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Synopsis

The use of machine vision in the monitoring and control of
metallurgical plants has become a very attractive option in the last
decade, especially since computing power has increased drastically in
the last few years. The use of cameras as a non-intrusive
measurement mechanism not only holds the promise of
uncomplicated sampling but could provide more consistent
monitoring, as well as assistance in decision making and operator
and metallurgist training. Although the very first applications of
machine vision were in the platinum industry, no automated process
control has been developed for platinum group metals (PGMs) as yet.
One of the reasons is that to date froth features could not be related
to key performance indicators, such as froth grade and recovery.

A series of laboratory experiments was conducted on a
laboratory-scale platinum froth flotation cell in an effort to determine
the relationship between the platinum grade and a combined set of
image features and process conditions. A fractional factorial design of
experiments was conducted, investigating 6 process conditions,
namely air flow rate (x1), pulp level (x2), collector dosage (xs),
activator dosage (xs), frother dosage (xs) and depressant dosage
(Xe), each at levels. Videos were recorded and analysed to extract 20
texture features from each image.

By using artificial neural networks (ANN), the nonlinear
relationship between the image variables and process conditions and
the froth flotation grades could be established. Positive results
indicate that the addition of image features to process conditions
could be used as sufficient input into advanced model based control
systems for flotation plants.
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Background

The implementation of image analysis as an
aid in monitoring and control has been
investigated extensively due to its non-
intrusive nature and other potential benefits,
such as more consistent monitoring, higher
sampling rate, and shorter duration grade
estimates, and therefore quicker operator
response, operator and metallurgist training
and assistance in decision making. However,
comparatively few applications in automated
process control of flotation systems have been

One of the reasons is that to date froth
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features could not be related to key
performance indicators such as froth grade and
recovery. The research focus areas have been
the use of froth appearance to detect
predefined operational states (Moolman et al.
1995; Holtham et al. 2002; Cipriano et al.
1997, 1998; Van Olst ef al. 2000; Kaartinen
et al. 2006; Aldrich et al. 1997) and the
relation between the appearance and
operational variables and plant conditions
(Aldrich et al. 2000; Feng et al. 2000; Citir

et al. 2004; Barbian et al. 2007; Banford et al.
1998; Aldrich ef al. 1997). Although these
contributions are significant to our
understanding of the flotation process, few
have been implemented for automated control.
In this paper, we have aimed our efforts
towards the estimation of froth grade from
froth image data and process conditions.

We will briefly discuss the experimental
work and feature extraction in the next two
sections. Some explanation of the technique
used to investigate the relationship between
the features and flotation performance will
follow. We will end off with conclusions drawn
from this study.

Experimental work

A series of batch flotation test was done at the
University of Stellenbosch in South Africa on a
4.5 L Barker laboratory flotation cell equipped
with a fixed rotor and aerator unit. The ore
used was UG2 from Rustenburg provided by
Anglo Platinum.

The fractional factorial experimental design
was of the form 26-3 i.e. an 1/8th fraction of
runs generated by binary combination of six
factors measured at two levels as summarized
in Table L.
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Figure 1—Diagram of the experimental set-up showing the batch
flotation cell and camera on top

Table |

Fractional factorial design

Run X4 X2 X3 X4 X5 X6
1 - - + - + -
2 - + + + - -
3 - + - - - +
4 - - - + + +
5 + - - - - -
6 + + - + + -
7 + + + - + +
8 + - + + - +

The experiments were conducted in completely random
order to avoid biased results. The six variables considered
were air flow rate (x), pulp level (x3), collector (x3),
activator (x4), frother (xs) and depressant (txe). A series of
scoping tests were done to find the two levels for the design
in order to keep to a mass pull restriction. The mass pull
minimum should allow enough froth to be scraped off as a
sample and the maximum should not overflow the cell
spontaneously. The levels that were used are summarized in
Table IIL.

A representative sample of ore was milled in a 9L rod mill
to obtain the desired particle size. A grinding curve was
constructed for the particular ore to determine the milling
time necessary to obtain the desired particle size. Collector
(CuS04) was added to the mill to allow immediate contacted
with the freshly liberated precious metal. The pulp from the
mill was then transferred to the batch cell. The rotator was
set to a speed in order to maintain a well-mixed pulp. An
initial conditioning stage was performed in which the
specified amount of collector and activator was added and
allowed to condition for 2 minutes, after which the
depressant and frother followed suit. The air flow rate,
impeller speed and pulp height were then adjusted according
to specifications. After a froth build-up time of approximately
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30 seconds the first float was sampled, immediately followed
by the next.

According to the flotation procedure (Table 11, the froth
was scraped off every 20 seconds for a specified duration:
Float 1 lasted 2 minutes, float 2 was 6 minutes, float 3 was
12 minutes and the last two floats were 10 minutes each. The
third float was followed by a second conditioning with
different dosage specifications. The sampling of float 4 began
immediately thereafter. All the floats, a feed sample and the
remaining tails were filtered, dried and analysed for
platinum, paladium, copper and nickel.

Video recordings were made of the froth with the use of
the Sanyo Xacti, high definition (1280 x 720), waterproof
video camera, at a frame rate of 29.976 frames per second
(fps). A custom built LED light, consisting of a configuration
of six 1W LEDs, provided lighting in such a way as to
minimize the interference of ambient light. It was situated
approximately 25 cm above the cell.

Image analysis
Image acquisition

Each experimental run generated approximately 85000
images of size 1280 x 720. These images were processed off-
line on a standard PC using the Matlab 6.2 image processing
toolbox. Matrices with red, green and blue element values
representing each pixel for each frame were converted to
greyscale for further analysis.
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Figure 2—Ore grinding curve

Table Il

Laboratory flotation flow sheet (x indicates when
reagents are added)

t (min) Reagent addition
ollector | Activator [ Depressant [Frother

Take feed sample

Condition 1a 2 X X
Condition 1b 2 ‘ ‘

Measurements—pH, T(°C)

Air on (allow 30s froth build-up time)

Float 1 2 Scrape sample every 20 seconds
Float 2 6 Scrape sample every 20 seconds
Float 3 12 Scrape sample every 20 seconds
Condition 2a 2 X X

Condition 2b 2 ‘ ‘ X ‘ X
Float 4 10 Scrade sample évery 20 secohds
Float 5 10 Scrape sample every 20 seconds

Measurements—pH, T(°C)

Filter and sample

Tails ‘ ‘
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Table Il
Levels of factors used in the experiments
Variable High (+) Low (-)
Air flow rate (L/min) 6 4
Impeller speed (rpm) 1100 900
Pulp height (cm below cell lip) 2 3
Particle size (-75um) 60% 80%
CuSOq4 (97 66 54
1st conditioning (9/t)
SIBX (collector) 88 72
Senkol 65 (activator) 22 18
KU9 (depressant) 55 45
XP 200 (frother) 55 45
2nd conditioning(g/t)
SIBX (collector) 99 81
Senkol 65 (activator) 0 0
KU9 (depressant) 33 27
XP 200 (frother) 11 9
Feature extraction

A Grey level co-occurrence matrix was created from each
matrix of pixel intensities from which four features were
extracted: contrast, correlation, energy, and homogeneity.

The spatial grey level dependence matrix (SGLDM) is
based on the estimation of the second-order joint conditional
probability density functions, f(i,j,d,a), a = 0°, 45°, 90°,
135°. Each function is the probability of going from grey level
i to grey level j, given that the intersample spacing is d and
the direction is given by angle a. If an image has g grey
levels, then the density functions can be represented as g x &
matrices. Each matrix can be computed from a digital image
by counting the number of times each pair of grey levels
occurs with separation d and in the direction specified by a. It
is assumed that the textural information is sufficiently
specified by the full set of five spatial grey level dependence
matrices. Haralick et al. (1973) proposed a set of measures
for characterizing these matrices. The features (f, 7
settings (1-4), m: features (1-5)) are used most often. The
fifth feature of the proposed compilation, termed entropy,
created some difficulties in further analysis due to the zero
variance vectors it produces at settings 3 and 4, and were
therefore not included in the feature set. The remaining
features are described as follows:

Energy (fn1):

E=2 2001

Energy is a measure of the homogeneity of the image.
The diagonal and region close to the diagonal represent
transitions between similar grey levels. Therefore, for a more
homogeneous image the matrix will have a large number of
large entries off the diagonal, and hence the energy (£) will
be large.

Entropy (fu,2):

e= _EE[ g(i.j.d.a)-log(g(i, j.d ,a))] 2]

The entropy is a measure of the complexity of the image,
i.e. a complex image tends to have a higher entropy value
than a simple one.

Inertia (fn3):

fli,j.d, a [1]
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1= EE[ i—] l_],d a)] [3]

The mertla is a measure of the number of local variations
in the image. Therefore an image with a large number of local
variations will have a larger value of inertia.

Local homogeneity (fn4):
LH = EE[ fijd.a)(1-(i+ )] [4]

Homogeneity is the measure of the tendency of similar
grey levels to be neighbours.

Correlation (fy,5):
COR = 22[(1 )i~ ){ £ G j,a’,a)/(axoy))] [5]

Correlation is a measure of the grey level linear
dependencies in the image. u, and o, are the mean and
standard deviation of the row sums of the matrix, and uy and
oy are the mean and standard deviation of the column sums.

Each of these features were calculated at five different
image settings: default greyscale (s1), histogram equalized
(s2), contrast enhanced (sz) and binary (s4) resulting in a
total of 20 image features (see Figure 3).

Histogram equalization improves the contrast of images.
The intensity values of the pixels are transformed so that the
histogram of the output image closely matches a specified
histogram.

Contrast enhancement increases the contrast of the
output image by adjusting a grey scale image to a new set of
values so that 1% of data is saturated at low and at high
intensities of the input image.

Binary images are obtained with the application of a pixel
intensity threshold. A global threshold is chosen to minimize
interclass variance of black and white pixels (Otsu’s method).
Pixel values that are smaller than the threshold value will be
given the smallest value (black); the opposite is true for
larger values.

The representative features for the floats were extracted
from the data and the average number of observations per
run was approximately 17 400. The grade for each float was
assumed to be the same for all the representative images
during that sampling duration. The final data-set used for
each run was as illustrated in Figure 4.

Incidentally, traditional segmentation techniques, e.g.
watershed segmentation, could not be applied successfully to
the images due to the froth appearance. From Figure 3 it is
evident that the bubbles are very small and therefore not all
of them had clearly identifiable reflection points.
Furthermore, the bubbles are not heavily loaded therefore a
lot of clear windows are visible and in some instances appear
darker than the bubble edges. These shortcomings prohibited
the identification of markers and subsequent detection of
edges.

Relationship between features and froth grade

Artificial neural networks (ANNs) is a nonlinear function
mapping technique that has grabbed the attention of many
researchers since its appearance. It is effective technique, yet
simple to unfold and not computationally expensive.

A multilayer perceptron (MLP) network usually consist of
three layers of nodes as illustrated in Figure 5. Each node
links to another node with a weighted connection, w().

X is a set of n-dimensional input vectors:
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(d)

(e)

Figure 3—A froth image at the different settings: (a) RGB image, (b) Gray scale/intensity image, (c) histogram equalized image, (d) contrast enhanced image

and (e) binary image
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fifh 564 fs fs 5 fsfo flo...

s S
T Float 1 [+ 735x16] Grade float 1
i Float2 [+2205x 16] Grade float 2
é Float3 [+£4410x 16] Grade float3
; Float4 [+3675x 16] Grade float 4
- Float5 [+3675x16] Grade float 5

[ 17400 x 16 ]

Figure 4—lllustration of the data-set structure for an experimental run

X={x,}.p=123..P

6
x =[5 2, [6]
Y is a set of &-dimensional output vectors:
Y= ,p=12,3,...P
{yl—"} p [7]

y=[¥:Y2 Y502

¢ is a set of m activation functions,

WH is the network weight matrix of size m x / referring to
the weights between the input and hidden nodes. W is the
network matrix of size m x & referring to the weights between
the hidden and output nodes. The network function for the
kth output can therefore be formally expressed as:

M N
Y=o (EWL P, (2 WX]) [8]

m=0 n=0

The performance of an ANN is measured by the root-
mean-square error (RMSE) which is also the function to be
minimized. Since this is a minimization problem, general
algorithms for unconstrained optimization can be used
(Ripley, 2009).

N SSE, [9]
NK

N refers to the training vector number (i.e. observation)
and SSE; is the sum-square error of the 7th training vector for
all K output nodes:

RMSE =
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K
SSE, = E (yx'ue,k = Yoredk ) [10]

k=1

The weight matrices (W and W°) are initially
randomized. A subset of the input data-set is applied to the
network input nodes and the outputs of the hidden and
output nodes are calculated. The SSE is calculated as in
Equation [10] upon which the weight matrices are updated
using the optimization framework. The procedure is repeated
for the remaining input data-set to calculate the RMSE which
completes a single iteration. A number of these iterations are
necessary to minimize the RMSE (Kalyani et al. 2008).

The R2 value was used as indicator of accuracy and is
simply the squared value of the correlation coefficient of the

predicted and true grade value sets:

R2 -1- E?(yn-ue,i _ypred,i) [11]

E ;!(ylrue.i - ytrue)

Results

The relative assay results from the experimental runs are
shown in Figure 6. The data-set consisted of 10 000
observations and it was divided into three sets to be used for
training, testing and validation of the model.

Hidden Layer

Input Layer

Output Layer
(N

Pk

Figure 5—Multilayer perceptron neural network
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The testing results show an average R2 value of 0.943.
Each experiment represents a different set of plant conditions
and the results in Table IV indicate that, under steady state
conditions, a neural network would be able to give
reasonable estimates of the grade of the froth.

For the experimental study each neural network input
layer had 19 dimensions (M=19), consisting of the 19 texture
features (the binary entropy had to be omitted from the data-
set due to a standard deviation of 0). A number of possible
network architectures were tested for each experiment to
determine the appropriate amount of hidden nodes (#) and
the activation functions. The error function (RMSE) was
minimized using the error-back-propagation algorithm using
a gradient-descent technique. The best performing networks
are summarized in Table V.

The neural network built on the textural features
performed well with an average R2 value of 0.943 from which
it was evident that the grade can be predicted reliably from
image information alone.

With a video camera installed on the plant, new image
data may be introduced to the model to provide an estimate
of the froth grade. However, significant changes in the
process conditions would require retraining of the model, as
would typically be required on a plant, where process drift
and other changes related to process disturbances or changes
in equipment would be encountered.

Conclusions

The results show that ANN modelling is an effective way of
predicting flotation froth grade. It should, in theory, be
relatively easy to implement as an inverse model for control
due to the known activation functions and weights, or as the
basis for advanced control dependent on a model. These
possibilities are being explored for implementation at Anglo
Platinum. The additional advantage of low computational
expense makes this an ideal technique to consider for
potential online application.
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Table IV
Neural network results summary
N-M-K R2 testing Hidden layer activation function (¢m) Output layer activation function (¢x)
Run 1 19-16-1 0.952 Logistic Logistic
Run 2 19-12-1 0.917 Logistic Logistic
Run 3 19-8-1 0.877 Tanh Logistic
Run 4 19-17-1 0.831 Tanh Logistic
Run 5 19-12-1 0.995 Tanh Tanh
Run 6 19-15-1 0.990 Tanh Identity
Run 7 19-17-1 0.989 Logistic Logistic
Run 8 19-15-1 0.991 Tanh Tanh
Average 0.943
The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 111 FEBRUARY 2011 85 R |

o

T
r
a
n
s
a
c
t
i
o
n






