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Introduction

Each sub-system of mine production cycle will
affect the availability of the production system.
Many failures or disturbances occur in these
sub-systems depending upon equipment type
and properties, mining method, geological
structure and rock characteristics. Possible
problem sources of each sub-system are
summarized shortly as follows:

➤ Drilling is the first process of the mining
cycle and aims to open holes within rock
masses. Drilling equipment features such
as drill power, blow energy, rotary
speed, thrust, rod design and fluid
properties, and drilling patterns such as
hole size, length and inclination will
have influence on the system reliability.

➤ Blasting is a well-known rock fragmen-
tation method performed in mining
operations. In addition to rock properties
and water conditions, other parameters

affecting the reliability are explosives
characteristics such as type, strength,
detonation velocity, density, water
resistance and detonation pressure. 

➤ When the rock is fragmented, the
materials are loaded to a transportation
vehicle. In this sub-system, the
properties of loading equipment, such as
bucket capacity, travel speed, digging
range and available power, are
significant reliability parameters.

➤ Materials loaded are transported by
haulage (horizontal) or hoisting
(vertical). The performance is charac-
terized by haul distance and properties
of operation equipment.

➤ If there is no appropriate ventilation in
an underground operation, the processes
described above cannot be implemented.
The availability parameters of process
are determined by air quantity and
speed, properties of ventilation
equipment, size of openings and rock
properties.

➤ Another vital sub-system is the support
design, which is affected by opening
sizes, support material, rock properties
and types. 

System reliability is defined by the
reliabilities of sub-systems and the way sub-
systems are configured. If the system
reliability is below the acceptable reliability
level, some environmental, financial and safety
problems may take places. For instance, the
operation may experience gas, dust and noise
disturbances, subsidence in the ground, the
collapse of mine walls, unsafe medium for
personnel and delaying ore delivery. In order
to avoid these problems, the mining company
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has to take action to prevent losses in an appropriate timing.
The determination of maintenance time is a significant
decision making problem. If you take action too early, it will
be an unnecessary cost to the company. In other words, the
company will prefer delaying this reconstruction as long as
possible to maximize net present value of the venture. If the
action timing is too late, unavoidable accidents, negative
environmental impacts and financial losses will occur. In
order to increase the system reliability via maintenance, the
controllable variables described in the sub-systems should be
improved. This improvement, of course, requires cost.
Depending upon sub-system complexity, geological and
geomechanical factors, and technological restrictions, improv-
ability of each sub-system varies. The relative importance of
each sub-system is determined by the feasibility concept1 and
is given as:

[1]

where IR,i is the feasibility of item i and, Rs and Ri are the
reliabilities of system and item, respectively.

Because of the reasons given above, some sub-systems
can be improved more cost-effectively. The level of improv-
ability depends upon whether disturbance factors are
controllable or uncontrollable. As the feasibility increases, the
improvement to the cost of the system also increases. The
reliability analysis concerns the determination of the
probability density function (pdf) of the system, the
calculation of failure rates, mean time to failure (MTTF) and
mean time to repair it (MTTR), finding reliability importance
of sub-systems, reliability allocation and the development of
a risk measure. There are many researches on reliability in a
mining context2–9. These researches mostly focus on the
analysis of MTTF and MTTR. In the first stage of these
researches, the system is defined and sub-systems are
identified and coded. Then, data are analysed for verification
of the identically and independently distributed (IID)
assumption. A theoretical probability distribution is fitted to
MTTF and MTTR data for sub-systems. Finally, reliability
parameters of the system and each sub-system are estimated.

This research takes a further step in mining reliability
analysis. Using the parameters of the distribution fitted to
mining data, an optimization model is developed in such a
way as to determine the best action time at minimum
maintenance cost.

Model

The objective is to find the optimum time of mine
reconstruction in such a way as to minimize the total cost
required to improve the system under the constraint of
minimum acceptable system reliability. The problem is
formulated as follows:

[2]

[3]

subject to

[4]

[5]

[6]

where
S the number of sub-systems
N the number of items in each sub-system
t maintenance time (decision variable, in years)
αij shape parameter of item j in sub-system i
βij scale parameter of item j in sub-system i
γij location parameter of item j in sub-system i
Rij(t) reliability of item j of sub-system i at time t
fi feasibility of increasing reliability of sub-system i
Rs(t) the system reliability at time t
Rreq minimum acceptable reliability

The following assumptions are made:

➤ The system involves s-independent sub-systems
➤ The system and its sub-systems can be expressed only

in two states: failed or operational
➤ Only the failure properties of the sub-systems are

considered
➤ The overall system cost is the summation of individual

sub-system costs.

This objective function is valid for Weibull and
exponential distribution, which are the most common distrib-
utions in reliability analysis. If the shape parameter, αij, is
equal to one, Weibull distribution is reduced to exponential
distribution. The selection of exponential distribution refers
to constant failure rate. However, the selection of the Weibull
distribution refers to an increasing failure rate. The shape
parameter gives a measure of evolution of failure rate. For
other distributions, if required the objective function can be
modified easily. This problem is a nonlinear problem and
cannot be solved by standard commercial linear programming
software. Therefore, metaheuristics such as GA are as an
alternative solution approach.

Optimization procedure

The problem is solved by the GA, which is a stochastic search
algorithm that mimics the process of natural selection and
genetics10–15. The GA has exhibited considerable
achievement in yielding good solutions to many complex
optimization problems. GA is especially useful for optimizing
nonlinear models or large domain problems16,17. That is,
when the objective functions are multi-model or the search
space is irregular, highly robust algorithms are required so as
to avoid trapping at local optima. The GA can reach the global
optimum fairly. Furthermore, the GA does not require the
specific mathematical analysis of an optimization problem.

The significant steps of GA are initialization process,
objective (fitness) function evaluation, the selection process,
crossover and mutation processes. The GA is an iterative
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algorithm that yields a pool of solutions at each iteration.
Firstly, the pool of initial solutions is generated at random. A
new pool of solutions is created by the genetic operators at
each new iteration. Each solution is evaluated with an
objective function. This process is repeated until the
convergence is reached. The GA has been used for various
mining problems such as production scheduling18, the
selection of process location19 and the determination of
production rates20.

A solution is called a chromosome or string. The GA with
an initial set of randomly generated chromosomes is called a
population. The number of individuals in the population is
called the population size. The objective function is known as
the evaluation or fitness function. A new population is
created by the selection process using some sampling
mechanism. An iteration of the GA is called a generation. All
chromosomes are updated by the reproduction, crossover and
mutation operators in each new generation. The revised
chromosomes are also called the offspring.

A simple algorithm of the GA consists of the following
steps:

1. Initialize population size, crossover and mutation
probabilities and rank-based evaluation parameters  

2. Generate an initial population of strings
3. Evaluate the string according to the fitness function
4. Apply a set of genetic operators to generate a new

population of strings
5. Select the chromosomes by roulette wheel
6. Go to Step 2 until the solution converges. 

Binary or floating vector can be used as the represen-
tation structure in the GA. In this research a floating vector
represents a real value of a decision variable as a
chromosome because binary coding has received substantial
criticism21. When the values of the decision variables are
continuous, it is necessary to represent them by a floating
vector. Furthermore, real-valued GA can ensure the values of
decision variables to the full machine precision. The real
valued GA also has the advantage of requiring less storage
than the binary valued GA. As the number of bits in binary
coding representation increases, the storage becomes
important. The representation of the fitness function in real
valued GA is also more accurate as a result.

The length of the vector of the floating number is the
same as the solution vector. The chromosome V=(x1, x2,…,xn)
represents a solution x = (x1, x2, …, xn) of the problem where
n is the dimension. In order to solve the problem by the GA,
each solution is coded by a chromosome V(x1, x2,…,xn). A
pre-defined integer population-size, which is the number of
chromosomes, is initiated at random. Until the pre-
determined population size is reached, the feasible solutions
are accepted as chromosomes in the population. Then the
fitness value of each chromosome is calculated. The
chromosomes are rearranged in ascending order on the basis
of the fitness values.

Now the parameter, a, is initiated in the genetic system.
The rank-based evaluation function is defined as follows:

[7]

When i = 1 represents the best individual, i = population-
size is the worst individual.  The reproduction operator used
herein is a biased roulette wheel, which is spun population-
size times. A single chromosome is selected in each spin for a

new population. The roulette wheel is a fitness-proportional
selection. The probability of being selected is given by
modifying Equation [7] to 
P(Vi) = a(1-a)i-1/[1-(1-a)population-size. 

This population is updated by the crossover and mutation
operators. First of all, the crossover probability, Pc, is defined.
Pc* population-size gives the expected value of the number of
chromosomes undergoing the crossover process. In order to
carry out this process, random numbers, ri, are generated
from interval [0, 1] in i = 1, population-size. If ri is smaller
than Pc, Vi is selected as a parent. The selected chromosomes
are randomly grouped as pairs. If the number of selected
chromosomes is odd, one of them is removed from the
system. The crossover procedure is performed on each pair.
Let the pair (V1, V2) be subjected to the crossover operation.
Firstly, a random number, r, is generated from the interval
(0, 1). Then the crossover operator will yield two children X
and Y as follows:

[8]

The feasibility of each child is checked. If so, the child is
accepted. 

The mutation operator is implemented on the new version
of the population. Similar to the crossover operation, a
mutation probability, Pm, is defined. Pm* population-size
gives the expected value of the number of chromosomes
undergoing the mutation operation. In this procedure a
random number, ri, is generated i = 1 to population-size from
the interval [0, 1]. If ri is smaller than Pm, Vi is selected as a
parent for the mutation. A random direction, d, is generated.
The selected parent will be mutated by V + M*d in this
direction. If V + M*d is not feasible to the constraints, M is
set as a random number from interval [0, M] until it is
feasible. If this procedure does not manage to find a feasible
solution in a predetermined number of iterations, M is set to
zero. 

Thus one generation is completed. The whole procedure
is implemented up to the predetermined number of iterations.
After finishing the program, the best solution is reported as
the results yielding the best time to take action with a
minimum cost. The best chromosome may not appear in the
solution converged. Therefore, the best solution should be
kept as from the beginning of procedure.

Case study

The approach was demonstrated in a case study. The data
were collected from the annual repair and maintenance
reports of an underground mine operated in seven basic
operations: hoisting, ventilation, drilling, blasting, loading,
hauling and supporting (Figure 1). For each sub-system a
theoretical distribution was fitted by EasyFit 4.0 and the
corresponding distribution parameters were given (Figure
2–13). For all sub-systems, a Weibull distribution was fitted.
Given that the reliability decreases with time, this is a
rational assignment. The objective was to find the best
maintenance time in such a way that the cost of increasing
reliability was at a minimum. In the optimization procedure, a
parameter indicating feasibility or relative importance of sub-
systems with respect to the overall reliability of the system
was initiated. As feasibility increased, the improvement of
sub-system would be more costly (Figure 14). Data including
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Figure 1—Illustration of the mining system

Figure 2—Reliability function for hoisting

Figure 3—Reliability function for ventilation

Figure 4—Reliability function for hauling 1

Figure 5—Reliability function for hauling 2

Figure 6—Reliability function for blasting 1

Figure 7—Reliability function for blasting 2
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Figure 8—Reliability function for drilling 1

Figure 9—Reliability function for drilling 2

Figure 10—Reliability function for loading 1

Figure 11—Reliability function for loading 2

Figure 12—Reliability function for support 1

Figure 13—Reliability function for support 2
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the distribution type and parameters, feasibilities and GA
control parameters are given Table I. A computer program
was written to implement the optimization procedure to solve
by GA in FORTRAN.

There is no a clear rule for the selection of control
parameters (the population size, parameter a, crossover and
mutation probability). Therefore, the parameters were
determined by an iterative approach. The fitness values
versus the values of parameters are given in Figure 15. The
population size, parameter a, crossover and mutation
probabilities were selected as 25, 0.5, 0.25, 0.15 for 55%,
respectively. It was observed that small population size led to
the GA to quickly converge at a local optimum. On the other

hand, large population size was prohibitively time
consuming. With a high the parameter a, crossover and
mutation probability converted the GA into a random search.
With a low parameter a, crossover and mutation probability
trapped at local optima. Figure 16 shows how the fitness
value changes with the number of iterations. For all
minimum acceptable reliabilities, the GA procedure started
converging at about 3 000 iterations.

The procedure was repeated 3 000 times in approximately
10–15 minutes; the best solutions are given in Table II. For
different specified system reliabilities, the evolution of
optimal maintenance time is given in Figure 17. The cost of
improvement will be higher in low reliabilities.

Conclusions
In order to avoid important environmental, safety, quality
and contractual losses, the mining production system should
be, at least, operated at a minimum acceptable reliability
level. When the reliability level decreases below a predefined
level, the operation will be jeopardized. Therefore, the mine
should be reconstructed to prevent possible problems. In this
research, the optimal maintenance time is determined at
minimum cost under the constraint of minimum acceptable
reliability. This problem was formulated as a constrained
optimization problem and solved by the GA. The results
showed that the GA was a very powerful method to
determine the maintenance time of a mine. The approach can
be used easily for more complex systems.

▲
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Table I

Parameter file

25 \number of chromosome
3000 \number of iterations
12 \number of subsystems
2 \number of series subsystems
5 \number of parallel subsystems
3 \number of parameters in weibull (alpha, beta, gama)
1 \number of subsystems in each series subsystem
2 \number of subsystems in each parallel subsystem
5.8292    14.7320     -7.6616 \weibull parameters for hoisting
2.8031      9.1095       0.0 \weibull parameters for ventilation
2.0293      7.5664       0.0 \weibull parameters for hauling in production face 1
1.9871      7.7942       0.0 \weibull parameters for hauling in production face 2
2.7351      6.5495      -0.7336 \weibull parameters for blasting in production face 1
2.7167      6.6404      -0.7534 \weibull parameters for blasting in production face 2
2.7916      8.2067       0.0 \weibull parameters for drilling in production face 1
2.8215      8.2356       0.0 \weibull parameters for drilling in production face 2
19.4230   40.5890    -32.833 \weibull parameters for loading in production face 1
19.3343   40.3890    -33.007 \weibull parameters for loading in production face 2
87.9940 183.4600   -175.5500 \weibull parameters for support in production face 1
19.4230   40.5890    -32.833 \weibull parameters for support in production face 2
0.75 \feasibility for hoisting
0.50 \feasibility for ventilation
0.65 \feasibility for hauling in production face 1
0.67 \feasibility for hauling in production face 2
0.88 \feasibility for blasting in production face 1
0.82 \feasibility for blasting in production face 2
0.67 \feasibility for drilling in production face 1
0.71 \feasibility for drilling in production face 2
0.58 \feasibility for loading in production face 1
0.51 \feasibility for loading in production face 1
0.66 \feasibility for support in production face 1
0.69 \feasibility for support in production face 1
0.05 \parameter (a-(1-a)i-1)
0.25 \crossover probability
0.5 \a large positive number required for rank-based evaluation
0.15 \mutation probability
0.50  0.55  0.60  0.65  0.70  0.75  0.80  0.85  0.90 \minimum acceptable  reliability
10 \mine life

Figure 14—Effect of feasibility on cost

Sub-system reliability
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Table II

Sub-system reliabilities, cost and maintenance time for given minimum acceptable reliability

50% 55% 60% 65% 70% 75% 80% 85% 90%

Hoisting 0.815 0.830 0.845 0.859 0.876 0.888 0.902 0.918 0.936
Ventilation 0.931 0.940 0.949 0.956 0.964 0.971 0.979 0.986 0.992
Hauling 1 0.805 0.823 0.840 0.858 0.876 0.895 0.914 0.935 0.959
Hauling 2 0.810 0.827 0.843 0.861 0.878 0.896 0.915 0.936 0.959
Drilling 1 0.730 0.756 0.782 0.807 0.832 0.858 0.885 0.913 0.944
Drilling 2 0.733 0.760 0.784 0.809 0.834 0.860 0.885 0.913 0.943
Blasting 1 0.907 0.920 0.931 0.942 0.952 0.962 0.971 0.981 0.990
Blasting 2 0.910 0.922 0.933 0.944 0.954 0.963 0.973 0.982 0.990
Loading 1 0.887 0.897 0.906 0.915 0.924 0.932 0.941 0.950 0.960
Loading 2 0.863 0.876 0.887 0.897 0.907 0.918 0.928 0.939 0.951
Support 1 0.886 0.895 0.904 0.912 0.920 0.929 0.937 0.945 0.955
Support 2 0.887 0.897 0.906 0.915 0.924 0.932 0.941 0.950 0.960
Cost 15.90 15.61 15.32 15.03 14.75 14.45 14.13 13.79 13.39
Maintenance time 3.56 3.38 3.19 2.99 2.79 2.56 2.30 1.98 1.57

Figure 17—Evolution of maintenance time versus minimum acceptable reliability

Figure 15—Evolution of fitness value with the control parameters

Figure 16—Evolution of fitness value with the number of iterations

Number of iterations
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