recommen-
dation implies a costly interruption of the normal production
process for an extended period of time. Accordingly, Rose2

considers also Grubbs estimation involving only y and x
observations (no data from stopped-belt sampling). That an
estimate of σg

2 can also be made in this setup follows upon
noticing that 

[9]

where now

[10]

Assuming that the two measurement errors are statis-
tically uncorrelated and also uncorrelated with the true value
t, then E(ε) is again zero and an argument analogous to that
used in the three-instrument case shows that σg

2 can be
estimated by

[11]
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Table II

Calculation of Grubbs estimate with two reference instruments

Day y/0 x/0 z/0 y/0–x/0 y/0–z/0 (y/0–x/0) × (y/0–z/0

1 –0.567 –1.039 0.551 0.47 –1.118 -0.528
2 0.343 0.451 –0.079 –0.108 0.422 –0.046
3 –0.057 –0.209 –0.079 0.152 0.022 0.003
4 –1.677 –2.069 –1.158 0.392 –0.519 –0.203
5 1.153 0.861 –1.116 0.292 2.269 0.662
6 0.773 1.051 0.618 –0.278 0.155 –0.043
7 0.663 0.601 0.159 0.062 0.504 0.031
8 –1.587 –1.229 0.194 –0.358 –1.781 0.638
9 –0.237 –0.169 1.205 –0.068 –1.442 0.098
10 1.193 1.751 –0.296 –0.558 1.488 –0.830
Total 0 0 0 0 0 –0.217

ε

ε

(y~i –x~i) x (y~i –z~i)

y~i x (y~i –z~i)

ε

ε
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The standard error of σ̂g
2 in this context is given by

Equation [8] with σ̂g
2 there replaced by 

[12]

The calculation of σ̂g
2 using only the data in the y and x

columns in Table I is set out in Table III.
We find σ̂g

2 = –0.889/9 = –0.099, which is again not a
useful result. The estimated standard error, calculated using
the prescription given Table III is 0.121 (it is a moot point
whether it makes sense to quote a standard error in respect of
a negative variance estimate). The result is indicative of the
statistical price to be paid for the benefit of eliminating a third
instrument—many more samples are typically required if a
useful estimate of gauge variance is to be made. Here the
primary reason for the negative variance estimate is the large
coal quality variance σt

2 that the Grubbs method estimates as
σ̂ t

2 = 1.168 (see Equation [12]). This happens because in a
two-instrument setup σt

2 functions essentially as the variance
of a fictitious third instrument against which the gauge is
being compared. The estimation method described in the next
section is a modification of the preceding two-instrument
(gauge and one reference instrument) Grubbs method that
ameliorates the effect of large coal quality variances.

The new estimator

In the interest of clarity we define our notation anew. A
typical value, y, reported by the gauge can be represented as 

[13]
where t denotes the true value of the quality characteristic in
question as seen by the gauge and g denotes the statistical
error intrinsic to gauge measurements. The latter error is
assumed to have a distribution with zero mean and variance
σg

2. Similarly, a typical value, x, produced by sampling and
laboratory analysis can be represented as 

[14]
where α + t denotes the true value as seen by the sampling
and laboratory analysis and where l, the statistical error due
to sampling and laboratory analysis, has a distribution with
zero mean and variance σl

2. Equation [14] incorporates the
possibility of a constant bias, α, between the results produced
by the two instruments. Note that neither of these two
equations tells us which of the instruments is, in fact,
producing biased readings. The standard error of the new
estimator will not be affected in any way by the presence of

such a bias. The data for analysis is a set of n (assumed to be
an even number) pairs of observations (y1, x1),..., (yn, xn)
obtained from n batches of coal. The true values of the
batches are not constant and are assumed to vary in a
statistical manner around a mean μ, the average long-term
analyte value as seen by the gauge, with a variance σt

2 which
quantifies the batch-to-batch variation.

Description of the estimation method

A general description of the method is given first, followed by
a numerical example. With each pair of observations (y, x),
associate a weighted average 

[15]

where the weight w is an a priori estimate of the numerical
value of the ratio 

[16]

From (13) and (14) we see that the conditional expected
value of d is

[17]

so that d serves as an indicator of the quality of the batch in
question. We have n such d-values. Arrange these in
increasing order of magnitude, d1 <L <dn say, and form the m
= n/2 subsets 

[18]

There are two observation pairs, denoted by (y1, x1) and
(y2, x2), associated with each subset. For each subset we
now calculate the corresponding two-instrument Grubbs
estimator using only these two pairs of observations, namely 

[19]

Doing this for each subset yields m estimates e1,..., em.
The new estimate of σg

2 is the average of these m estimates: 

[20]

The sampling and analysis variance may be similarly
estimated simply by interchanging the roles of y and x and
replacing σg

2 by σl
2in the preceding algorithm.

The motivation for sorting into subsets is that coal quality
variation within any subset is typically substantially smaller
than the overall quality variation, hence the effect on the
variance of the two-instrument Grubbs estimator is similarly
smaller. When the estimators from each of the subsets are
averaged, an estimator which has greatly reduced variance
results.

Numerical illustration

The calculation of the new estimator will now be illustrated
using the small set of specific energy (MJ/kg) determinations
shown in Table IV. Prior estimates of σt and σg are given as
1.15 and 0.23 respectively. (This data is used purely for
illustrative purposes and is not intended to reflect any
particular reality.) We used w = (1.15/0.23)2 = 25 in the
calculation so that d = 26x – 25y; see Equation [15].

Table V shows the five subsets of observation pairs and
Table VI shows the calculation of the ei value using Equation
[19].

�
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Table III

Calculation of Grubbs estimate with one reference 
instrument

Day y/0 y/0 – x/0 y/0 × (y/0 – z/0)

1 –0.567 0.472 –0.267
2 0.343 –0.108 –0.037
3 –0.057 0.152 –0.009
4 –1.677 0.392 –0.657
5 1.153 0.292 0.337
6 0.773 –0.278 –0.215
7 0.663 0.062 0.041
8 –1.587 –0.358 0.568
9 –0.237 –0.068 0.016
10 1.193 –0.558 –0.666
Total 0 0 –0.889

,...,

...

y~i x x~i



The mean of the five ei values is e = 0.0740, which is the
estimate of the gauge variance σg

2. In this particular instance,
we saw earlier that the standard two-instrument Grubbs
estimate is σ̂g

2 = –0.099, which is uninformative.

Standard error of the estimator

There is a simple formula for the standard error associated
with the new estimator, namely 

[21]

where

[22]

In the numerical example above, σ̂e = 0.1082 and the
standard error associated with the estimate e– = 0.0740 is
0.1082/      = 0.0484. In contrast, the standard error
associated with the standard two-instrument Grubbs
estimator of gauge variance is 0.121. This is about two and a
half times larger than the standard error of the new estimate.

We can also see from the fourth column in Table VII how the
improvement by the new estimator comes about. The coal
quality variance within a subset is estimated by
(y1–y2)(x1–x2)/2. The estimates of quality variance within
each of the five subsets are thus 0.571, 0.647, 0.347, 1.621,
and 0.147, with an average of 0.667. This is a little more
than half the overall estimated quality variance of 1.168
found earlier—see below Equation [12].

Equation [21] arises from the fact that the values e1, K,
em are, to good approximation, statistically uncorrelated and
have a common, albeit unknown, variance σe

2. The
mathematical details of the argument leading to Equation
[21] are available from the authors as a separate document.
Suffice it to point out here that the structure of d in Equation
[15] plays a crucial role in the analysis. The simulation
results shown later can be used to verify the result
empirically in three specific instances.

It will often be more convenient to estimate directly the
standard deviation, σg, rather than the variance, of the gauge
error. Then the estimate of σg is       with standard error

[23]

Thus, in the numerical example above, the estimate of
gauge error standard deviation is 

with an associated standard error of:

It is entirely possible, especially if σt is an order of
magnitude or more larger than σg, that some values among
the ei will be negative. When this occurs we simply eliminate
from consideration the negative ei values. Thus, the new
estimator is more properly defined as the average of the
positive ei. However, in calculating σ̂e we use all the ei, both
positive and negative. This safeguards a user against gaining
an over-optimistic impression of the precision of the
estimator. Of course, if σt is excessively large, then any two-
instrument method will fail because the effect of σt cannot be
eliminated entirely unless a third instrument is involved. In
the remainder of the paper we assume without further
mention that this modified version of the estimator is the one
under discussion. In particular, then m denotes the number
of positive ei values.

Efficiency of the estimator

The efficiency of the new estimator relative to the standard
two- and three-instrument Grubbs estimators will now be
illustrated by Monte Carlo experiments. The efficiency of the
new estimator is defined as the ratio of the variance of (either
of) the Grubbs estimators to that of the new estimator.
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Table VI

Calculation of the estimate from Equation [19]

Subset y1 – y2 x1 – x2 (y1 – y2)2 (y1 – y2)(x1 – x2) e

B1 1.11 1.03 1.2321 1.1433 e1 = 0.0444
B2 1.21 1.07 1.4641 1.2947 e2 = 0.0847
B3 0.90 0.77 0.8100 0.6930 e3 = 0.0585
B4 1.93 1.68 3.7249 3.2424 e4 = 0.2413
B5 –0.42 –0.70 0.1764 0.2940 e1 = –0.0588

Table V

The five subsets for calculation of the estimate

Subset Pairs y x

B1 1 24.23 (= y1) 23.57 (= x1)
4 23.12 (= y2) 22.54 (= x2)

B2 5 25.95 25.47
3 24.74 24.40

B3 7 25.46 25.21
9 24.56 24.44

B4 2 25.14 25.06
8 23.21 23.38

B5 6 25.57 25.66
10 25.99 26.36

Table IV

Ten pairs of specific energy determinations

Pair y x d Subset

1 24.23 23.57 6.91 = d1 B1

2 25.14 25.06 23.20 = d7 B4

3 24.74 24.40 16.08 = d4 B2

4 23.12 22.54 8.13 = d2 B1

5 25.95 25.47 13.44 = d3 B2

6 25.57 25.66 27.85 = d9 B5

7 25.46 25.21 18.77 = d5 B3

8 23.21 23.38 27.66 = d8 B4

9 24.56 24.44 21.49 = d6 B1

10 25.99 26.36 35.77 = d10 B5
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Monte Carlo simulations

The following parameter configuration is motivated by data
obtained in the evaluation of a PGNAA online coal analyser:
σg = 0.1179, σl = 0.3162, σt = 1.2808, and n = 94. Thus, the
value of w0 in Equation [16] is 117.85 (= 1.28022/0.11792)
in this particular instance. We simulated the estimation
procedure using seven different values of w in Equation [15],
namely w = 135.5, 129.6, 123.7, 117.9, 112.0, 106.1, and
100.2.

The first three and last three of the latter values
correspond to incorrect specification of the correct value wo
by 5%, 10%, and 15% respectively. Using normally
distributed random numbers, 1 000 samples were generated,
each consisting of 94 pairs of observations following the
given parameter configuration. The new estimate, e, was
calculated for each of the 1 000 samples using each of the
seven w-values shown above. Table VII gives the average
(third column) and standard error (fourth column) of the
1 000       -values in each instance. If the estimation
procedure is any good, then these averages should be close to
σg = 0.1179 and the standard errors should also be close to
what is predicted by Equation [23]. The latter predicted
values are shown in parenthesis in the last column. Also
shown in Table VII are the theoretical means and standard
deviations of the classical Grubbs estimators based on two
and three instruments respectively. In the latter case the
second and third instruments are assumed to have the same
standard deviation, namely 0.3162, while the sample size is
47. With two independent sampling and analysis procedures
a sample of size 47 involves 94 laboratory analyses, which
makes such a setup comparable to the two-instrument setup
in terms of the amount of available data.

Tables VIII and IX give the results when σt is increased to
3.1623 and decreased to 0.1179 respectively.

The preceding three tables show the excellent
performance of the new estimator compared to the Grubbs
estimators in a range of practically representative situations.
The Equation [23] for the standard error of the new estimator
seems also to produce standard error estimates that are close
to the ‘true’ standard errors, i.e. those obtained from the
simulated results. The following conclusions, which can be
established by mathematical calculations, are also supported
by the simulation results in the preceding three tables:
� If σt is not excessively large compared to σg, the new

estimator has smaller standard error than the three
instrument Grubbs estimator. At any given sample size

and value of σg
2, this superiority diminishes and will be

eventually lost when σt becomes sufficiently large
� If σt is large compared to σg (e.g. one order of

magnitude, typically the situation in practice), the new
estimator has smaller standard error than the two-
instrument Grubbs estimator. At any given sample size,
this superiority diminishes and will be eventually lost
when σt becomes sufficiently small (a circumstance
that rarely prevails in practice)

� Prior mis-specification of the ratio w0 (weight) by as
much as 15% does not lead to a bias of major signif-
icance in the estimation of σg.

Sample size determination

An important question in any gauge evaluation is how many
batches to interrogate in order to reach a more or less
definitive conclusion. In order to give practical content to the
term definitive, notice that in checking whether or not a
performance guarantee such as that the gauge error has
standard deviation less than σ0 is met, one does not simply
compare the estimate       of σg to the guarantee value σ0 and
reject the guarantee if       exceeds σ0. Since the gauge
precision is estimated from a finite amount of data, some
margin of error must be allowed regarding a final
pronouncement. Typically one would place an upper bound,
U, on the observed value of      , the estimator of σg, and
require that the latter should not exceed U. In statistical
terms, U is the upper limit of a, say 95%, one-sided
confidence interval, (0, U) , for σg: we wish to be 95%

�
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Table VII

Comparison of means and standard errors of the 
new estimator with those of two Grubbs estimators
(σg = 0.1179, σt =  1.2802, σ l = 0.3162)

Method Weight w Mean Std. err.

135.5 0.109 0.018 (0.016)
129.6 0.112 0.017 (0.016)
123.7 0.114 0.017 (0.016)

New 117.9 0.117 0.018 (0.016)
112.0 0.120 0.018 (0.016)
106.1 0.123 0.017 (0.016)
100.2 0.127 0.018 (0.016)

Grubbs (2 instruments) 0.118 0.191
Grubbs (3 instruments) 0.118 0.072

Table IX

Comparison of means and standard errors of the 
new estimator with those of two Grubbs estimators
(σg = σt =  0.1179, σ l = 0.3162)

Method Weight w Mean Std. err.

1.15 0.112 0.012 (0.011)
1.10 0.114 0.012 (0.012)
1.05 0.115 0.013 (0.016)

New 1.00 0.117 0.013 (0.012)
0.95 0.119 0.013 (0.012)
0.90 0.120 0.013 (0.012)
0.85 0.122 0.013 (0.012)

Grubbs (2 instruments) 0.118 0.026
Grubbs (3 instruments) 0.118 0.072

Table VIII

Comparison of means and standard errors of the 
new estimator with those of two Grubbs estimators
(σg = 0.1179, σt =  3.1623, σ l = 0.3162)

Method Weight w Mean Std. err.

82.73 0.102 0.040 (0.034)
791.4 0.107 0.038 (0.035)
755.4 0.111 0.037 (0.033)

New 719.4 0.113 0.039 (0.035)
683.4 0.115 0.037 (0.033)
647.5 0.121 0.034 (0.031)
611.5 0.123 0.033 (0.030)

Grubbs (2 instruments) 0.118 0.026
Grubbs (3 instruments) 0.118 0.072



confident that σg does not exceed the value U. Consider, for
instance, the measurement of specific energy which varies on
a batch-to-batch basis with a standard deviation σt = 
1.5 MJ/kg and a sampling and analysis standard deviation
known from past experience to be σt ≈ 0.6 MJ/kg. The
vendor’s guarantee is that the standard deviation of the
gauge error does not exceed σt = 0.2 MJ/kg. How many
batches (n) are required to come to an equitable decision if
one is willing to accept the guarantee only if       0.4?

From Equation [23] a 95% one-sided confidence interval
for σg has upper bound

[24]

Setting       = σ0 = 0.2, U = 0.4, and σe = σ0
2 = 0.04 and

solving for n gives n = 34.
It is illuminating to see what results if one contemplates

using the three-instrument Grubbs estimator in this case. If
each reference instrument interrogates k batches of coal, the
total number of assays involved is n = 2k. Assume for
simplicity that the two reference instruments have the same
measurement precision, namely σ l ≈ 0.6 MJ/kg. The standard
error of the Grubbs three-instrument estimator of σg is then 

[25]

Therefore, in this case,

[26]

Setting U = 0.4 and solving gives k = 69, that is, n = 2k
= 138, about double the number required by the new
estimator. This example serves again to illustrate the
potential savings to be had from implementing the new
method when reasonably accurate prior information on gauge
and quality variances are available. 

Detection of bias

The method of estimating precision described in the
preceding section allows for, and automatically takes account
of, a constant bias such as that represented by the term α in
Equation [14]. A more pernicious type of bias, namely a bias
of scale, must also be considered in the context of a two-
instrument setup. In an evaluation of an online gauge one
would, presumably, test for bias before proceeding to an
estimation of the instrument precision—there is little interest
in an instrument which produces an incorrect value with high
precision. To incorporate scale bias into the analysis we
replace Equation [14] by

[27]

Again, Equation [27] does not imply that the sampling
and analysis operation is responsible for the scale bias—bias
is defined relative to what the analyser is reporting as the
‘true’ coal quality. Only a separate bias test on the sampling
system could establish which of the two instruments is
responsible for any bias that may be detected.

A glance at Equation [27] suggests estimating β by least
squares from a regression of x (sampling and analysis result)
on t (true coal value). However, since t is unknown and since
σg

2 is typically quite small, it is natural to consider using y in
Equation [13] as a surrogate for it. The least squares
estimator of β in Equation [27], obtained by regressing x on
y, is 

[28]

Now β is in fact not an estimator of β at all. Instead, it
estimates

[29]

rather than β (recall the definition of w0 from [16]. The
situation is ameliorated by using instead the adjusted
estimator

[30]

where w is the prior estimate of w0. Then βw estimates φβ,
where 

[31]

rather than β. In most cases of practical import, that is when
w0 is a relatively large number, the factor φ is numerically
quite close to 1 even if w over- or underestimates the true
value w0 by as much as 15%. Suppose, for instance, w0 = 10.
Using a 15% overestimate of w0, namely w = 11.5, gives φ =
0.988, while using a 15% underestimate, w = 8.5, gives φ =
1.016. Thus in these two circumstances βw  estimates 0.998 ×
β and 1.016 × β respectively (while the unadjusted least
squares estimator β estimates 0.91 × β). In general, therefore,
it is not a serious mis-statement to say that βw in Equation
[30] estimates β. Setting  X = x × (1 + w)/w one sees that the
adjusted estimator βw is the least squares estimate of slope in
a regression of X on y. In most circumstances of practical
relevance, therefore, one can check for scale bias by applying
ordinary least squares methods to estimate the regression of
X on y. If scale bias is present, σg

2 cannot be estimated
directly by any of the methods discussed in this paper.

Summary and conclusions

A new statistical method for estimating the precision of an
online gauge that requires only one set of comparative
laboratory analysis results has been developed. The method
is substantially cheaper to implement than the often used
three-instrument Grubbs estimation method, which requires
two independent sets of comparative sampling and laboratory
analysis results. The method is also substantially more
efficient then the two-instrument Grubbs method. The
efficacy of the new method has been illustrated via Monte
Carlo simulation. Examples have been given that
demonstrate the calculation of the new estimate and its
standard error. Calculations required to determine ahead of
time the number of samples required to estimate gauge
precision with a pre-specified standard error have also been
shown. Finally, it has been shown how the data might be
used to check the gauge calibration for biases. The method is
applicable only if reasonably accurate prior information is
available in respect of the coal and gauge variances.
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