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Introduction

Lonmin treats a wide variety of concentrates
and recycled materials (reverts, dusts, slag mill
concentrates, etc.) in its smelting furnaces.
This leads to a variable feed composition that
influences the conductivity/resistivity of the
slag melts obtained. Historically, Lonmin made
use of XRF to obtain the total elemental
chemistry of the furnace feed. However, the
association of particularly iron with oxygen,
silica, chromium and sulphur in its various
oxide, sulphide, chromite, and silicate forms
posed a convoluted problem that could not be
simplified without additional analysis,
particularly to make a split in oxidic iron and
sulphidic iron. The oxidic iron contributes to
the slag phase whereas sulphidic iron
contributes to matte fall. A highly variable
matte fall in itself is highly problematic as
matte may build up above the slag tap line,
and lead to explosion hazards during slag
granulation. Moreover, a rapidly increasing
matte fall causes problems with ladle logistics
when ladles are rotated between the furnaces
and the Peirce-Smith converters.

In recent research1 it was shown that the
conductivity of melter slags in the PGM
industry is the most sensitive to the amounts
of ferrous iron and silica in slags, as well as
the slag temperature. Ferrous iron shows

strong electronic conduction, over and above
ionic conduction that is the normal conduction
mechanism for ions in molten slags, leading to
a very large increase in conductivity with
increase in concentration. Conversely, silica,
because of its tendency to form large
polymerized cations, contributes the most to
the resistive behaviour of slags, inhibiting the
transport of cations through the molten silicate
medium. Chromium (as Cr2O3) is noted to play
an insignificant role in slag resistivity.
However, this does not imply that chromium-
rich concentrates have little effect on slag
conductivity. On the contrary, UG2
concentrates are significantly richer in FeO-
type iron than Merensky based concentrates.
Superimposed on this is the large amount of
ferrous and ferric iron re-entering the furnaces
via slag mill concentrates, especially where
these concentrates are derived from converter
slag rich in fayalite, magnetite and other iron-
based spinels. The control of lime addition
(which further increases slag conductivity) is
also crucial as it may exacerbate the effects of
FeO, if already present in larger-than-normal
concentrations.

This high variability in the FeO:SiO2 ratio
in slags has significant risks if the resistance
setpoint is not adjusted to make up for the
change in resistivity. This is particularly of
importance in melter furnaces with such high
hearth power densities as found in Lonmin
circular No. 1 furnace. If a resistance setpoint
is maintained constant, but the feed mix to the
furnace leads to slags of increasing FeO:SiO2
ratio and consequently high conductivities, the
electrode immersion decreases to increase the
current path length and the associated
contribution of the geometric factor. This leads
to poorer stirring and PGM recovery, more Cr-
spinel settling, and increased probability of
sintering in the concentrate bed. Conversely, if
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the FeO:SiO2 ratio decreases significantly, the conductivity
decreases, forcing the electrodes down to still maintain the
resistance setpoint (assuming it has not changed). This may
bring the electrode tips dangerously close to the matte,
leading to matte overheating, and the risk of burn-through of
the hearth, or matte run-outs, both having catastrophic
impacts on production and very large safety hazards.

Ideally, the control philosophy should cater for
maintaining a constant immersion in the melt (the required
immersion is dependent on what is optimal for PGM recovery
to matte while still maintaining the required smelting rate). In
such a case, the resistance setpoint has to be adjusted to
compensate for changes in slag chemistry, temperature and
variable slag levels. Empirical on-plant measurements
(electrode immersion and dip tests), in conjunction with
recent research on the relationship between slag resistivity
and slag chemistry for platinum melter slags, have made it
possible to establish reliable models to relate the operating
resistance, the furnace geometric factor (a function of
electrode immersion, slag depth and the cell constant of the
furnace) and the slag resistivity (function of chemistry and
temperature). With these relationships established, and if the
feed to the furnace is well characterized, thermodynamic
models can be added to predict the slag composition based on
the furnace feed and slag temperature. This then allows for
the operating resistance setpoint changes required for
constant electrode immersion to be determined in a feed-
forward manner.

Control philosophy

Lonmin is now in the process of establishing a laboratory to
perform mineralogical characterization of furnace feed in
conjunction with chemical (XRF) analysis. The mineralogical
analysis, once reconciled with the chemical analysis, will
provide a basis for the estimation of the split between oxidic
and sulphidic iron in the feed. This information is used, in a
cascade control philosophy, together with measured slag
chemistry, slag levels and temperature, to estimate future slag
chemistries and associated slag conductivity. These variables
are therefore the disturbance variables in the control system.
This information is subsequently used to calculate the
conductivity and geometric factor, using % immersion as
setpoint. The manipulated variable then becomes the resistance
(impedance) setpoint. As the resistance setpoint changes, the
current re-establishes at a new equilibrium value, based on a
fixed power setting (which in turn is linked to the tons of
concentrate smelted), according to:

[1]

For a realistic control system, the P-V-I behaviour has to
fall within the obtainable P-V-I operating envelope of the
furnace, and the available transformer taps. The only way to
handle excessively conductive slags while still maintaining a
reasonable immersion is via minor SiO2 addition; conversely,
excessively resistive slags require minor amounts of lime
addition to maintain a required immersion while staying
within the P-V-I envelope. The addition of slag modifiers
(SiO2/CaO fluxes) is dependent on whether the required
immersion can be obtained within the constraints of the P-V-I
envelope. One also needs to be cognisant of the effects of slag
chemistry modification on slag viscosity. To perform feed-

forward prediction of the matte fall, the FeO/FeS split, etc.,
the equilibrium slag/matte chemistry is predicted using
FactSage software, which also predicts the slag and matte
chemistries. Various feed mineralogy and chemistries are
evaluated using FactSage to build up a sufficiently large
database of input-equilibrium output combinations. This
input-output dataset is then used to train a multilayer
perceptron, back propagation neural network,
comprehensively validated and tested on unseen datasets.
Once the trained network predicts the outcomes with
sufficient accuracy, the network structure is encoded in the
decision support algorithm used to predict slag and matte
levels and chemistries and phase relationships. The cascade
arrangement, which measures current chemistries using a
combination of XRF and XRD, temperatures and levels are
then used in combination with the predicted feed chemistries
and feed rates to estimate future slag chemistries and slag
and matte levels and the associated conductivities, geometric
factors and the resistance value required to obtain the
required immersion.

Modelling methodology

Before the models and correlations used to facilitate electrode
immersion control are described in detail, it is convenient to
review the overall modelling philosophy as alluded to in the
previous sections.

The slag conductivity and furnace operating resistance
setpoint are linked through the furnace geometric factor (fg)
as shown in Equation [2]:

[2]

where R is the resistance and � is the slag conductivity. 
The furnace geometric factor is a function of the furnace

geometry, electrode diameters, and electrode immersion and
is estimated empirically by conducting dip tests on the
furnace in question. For a particular furnace only the
electrode immersion can be changed, as the furnace geometry
and electrode diameter are constants. Thus, if the slag
composition and its resulting conductivity can be predicted,
and the furnace geometric factor accurately estimated, the
resistance setpoint that is required in order to achieve the
desired immersion can be calculated.

Key to this approach is the thermodynamic model used to
predict the slag chemistry. This model was created using the
FactSage thermodynamic software package and neural
networks. Thermodynamic software packages are extremely
useful and powerful but they are difficult to use within
control systems due to the obvious problems of creating an
interface between such a modelling package and a control
system. The creators of these packages are, however, aware
of this problem and there are tools on the market which allow
these packages to be used within control systems (e.g.
ChemApp). However these systems still suffer from the
problem that they use Gibbs free energy minimization to
determine the composition and amounts of the relevant
phases. Using a minimization routine within a control system
gives rise to an entirely new set of problems. Iterative
minimization routines take time to solve, which can cause
lags in the control system but, more critically, one can be
guaranteed that sooner or later the minimization routine will
hang. For obvious reasons this is extremely undesirable and
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can cause operational as well as safety issues.
Thus a modelling methodology is required that can utilize

the power of the thermodynamic software packages in a fast
and robust manner. This was achieved by generating data
using FactSage and then modelling these data using neural
networks2,3. Neural networks are essentially non-linear
regression equations. Just as for linear regression equations,
parameters are estimated by minimizing the difference
between the predicted output (from the regression equation)
and the data being used to estimate the parameters. Neural
networks are very good for modelling nonlinear data and
especially so if the data contain no noise, as is the case for
the data generated using FactSage. Thus, training a neural
network on the generated FactSage data allows one to access
the information derived from FactSage in a quick, accurate
and robust manner that can be used within a control system.

Neural networks do, however, have their own pitfalls.
While they are excellent at interpolation this does not
guarantee that they can extrapolate and they must therefore
always be used within the ranges of the data used to train
them. Thus great care was taken when deciding upon the
ranges of the input variables used when running the
simulations in FactSage, which make up the database used to
train the neural networks.

Creation of the thermodynamic database

As was discussed in the previous section, neural network
models cannot be expected to extrapolate outside of the range
of the data that they were trained on. Deciding upon the
ranges to be used for the FactSage simulations and the
sampling resolution within those ranges is a balancing act.
On the one hand, the ranges must be large enough to ensure
that the neural network trained on the generated data is
never required to extrapolate. Having a large range is,
however, not sufficient as if the sampling within that range is
done at too low a resolution there is a chance that some
effects within the system may be missed and the
interpolation of the neural network may be incorrect. On top
of all this is the computational (especially for memory)
restrictions on the amount of data that one can use to train
neural networks (especially when they have many inputs and
outputs). Thus, the selection of this range is of critical
importance and requires a good understanding of the feeds to
the furnace at that moment and in the future. On the other
hand, changes in the mine plan and thus the concentrate
smelted in the no. 1 furnace must be accounted for or the
models will cease to be valid.

Determining the ranges used in FactSage simulations

In order to meet the requirements described above, a normal
probability density function (PDF) was created for each input
variable except silica, lime and the temperature, all of which
were given uniform distributions. This was done to ensure
that the database used to train the neural networks had the
highest resolution in the area where it would normally be
expected to operate, but also sufficient resolution in the less
probable operating regions so that the neural network will
not need to extrapolate into regions where it was not trained.

Lonmin commissioned full chemical and mineralogical
analyses of the primary and secondary concentrate streams
entering the smelter as well as the smelter recycle streams4.
This information, along with the Lonmin dry concentrate
delivery plan5 up to and including 2013 was used to

determine the ranges of the input variables used in the
FactSage simulations. The inputs used in the FactSage
simulations were Ni, Cu, Fe, S, FeO, Al2O3, MgO, Cr2O3, CaO,
SiO2 and C (from the electrode consumption) as well as the
temperature. All of the inputs to FactSage (except iron) were
expressed in the same way that they are when the feed is
analysed using XRF (as is done at the smelter). This is an
acceptable manner to proceed when doing thermodynamic
simulations as long as one does not want to do an energy
balance. As can be seen, iron was input as Fe and FeO, the
portion of the iron feed which was expressed in elemental
form was that which is associated with sulphide minerals
such as chalcopyrite, pyrite, pentlandite, etc. Once the feed to
the furnace is subject to XRD analysis it will be possible to
calculate the split between iron entering the furnace as a
sulphide (FeS) and that entering as an oxide (FeO). All of the
feeds were varied for the simulations except the carbon from
the electrode consumption, which was taken as a constant.
Ingress air was not included as a feed. Although the ingress
air is a source of oxygen to the furnace, the amount of
oxygen entering through this medium is considered
negligible when compared to the oxygen that enters the
furnace through the oxides in the feed, which is substantial.

The compositions and magnitudes of the main streams
(concentrates), secondary streams (slag float) and reverts
(crushed converter slag, crushed furnace bricks, and crushed
refractories) were used to determine the average values for
the input feed variables. These average values were then
used as the mean for probability density functions (PDFs)
that were created for each input variable. The standard
deviation to be used in each PDF was chosen by looking at
compositions of the main and secondary streams only
(concentrates and slag plant float) as these were the major
contributors to the furnace feed. The standard deviation for
each PDF was chosen in such a manner that the extreme
values found in some of the main and secondary streams
would correspond to the values obtained for the 99% and 1%
probability of the PDF. By determining the ranges in this
manner, it is ensured that the resolution of the FactSage
simulations is highest for the most probable compositions of
the feed to the furnace while at the same time managing to
ensure that the less probable feed compositions are still
simulated and thus the neural network is not ever going to be
required to extrapolate. Thus two important criteria are met
and the number of FactSage simulations required does not
become ridiculous.

Silica, lime and the temperature were the only variables
where normal PDFs were not applied. The temperature
distribution was uniform between 1 500 and 1 750°C. For
lime, a uniform distribution between 1 and 11 wt % was
used. The silica for each simulation was then set to be equal
to 100 minus all of the other compositional inputs, so that
the compositional inputs into FactSage were always
normalized to 100%. The data were then filtered to ensure
that only silica values between 30 and 55 wt % were used in
the simulations.

FactSage simulations

In total, 77 298 simulations were performed in FactSage. Of
these, 50 000 were used as training data, 5 000 as validation
data during training in order to ensure that the networks did
not overfit the data, and the final 22 298 were used to test
the networks once they had been trained. The following
solution models were used when performing the simulations
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in FactSage:
• Liquid solutions: FTmisc-MATT (matte), FToxid-

SLAGA (slag)
• Solid solutions: FToxid-SPIN (spinel), FToxid-oPyr

(orthopyroxene), FToxid-Oliv (olivine)
• Gas: gas ideal.
The FactSage output is in the form of a text file and, as

such, extraction of the relevant data can be rather tedious,
especially when working with such a large number of
simulations. While normally the required data can be exported
directly to an Excel spreadsheet from FactSage, this becomes
impossible when working with more than 65 536 rows of
data, as this is the row limit within an Excel spreadsheet. The
export function within FactSage is also sometimes unstable
and relatively time-consuming when working with large
amounts of data. Thus the post-processing was done using
PHP scripting language and Matlab.

Neural network models

All of the neural networks were trained using Matlab 7.5.0.
Due to memory limitations, all of the outputs required for this
project could not be modelled using one neural network. In
total three neural networks were trained: 

• Bulk slag composition. This is the slag composition
including both the liquid portion of the slag and all of
the solids (spinel, orthopyroxene and olivine) and
represented as if the slag were analysed using an XRF
as is done on the smelter. The Fe2+ ratio is also
modelled in the neural network and it is the bulk
composition from this neural network that is used to
calculate the slag conductivity using the model of

Hundermark1.
• Liquid slag composition. This neural network models

the composition of the liquid slag only. This network is
used to determine the liquid portion of the slag
viscosity as well as the slag density.

• Percentage solids and matte fall. This network
models the percentage solids in the slag as well as the
matte fall.

The manner in which each of the developed neural
networks was used within the greater model is shown in
Figure 1. The bulk slag neural network is used only to
determine the slag conductivity. The liquid slag neural
network is used to determine both the slag viscosity and
density. From the third network, the percentage solids is used
only to determine the slag viscosity.

The properties of the three neural networks are given in
Table I. All of the neural networks trained have the same
inputs, namely (and in order): temperature, Ni, Cu, Fe, S,
Al2O3, Cr2O3, MgO, FeO, CaO and SiO2, where the
temperature is in °C and the compositional inputs in wt %
(normalized to 100%).

The performance of the neural networks on the testing
data is shown in Table II. It is clear that the networks model
the FactSage output very well, which is to be expected as the
data are generated and therefore contain no noise.

Furnace geometric factor model

On 9 November 2007, a dip test was done by Lonmin
personnel and the researcher on the Lonmin no. 1 furnace.
The aim of this test was to generate a curve of the electrode
resistance vs. electrode immersion, which can then be used to

▲
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Table II

Neural network model performance on testing data

Bulk slag Liquid slag % Solids + MF
Output R2 MSE Output R2 MSE Output R2 MSE

(%) (wt %) (%) (wt %) (%) (wt %)

Fe2+ 99.43 6.5 � 10-5 FeO 99.78 0.102 % Solids 98.42 0.032
FeO 99.87 0.159 Fe2O3 99.35 0.003 Matte fall 99.96 0.016
CaO 99.96 0.100 Al2O3 99.61 0.081
MgO 99.94 0.072 CaO 99.94 0.125
SiO2 99.96 0.066 MgO 99.81 0.220
Al2O3 99.74 0.062 CrO 98.73 0.053
Cr2O3 99.63 0.017 Cr2O3 97.78 0.025
Cu2O 99.09 8.3 10-4 SiO2 99.85 0.044
NiO 99.26 9.7 10-4 Cu2O 98.93 0.002

Slag total 99.56 1.243

Table I

Neural network properties

Bulk slag Liquid slag % Solids + MF

Input nodes 11 11 11
Output node 9 10 2
Hidden layers 1 1 1
Nodes in hidden layer 20 20 10
Transfer function Tanh
Net training function Bayesian regulation backpropagation
Performance function Mean squared error
Wight/bias learning function Gradient descent with momentum
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estimate the cell constant for the furnace geometric factor
model. While there have been many furnace geometric factor
models published in the literature, with the most recent being
that of Jiao and Themelis6, the majority of these models were
calibrated on cold systems in the lab and at power fluxes well
below those found in modern industrial furnaces. Sheng et
al.7 compared the results from some of these correlations to
industrial data from a 6-in-line nickel smelting furnace and
found that they severely underestimated the resistance
(which is related to the furnace geometric factor and slag
conductivity through Equation [2]). Thus, in order to use a

geometric factor correlation with confidence, it must be
calibrated on the furnace in question by performing dip tests.

While the model used cannot be shown here due to
confidentiality, it essentially has the following form:

fg = f(k, Xs, Hs, De) [3]
where k is the cell constant, Hs is the slag height, Xs the
penetration of the electrode into the slag and De the electrode
diameter (as shown in Figure 2). Equation [2] relates the
furnace geometric factor to the resistance and the slag
conductivity. Thus, the resistance vs. electrode immersion
curve obtained from the dip test can be used to estimate the
cell constant k as long as the slag composition and
temperature are known, as these are used to determine the
slag conductivity using the correlation of Hundermark1 as
shown in Equation [4].

Two values for k were regressed from the dip test data,
one where all the data were used (Figure 3(a)) and one
where the low immersion data (< 10%) were excluded
(Figure 3(b)). What is apparent from Figure 3 is the slight
decrease in model performance when including the low
immersion data. 

As the immersion approaches zero, the resistance
increases exponentially and is asymptotic with the y-axis,
thus small measurement errors are compounded at low
immersions resulting in significant scatter in the data. As the
furnace is hardly operated at immersions lower than 10%, it
was felt that including these data would be counter-
productive when using the geometric factor model in the
normal operating regime. It is considered more important to
have a correlation which functions more accurately within the
range of normal furnace operation than one which sacrifices
performance in this range in order to be more general. The k
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Figure 2—Illustration of the geometric variables used in the empirical
model for the determination of the furnace geometric factor

Figure 1—Diagram describing the modelling methodology used

Figure 3—Line plots of actual resistance vs. predicted resistance for dip
test
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values regressed with all of the data will, however, not be
discarded and should a need arise to run the furnace with
immersions less than 15%, this k value can be used.

Slag physical property models

Using the outputs from the different neural networks, the
physical properties of the slag (viscosity, density, and
electrical conductivity) were calculated. In this way the effect
of the composition of the feed to the furnace on such factors
as tapping, mixing and refractory wear can be assessed in a
feed-forward manner.

The slag conductivity is determined using the correlation
of Hundermark1 that was developed specifically for PGM
smelting slags. The model uses the bulk slag composition as
input, i.e. the overall composition of the slag that is a
combination of the liquid and solid phases present in the
slag. All elements are expressed in their most probable form
(i.e. Al as Al2O3, Fe as FeO, etc.), as is done when a slag is
analysed using XRF on the smelter. The only extra terms
added to the correlation are the fractions of the iron in the
slag which are in the ferric and ferrous form. As such, the
output from the bulk slag composition neural network is used
as input to the model of Hundermark to determine the slag
conductivity.

[4]

where T is the slag temperature in K, X is the mol fraction of
the components and Fe2+ and Fe3+ are the fractions of ferrous
and ferric ions respectively.

The sensitivity of the conductivity on selected slag
components is shown in Figure 4. This was done by taking a

typical slag composition at 1 600°C and then perturbing each
variable by 10% in both a positive and negative direction. As
the components are present in different amounts in the slag,
the data were then normalized to be percentage change in the
relevant component. In this way, a realistic representation of
the effect of the different components is obtained. From the
sensitivity analysis it is clear that an increase in FeO, CaO or
MgO increases the slag conductivity whereas an increase in
Al2O3 and SiO2 decreases it. The slag density and viscosity
were calculated using the correlations of Utigard and
Warczok8. They reviewed both density and viscosity data for
copper/nickel sulphide smelting and converting slags from
various publications and fitted correlations to the published
data. For both the slag density and viscosity, the
compositional variables are those of the liquid portion of the
slag only and as such the liquid slag composition neural
network outputs are used as inputs to these correlations.

The liquid slag density is calculated using the following
equation:

� = 5 – 0.03(SiO2 + Fe2O3) – 0.02(CaO + MgO [5]
+ Al2O3 + Na2O) + 0.035 • Cr2O3 – 0.001(T – 1 473)

where the density is in g/cm3, the slag temperature in K and
the components in wt %. The density given by Equation [5]
is that of the liquid portion of the slag only.

The viscosity of the slag is made up of two parts. Firstly,
the viscosity of the liquid portion of the slag, which is
determined using the Equations [6] through [9]8:

[6]

[7]

A = SiO2 + 1.5Cr2O3 + 1.2ZrO2 + 1.8Al2O3 [8]

B = 1.2FeO + 0.5(Fe2O3 + PbO) + 0.8MgO + 0.7CaO [9]
+ 2.3(Na2O + K2O) + 0.7Cu2O + 1.6CaF2

where the temperature is in K and the composition in wt %.
This is, however, not sufficient as there are more often than
not solid particles in the slag, which have a large effect on the
slag viscosity. The viscosity of the slags with solids can be
represented by the Einstein-Roscoe equation in the form
given by Zhang et al.9 up to 33 mass % solids:

� = �0 (1 –af)-n [10]
where � and �0 are the viscosity of the solid-containing and
solid-free melt, respectively. The parameters a and n are
constants, while f is the mass fraction of solids in the melt.
The value of the constants a and n is dependent on the
particle size of the solids within the melt. The values used by
Zhang et al.9 (a = 3.0 and n = 2.5) were determined for
spinel particles, which are the predominant solid particles in
Cu/Ni smelting slags.

Results

Effect of slag modifiers

A typical feed composition and a slag temperature of 1 600°C
were used as inputs to the neural networks to assess the

▲
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Figure 4—Sensitivity analysis for selected slag components at 1 600°C
using the model of Hundermark1
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effect of the slag modifiers. The same inputs were also fed
into FactSage so that the results using the outputs from the
neural networks could be compared to those using the
outputs from FactSage. The effect of CaO on the slag
conductivity, viscosity of the liquid portion of the slag, bulk
slag viscosity and the fraction of chrome in the feed dissolved
in the liquid slag is shown in Figure 5.

From Figure 5 it is clear that lime addition increases the
conductivity of the slag while lowering the viscosity of both
the liquid portion and the bulk slag. Lime addition also
decreases the solubility of chrome in the slag. While the
decrease in slag viscosity is without doubt advantageous, the
effects of lime addition on the slag conductivity and solubility
of chrome in the liquid slag are definitely not.

Similar plots for silica content in the feed are shown in
Figure 6. In all cases, silica has the opposite effect to lime.
From Figures 5 and 6, it is clear that the results using the
outputs from the neural networks compare extremely well to
those using the outputs from FactSage.

The effect of the slag modifiers (CaO and SiO2) on the
liquid slag viscosity was shown in Figures 5(b) and 6(b). The
viscosity of the liquid portion of the slag has a great effect on
the operation of the furnace as the matte droplets that form
in the slag must settle through the slag layer. Similarly, any
solid particles in the slag, such as spinel crystals, will also
settle through the slag and due to their density, which is
between that of the slag and matte, probably settle at the
matte slag interface. A simple calculation was done in order
to assess the effect of the liquid slag viscosity on the settling
rate of the matte droplets or spinel crystals. The terminal
velocity of the droplets or particles in the slag was calculated
using Stokes’s law10:

[11]

where �particle is the density of the particle/droplet which is
settling in the slag, �fluid is the density of the slag (calculated
using Equation [5]), �0 is the viscosity of the liquid portion
of the slag (calculated using Equations [6] through [9]), D is
the diameter of the particle/droplet and g is the acceleration
due to gravity. If we assume the spinel and matte density as
4 500 and 55 00 kg/m3 respectively and take the slag level as
1 m (an average value obtained from Lonmin), the time
taken for the droplet/particle to settle through the slag can be
calculated. This was done for both spinel particles and matte
droplets with a size of 10 and 75 microns, and the results are
shown in Figure 7.

The residence time of the slag in the furnace is reported
by Lonmin to be roughly 16 hours, which is shown by the
solid line on the plots in Figure 7. It is clear from Figure 7
that for 10 micron particles/droplets, the settling time is
orders larger than the slag residence time, which should
result in significant entrainment in the slag. For the 75
micron particles/droplets, the settling time for both matte and
spinel is generally below the slag residence time, except for
high silica addition, where the slag becomes more viscous.
For the matte droplets, a low settling time is desired as any
matte entrained in the slag results in a decrease in matte and
PGM recovery. For the spinel particles the opposite is true, as
a fast settling time will result in spinel accumulation between
the matte and slag layers, the so-called ‘mushy layer’. The

formation of this layer between the matte and slag often
results in the spinel phase being tapped out with the matte.
This leads to a high chrome content in the matte, which
causes problems in the highly oxidizing and relatively low
temperature environment encountered in the converting
process.

From Equation [11] and Figure 7, it is clear that terminal
settling velocity and therefore the settling time is highly
dependent on the particle/droplet diameter. The matte
droplets will, however, coalesce due to the mixing in the slag
caused by the circulatory flow of the slag layer. Thus good
mixing in the furnace is crucial as it will decrease matte
entrainment in the slag. Good mixing will also hinder the
settling of the spinel particles as unlike the matte, they will
not coalesce on contact with one another. As mentioned in
the introduction, one of the reasons that electrode immersion
control is preferred to resistance setpoint control is that it
results in better mixing in the bath and will thus minimize
matte entrainment in the slag and at the same time hinder
the formation of the ‘mushy layer’ between the matte and
slag.

Ferrous vs ferric iron content in slag

An important variable used to calculate the electrical
conductivity of the slag is the ratio of ferrous vs. ferric iron in
the slag. The FactSage simulations indicated that the iron in
the slag was predominantly ferrous, with the lowest fraction
of ferrous iron being roughly 0.93, but in the greater majority
of the cases it was greater than 0.98. When the dip test was
done on furnace no. 1, quenched slag samples were sent for
analysis to determine the ratio of ferrous to ferric iron in the
slag. The samples were taken over a period of 4 days and the
results were relatively stable, with ferrous iron making up
roughly 73% of the iron in the slag. This is much lower than
the results obtained from FactSage and it was thought that
the lack of any ferric iron inputs to the FactSage simulations
was the cause of this. Ferric iron will mostly enter the furnace
in the form of magnetite with its source being the converter
slag that is recycled into the furnace.

In order to check this, some simulations were performed
in FactSage using the same typical feed composition used to
assess the effects of the slag modifiers, except that Fe3O4 was
added as an input. The ratio of oxidic iron entering as FeO or
Fe3O4 was changed (while keeping the amount of oxidic iron
constant) in order to see the effect of ferric iron input into the
FactSage simulations. The results are shown in Figure 8, and
it can be seen that there was very little effect and the iron in
the slag is predominantly ferrous (> 99%) even if most of the
oxidic iron is in the form of magnetite.

The effect of the carbon feed used in the FactSage
simulations is also shown in Figure 8, as it was thought that
perhaps this was a reason for the discrepancy between the
FactSage results and the sample analyses, as the carbon was
reducing the ferric iron into the ferrous state. While removing
the carbon from the FactSage simulations does lower the
amount of ferric iron in the slag, the difference is negligible.
The reason for the discrepancy between the FactSage results
and the furnace samples is therefore not known. One reason
could be that the slag samples were perhaps not quenched
sufficiently quickly and a fraction of the ferrous iron was
therefore oxidized by air into the ferric state. This oxidation
would occur rather quickly at the high slag temperatures
found in the furnace.
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Figure 5—Effect of lime addition on (a) slag electrical conductivity, (b) viscosity of the liquid portion of the slag, (c) bulk slag viscosity,  (d) fraction of
chrome in feed dissolved in liquid slag

Figure 6—Effect of silica addition on (a) slag electrical conductivity, (b) viscosity of the liquid portion of the slag, (c) bulk slag viscosity, (d) fraction of
chrome in feed dissolved in liquid slag
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Relationship between feed composition, resistance
setpoint and electrode immersion

As discussed in earlier, the model is to be used to control the
electrodes at a constant immersion in response to the
disturbances in the feed. The main disturbance in the feed, with
respect to its effect on the slag conductivity, is the oxidic iron
content. 

In Figure 9(a) the resistance setpoint, as calculated using
the model, for varying FeO content in the feed is plotted for
three different immersions. It is clear from the figure that if
only the FeO in the feed is increased the slag becomes much

more conductive, which results in the resistance setpoint
being lowered by the model in order to ensure constant
immersion. In Figure 9(b), a similar plot is shown for CaO.
This plot shows a similar trend to that shown in Figure 9(a).
Thus, for feed materials high in FeO, lime addition to the feed
would be counterproductive as it would simply increase the
conductivity of the slag even more. Figure 9(c) shows the
effect of the ore blend (UG2 and Merensky) on the resistance
setpoint. Interestingly, the changes to the resistance setpoint
required are not nearly as dramatic as that shown in the
other two figures. The reason for this is that while the UG2
ore contains roughly 20% more FeO, it also contains about
35% more SiO2 than a typical Merensky ore. The higher silica
content of the UG2 ore thus counteracts the increase in iron
to a certain extent. Figure 9(d) shows the effect of blending
the slag plant float material into the feed. This material is
exceptionally high in FeO and has a FeO:SiO2 ratio of close to
1. As such, it requires a relatively significant resistance
setpoint to maintain a constant immersion. Thus it is the
FeO:SiO2 ratio in the feed material to the furnace that plays
the major role in determining the conductivity of the slag, as
alluded to in the introduction to this paper.

The model can also be used to determine how much silica
should be added in order to decrease the conductivity of the
slag and maintain the electrodes at the chosen constant
immersion level for a specified resistance setpoint. This
amount of SiO2 that must be added is shown in Figure 10 for
an increase in FeO content only (a), the UG2-Merensky blend
ratio (b), and the slag plant float blend ratio (c), for a desired
immersion of 50% and a resistance setpoint of 5 mΩ. It is
clear from these figures that in order to maintain both a
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Figure 7—Settling time of matte droplets and spinel particles in matte as a function of the CaO and SiO2 feeds to the furnace (T = 1 600°C). (a) Matte
settling time v.s CaO in feed, (b) Matte settling time vs. SiO2 in feed, (c) Spinel settling time vs. CaO in feed,  (d) Spinel settling time vs. SiO2 in feed

Figure 8—Ferrous iron in the slag as a function of oxidic iron input
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Figure 9—Effect of (a) FeO in feed, (b) CaO in feed, (c) UG2 fraction in ore blend and (d) slag plant float fraction in feed, on the resistance setpoint required
for different immersions (T = 1 600°C)

Figure 10—Amount of SiO2 that must be added to the feed in order to ensure a constant electrode immersion of 50% at a resistance setpoint of 5 mΩ (T =
1 600°C). (a) Increase in FeO, (b) Fraction of feed as UG2, (c) Fraction of feed as slag plant float
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constant immersion and resistance setpoint, large amounts of
silica may need to be added to the feed mixture. Obviously
large additions of silica to the feed are somewhat unrealistic
as it will decrease the smelting capacity of the furnace and
also significantly increase the slag viscosity. However, the
situation simulated in Figure 10 is somewhat unrealistic in
that the furnace will never be operated at both constant
immersion and resistance setpoint. Silica addition will be
considered only if a situation is encountered where the
resistance setpoint (which is to be the main manipulated
variable) cannot be changed to the value necessary to ensure
constant immersion without moving out of the P-V-I
operating window of the furnace.

Slag conductivity—plant data

While the proposed feed sampling system is not as yet
commissioned, the furnace slag is still sampled regularly and
it is interesting to assess the changes in slag composition and
its effect on the conductivity of the slag. In Table III the
relevant statistics are shown for furnace no. 1 for the
financial year 2007. The relative standard deviation (% RSD)
shown in Table III is the standard deviation relative to the
mean. Looking at these data it is clear that the variation is in
the following order:

CaO > FeO > Al2O3 > MgO > SiO2
The largest variation of CaO is purely due to the variable

addition rate. For CaO in the concentrates (i.e. feed excluding
lime addition), the %RSD is around 19% (vs. 32% in the
slag). In Figure 11, a sensitivity analysis plot similar to that
shown in Figure 4 is given where the average slag
composition given in Table III is used. Each component
composition is perturbed in the positive and negative
direction by the standard deviation for the respective
component, and the effect on the conductivity assessed.
While the sensitivity analysis shown in Figure 4 gave an
indication as to which variables have the greatest effect on
conductivity in general, the plot shown in Figure 11 shows
which components have the greatest effect on the smelter. 

With regard to the historical slag composition, it is clear
from Figure 11 that FeO has the greatest effect on the slag
conductivity, followed by CaO, SiO2 and MgO. As mentioned,
the standard deviation of the CaO is largest as it is added
independently as flux along with the concentrate. It is unclear
how the amount of lime added to the furnace feed was
determined on the smelter (as no thermodynamic model was
available prior to this work), and from Figure 11 it is
apparent that indiscriminate lime addition to the furnace
could have a very large effect on the slag conductivity. 

Using the 2007 financial year slag composition data, the
conductivity of the slag for each day of operation was
calculated with Equation [4], assuming a slag temperature of
1 600°C and that all of the iron in the slag is in the ferrous
state. This was then used in conjunction with Equation [2],
the calibrated furnace geometric factor model, an assumed
resistance setpoint of 4 mΩ and a slag depth of 1 m to
calculate the required electrode immersion (%). The results
are presented as a histogram shown in Figure 12.

While the immersion data shown in Figure 12 are not the
actual plant immersion data, the information is still valuable
as it gives an indication of the electrode immersion
distribution that is achieved when running the furnace using
the electrode immersion as the manipulated variable, instead
of the resistance setpoint as proposed in this paper. 

The distribution shows that in the majority of cases the
immersion was, in fact, in the region that is considered best
for mixing in the slag (±30%). This implies that running the
furnace using the resistance setpoint as a manipulated
variable as proposed in this paper should not be too
problematic as the furnace is already operating in that region.
As such, minor adjustments to the resistance setpoint, and in
worse cases, possible small additions of slag modifiers,
should allow for constant electrode immersion while still
operating the furnace within the required P-V-I envelope.
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Figure 12—Histogram of required electrode immersion for furnace no. 1,
financial year 2007

Figure 11—Sensitivity analysis for selected slag components at
1 600°C using the model of Hundermark1 with perturbations equal to
one standard deviation for each component

Table III

Relevant slag composition statistics for furnace
no. 1 for financial year 2007

FeO Al2O3 MgO CaO SiO2

(mole %) (mole %) (mole %) (mole %) (mole %)

Mean 12 3 30 9 46
St dev 1.8 0.27 1.5 2.9 1.85
% RSD 15 9 5 32 4
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Conclusions

The addition of a more advanced feed sampling system for
the Lonmin no. 1 circular furnace, and the subsequent
information about the split between oxidic and sulphidic iron
entering the furnace, has made it possible to use
thermodynamic models to predict the slag chemistry using
thermodynamic models. This, combined with recently
developed models for slag conductivity specifically for PGM
smelting, and a furnace geometric factor model calibrated on
the no. 1 furnace, make it possible to implement immersion
control on the furnace, where the aim is to keep a constant
immersion by manipulating the resistance setpoint.

The thermodynamic model was created keeping in mind
that it would need to be hard coded into a control system. For
this reason, minimization algorithms needed to be avoided.
This was overcome by generating a large database using
FactSage and then using these data to train neural networks.
The neural networks were found to model the data
exceptionally well, with the lowest R2 value being 98.42%.

The FactSage results predicted that the majority of the
iron in the slag was in the ferrous state (> 0.98 in most
cases). These values did not correspond to slag samples
taken on the smelter, where the fraction of the iron in the
ferrous state was roughly 0.73. This was thought to be due to
the lack of any ferric iron feeds to the FactSage simulations
but on closer analysis this was found not to be the case. As
such it was concluded that the main reason for this
discrepancy could be due to the fact that the samples taken
from the furnace were not quenched quickly enough.

When some scenarios were run using the full model it
was found that while lime addition was favourable due to its
effect on the slag viscosity, it also increased the conductivity
of the slag and decreased the solubility of chrome in the
liquid portion of the slag, both of which are undesirable
effects.

The high levels of FeO in the UG2 ore (compared to that
in concentrates sourced from the Merensky ore) was found
not to have a great effect on the conductivity of the slag, as
the UG2 materials also contain significantly more silica than
the Merensky material, which counteracts the effect of the
FeO on the slag conductivity. The slag plant float material
was found to be much more problematic, as it is very high in
FeO and relatively low in silica, which results in exceptionally
conductive slags. The amount of this material blended into
the feed to the furnace must therefore be monitored and
minor silica addition to the furnace feed may be required
when large amounts of the slag plant float material is fed to
the furnace.
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Nomenclature

Arabic symbols
a Constant parameter in Einstein-Roscoe equation

D Diameter (m)
De Electrode diameter (cm)
f Mass fraction of solids in slag 
Fe2+ Fraction of ferrous ions
Fe3+ Fraction of ferric ions
fg Furnace geometric factor (cm-1)
g Acceleration due to gravity (m/s2)
Hs Slag height (cm)
I Current (A)
k Cell constant 
n Constant parameter in Einstein-Roscoe equation
P Power (MW)
PF Power factor
R Electrode resistance (m�)
T Slag temperature (K)
VT Terminal settling velocity (m/s)
X Mol fraction
Xs Electrode penetration into slag (cm)
Greek symbols
� Viscosity of the solid containing slag (Pa·s)
�0 Viscosity of the liquid portion of the slag (Pa·s)
� Slag density (g/cm3)
�fluid Density of liquid media in which particle/droplet is

settling (kg/m3)
�particle Density of particle/droplet settling in slag (kg/m3)
� Slag conductivity ((W·cm)-1)
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