Synopsis

We present a novel hybrid algorithm for quantifying the ore grade
variability that has central importance in ore reserve estimation.
The proposed algorithm has three stages: (1) fuzzy clustering,
(2) similarity measure, and (3) grade estimation. The method first
considers data clustering, and then uses the clustering information
for quantifying the ore grades by means of a cumulative point
semimadogram function. The method provides a measure of
similarity and gives an indication of the regional heterogeneity. In
addition, grade estimations can be obtained at different levels of
similarity using a weighting function, which is the standard
regional dependence function (SRDF).

Keywords: Grade, fuzzy clustering, similarity measure, point
madogram, weighting function.
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Introduction

Measured grades rely on the relative positions
of measurement locations within the ore site.
These measurements at a set of locations give
some insight into regional variability. This
variability determines the regional behaviour
as well as the predictability of the grade. The
larger the variability, the more heterogeneous
is the geological environment!. One of the
tools used to measure regional variability is
the semivariogram (variogram), which
provides a measure of spatial dependence
among a multitude of locations as an
alternative to the auto-covariance of a time
series2.

The classical variogram, although suitable
for irregularly spaced data, has practical
difficulties. One of the main drawbacks is that
it is insufficient to analyse the regional hetero-
geneous behaviour of the grade. In general,
ore deposits have heterogeneous properties
rather than homogeneous structures.
Heterogeneity means that the properties
(grades) observed at different locations do not
have the same value, and that different zones
are observed in the ore site. In order to
quantify the regional behaviours, a cumulative
semivariogram (CSV) concept has been
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proposed by Sent as an extension of the
classical semivariogram. Sent used the CSV in
stochastic processes for analysing the regional
correlation and concluded that CSV is a better
tool than the classical variogram in identifying
spatial dependence. Alternatively, a point
cumulative semivariogram (PCSV) measure is
proposed by Sen3 in identifying the spatial
behaviour of a regional variable around a
location concerned. The basic principle of the
technique is to compute experimental PCSVs
for each data location, which leads to the
estimation of the radius of influence around
each location4. In some recent works5.6, point
cumulative semimadogram (PCSM) measure
has been proposed instead of PCSV for
modelling the regional spatial dependence due
to the advantages of absolute difference?.

This paper presents a hybrid methodology,
which uses the fuzzy clustering based PCSM
for identifying the regional dependence. The
method proposed in the study uses both soft
and probabilistic tools. The algorithm first
considers the fuzzy information and then
describes the regional variability based on the
mean absolute difference measure. In addition,
the algorithm allows the regional heterogeneity
of the grade to be evaluated at fixed similarity
levels. Finally, grade estimations are carried
out at different levels using standard regional
dependence function (SRDF).
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Algorithmic procedure
Determination of the regions by fuzzy clustering

In the first stage, the grade values are clustered into a
number of groups using fuzzy clustering. For this purpose,
the fuzzy c-means (FCM) clustering8 is used. By this
application, sample points within the subgroups are charac-
terized by cluster centres. Each data point belongs to a cluster
centre with a degree that is determined by the membership
grade. The FCM algorithm is given in Appendix A9.

The number of clusters is an important parameter that
influences the accuracy and transparency of the models?0. It
has been considered extensively in the literature11,12,13,
However, these methods are not suitable for describing
spatial variability. In the present study, a novel cluster
validity approach proposed in Tutmez et al.6 specially for
spatial estimations, is used. The approach is based on
reproducing the variability of the sample data in the
variability of the cluster centres, while using the minimum
number of clusters possible:

Min. nc under  Std[g(x)=Std[g(c)] [1]
where 7, is the optimal number of clusters, g(x) is the grade
values in data set, g(c) is the grade values in clusters, and
Std is the standard deviation of the property values. In this
technique, the number of clusters is plotted against the
corresponding standard deviations of the cluster centre

values and then the number of clusters satisfying Constraint
[3] is retained as optimum.

Regional heterogeneity measure

Two grade values g(x) and g(x+4) at two points x and x+4
separated by the vector 4 are spatially correlated. As the
distance between these grades increases, one would expect
that the spatial correlation decreases and vice versa. The
classical variogram is not convenient for describing the local
variability. Therefore, the point semivariogram (PSV)
function was proposed!. PSV can be used in determining the
spatial behaviour of any variable around a particular data
location. Its mathematical expression is given as follows,

A 1 N(h)
ARRETTIP:
where A is the number of data values, N(A) is the number of
pairs, g is the reference grade value, and g(n.#) is the grade
value at a distance 4.

Madograms are particularly useful for establishing the
range parameter14. Therefore point semimadogram (PSM)
was suggestedé as an alternative measure for evaluating the
local spatial behaviour of data and it was used by Tutmez
and Hatipoglu5. By using this measure, the zone of influence
around each point can be determined. The point madogram
function is preferable to the point variogram. This function
uses the absolute difference instead of squaring the
difference between g, and gm.. If the data-set includes the
outlier values and the number of data is limited, the PSM is
more convenient than the PSV due to the advantages of the
absolute difference measures,

(gm - g(m-i»h,.)):Z [2]
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If the experimental variogram includes the outlier values
and the number of data is limited, the PSM is more outlier
resistant than the PSVe. In order to quantify the degree of
regional variability for around each measurement location,
the point cumulative semimadogram (PCSM) function is
considered. This measure gives the regional effect of all the
other data locations within the study area on the location
concerned. The number of PCSMs is equal to the number of
data locations.

In the present methodology, variogram modelling is
carried out using the membership values, which are obtained
from the fuzzy clustering algorithm and Cartesian
coordinates. The methodology uses the assigned fuzzy sets of
each location instead of its grade value. Traditional variogram
function uses spatial coordinates and data values (grades) for
analysis. However, our approach considers the membership
values (u4) instead of the grade values. The main objective of
this procedure is to evaluate the variability using fuzzy tools.
The mathematical expression is given as,

N(h) 2
2y(h) = Slewe) g, +n] 1

N(h) 4

where, g(u4;) is the membership value of the fixed (pivot)
location considered.

y(h) €0 = oo [3]

Estimation by standard weighting

A sample PCSM leads to a non-decreasing function with
distance. In this section, the standard regional dependence
function (SRDF)155, is applied. The SRDF provides weights
for different regional locations depending on the distance
from the pivot location. This weighting function value is
calculated using the following steps:

» Find the maximum PCSM value, (yx), which is taken at
the greatest distance, (dn)

» Divide all the PCSM values by (yx). The result appears
as a scaled form of the sample PCSM values within
limits of zero and one

» Subtract the dimensionless PCSM values from one at
each distance. The resulting non-decreasing function is
named the standard regional dependence function
(SRDF).

Before the interpolation, determination of the regional
locations employed in estimation process is critical. For this
purpose, a search domain is constructed. According to [5], a
location x is defined to belong to domain Q if the Euclidean
distance between pivot location p and x; is not greater than
the range a of the location considered.

x, €Q ifd(p,x)<a i=12,..,N [5]

where V is the number of data.

Finally, each grade value is multiplied by the
corresponding standard weight and contributions for each
location are calculated. For a pivot location, grade is
estimated by dividing the total contributions by the total
standard weights.
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The steps of the proposed algorithm can be summarized
as follows:

» Step 1—Collect ore grade values at different locations
in the field

» Step 2—Normalize the data for the Cartesian (x,)
product space and the grades by using linear transfor-
mation

» Step 3—Cluster the data into ¢ clusters

» Step 4—Determine the optimal number of clusters
using the clustering validity index outlined earlier

» Step 5—O0btain the partition matrix, whose jkth
element w; € [0,1] is the membership degree of data
object x in cluster j

» Step 6—Obtain the one-dimensional fuzzy sets w4 by
projection onto the space of the input variables .x;,
where the jth row of U contains a pointwise
definition16 of a multidimensional fuzzy set. For this
procedure, the expresion w4 (Xj) = proj: (we) is used

» Step 7—Compute the PCSMs for each location and plot
the PCSMs against the corresponding distances. For this,
use the Cartesian coordinates and memberships only
derived in Step 6

» Step 8—Demonstrate the grade variability by similarity
maps for different fixed levels of PCSMs

» Step 9—Calculate the standard weightings for each
location using distances between the pivot location and
its neighbour locations

» Step 10—Evaluate the grades at different levels of
similarity using similarity maps. Spatial variability of
the grades is assessed using similarity measures at
fixed levels of PCSM. The similarity measure indicates
the presence of the heterogeneity between two
locations3

» Step 11—Estimate the grades at different levels of
similarity. Numerical value of the radius of influence at
any location recognizes the neighbouring locations that
should be taken into consideration in quantifying the
grade variability at this location. The weights for
different regional locations depending on the distance
from the pivot location are calculated by the SRDF.
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Figure 2—Descriptive statistics and distribution
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Application to grade estimation

Statistical data properties

The Sivas-Kalburcayiri lignite field in Turkey is considered in
this case study. The locations of the 42 records for the upper
sector of the field® were randomly selected (Figure1). The
data were scaled by using a linear transformation between
1034 and 1735. Figure 2 gives the basic descriptive statistics
and the distribution. As stressed by Wellmer17, if the distri-
bution has a single peak and is approximately symmetrical,
then the assumption of normal distribution generally leads to
acceptable results for geological and geochemical problems.
Moreover, it is possible to treat the methodology presented
earlier for lognormal distributed data. In this case, the grade
values that describe a lognormal distribution are transformed
logarithmically to a normal distribution.

For FCM clustering, the fuzziness parameter was selected
arbitrarily as m=1.4 and three-dimensional clustering spaces
were comprised of the Cartesian coordinates and grade
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Figure 1—Sample locations of lignite data

Statistics
Mean 12549
Std deviation  123.2
Skewness 0.06
Kurlosis -0.58
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An algorithm for quantifying regionalized ore grades

values. The optimal number of clusters was determined using
the validity method presented earlier. In Figure 3, the number
of clusters has been plotted against the corresponding
standard deviations of the cluster centre grades. As can be
seen from Figure 3, the appropriate number of clusters is six.

Using the FCM algorithm, a preliminary determination of
the positions of different regions can be carried out. For
representing the grade of each location, the membership to
the closest prototype (max. membership) is calculated by one
dimensional pointwise operator16, which has been stated in
the sixth step of the algorithm.

Analysis of regional variability

Since the grade distribution of the ore site is heterogeneous
(see Figures 4 and 5), individual PCSMs for the grades show
different behaviour. Calculated PCSMs are plotted on the
vertical axis versus the corresponding distances on the
horizontal axis and representative experimental PCSM
diagrams are obtained, as shown in Figure 6.

Experimental madograms show that some of the PCSMs
have straight lines on the horizontal distance axis. Most of
the straight lines show the heterogeneity involved around the
the location concerned at different distances. In addition, all
the PCSMs pass through the origin. It means that there are no
nugget effects (residual influence) within the regional grade
variability (Co=0).

Similarity evaluation

As a result of the PCSM analyses, the interpolated distances
at these levels are obtained. Table I shows the distance
values for two different levels. Fuzzy clustering based PCSM
is an indicator of cumulative similarity of the variability for a
location. Similarity contour maps at 0.2 and 0.4 levels of
PCSM are shown in Figure 7 and Figure 8, respectively.

In this application, the radius of influence is determined
to vary between 0.2 (60-250 m) and 0.4 (100-450 m) levels,
respectively. The smaller distance indicates the more grade
variability and the smaller regional dependence. For example,
in Figure 7, the map shows three regions, which have intense
grade variability with different similarity contours. On the
other hand, Figure 8 presents the lower level of similarity. By
means of these maps, the differentiated variability zones
(heterogeneity) can be determined easily.

Weightings and estimations

In order to obtain the estimated values, search domains have
been constructed. Figure 9 shows the sample search domain
determination for location no. 6 at 0.2 level of PCSM. The
search radius of this domain, which is a fixed distance at 0.2
level of PCSM, has been defined using Figure 6 (PCSM no. 6).

By using the search domain, scaled distances and
distance ratios have been calculated at the different levels of
similarity. In addition, SRDF weightings have been obtained
by the difference between the locations in the domain and the
pivot location (no. 6) easily. The sixth column in Tables II
and 11T includes these SRDF weightings for location no. 6,
which can also be taken from the graph in Figure 10.
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Figure 6—Sample experimental PCSMs at different measurement locations
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Table |

Regional variations at fixed levels of PCSM
Location 0.2 0.4 Location 0.2 0.4
number number

1 185 330 22 206 457
2 168 358 23 84 294
3 173 302 24 118 169
4 132 297 25 137 324
5 118 212 26 98 229
6 96 231 27 67 101
7 218 382 28 97 249
8 156 370 29 184 391
9 225 382 30 79 259
10 120 332 31 145 335
11 111 268 32 217 266
12 228 337 33 139 270
13 98 169 34 243 427
14 204 387 35 181 389
15 142 359 36 134 351
16 181 324 37 116 237
17 59 223 38 124 284
18 158 328 39 157 307
19 183 368 40 157 336
20 154 256 41 74 192
21 167 285 42 99 238
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Figure 8—Similarity map at 0.4 PCSM value

In Figure 10, the closest location to the pivot contributes
the highest weight, and the furthest ones relatively contribute
the least weights. In order to obtain the estimated grades,
spatial interpolations have been carried out for each location.
The seventh column in Table II is the grade contribution,
which was calculated by multiplying the grade by the SRDF
values as weights. For location no. 6, substitution of the
values leads to the estimation of grade at level 0.2 level as
3706.3/3.3 = 1133.8 (see Table II).
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Figure 9—Determination of search domain for location no 6

Table Il

Grade estimation for location no. 6 at 0.2 similarity level

Location distance Grade ratio PCSM weighting Scaled Distance SRDF Contribution Estimation
6 1136 0.0 0.0 0.00 1.00 1136.0 1136
37 1155 9.5 17.0 0.18 0.90 1037.0
20 1145 14.0 711 0.74 0.85 972.6
18 1075 445 93.9 0.98 0.52 560.6
31 1039 93.0 96.0 1.00 0.00 0.0
>=3.27 >=3706.3 3706.3/3.27=1133
Table Il
Grade estimation for location no. 6 at 0.4 similarity level
Location Grade PCSM Scaled distance Distance ratio SRDF weighting Contribution Estimation
6 1136 0.0 0.0 0.00 1.00 1136.0 1136
37 1155 9.5 17.0 0.08 0.98 1132.3
20 1145 14.0 711 0.33 0.97 1111.9
18 1075 44.5 93.9 0.43 0.91 976.2
31 1039 93.0 96.0 0.44 0.81 839.4
33 1168 109.0 109.0 0.50 0.77 905.0
41 1273 1775 111.3 0.51 0.63 806.1
19 1158 188.5 116.5 0.54 0.61 707.0
38 1180 210.5 127.2 0.58 0.57 666.8
36 1224 254.5 138.1 0.63 0.47 580.4
40 1225 299.0 169.9 0.78 0.38 468.2
28 1308 385.0 189.0 0.87 0.20 267.5
26 1178 406.0 193.7 0.89 0.16 189.8
11 1247 461.5 203.9 0.94 0.05 58.0
1 1116 471.5 210.4 0.97 0.03 28.8
27 1161 484.0 217.6 1.00 0.00 0.0
>=8.55 ¥=9873.4 9873.4/8.55=1155
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Figure 10—SRDF graphs at fixed levels for location no 6

Results and discussion

In the last step, it was tried to measure the strength of the
linear relationship that exists between actual and estimated
grades. In order to determine this relation, the coefficient of
correlation, 7, has been used. Figures 11-12 show these
relationships for different fixed levels. The performance
evaluation indicated better performance at 0.2 similarity level
than at 0.4 similarity level.

As seen in Figures 11-12, for relatively small radius of
influences (60-250 m) determined, more successful
estimations have been obtained. On the other hand, with the
increasing distances (100-450), less successful results have
been taken. It might result from the manner in which the
madogram function increases at small distances characterizes
the degree of spatial continuity of the variable under study.

Conclusions

Quantification of grade variability has crucial importance in
reserve estimation. Therefore different well-known methods
are used based on pure probabilistic theory for this purpose.
This study presented an integration of the probabilistic and
fuzzy approaches. The proposed method uses membership
grades and quantifies the variability using the point
cumulative semimadogram function.

The approach can be used especially for determining the
regional dependence and the radius of influence (using fixed
PCSM levels). In addition, the method provides a general
information to interpret spatial variability at each location
rather than regionally. By this method, grade estimations
also can be carried out at different PCSM levels by
determining the search domains and standard regional
weightings.

Appendix A
Fuzzy c-means (FCM) clustering
Given the data set X, choose the number of clusters 1<c <N,
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the fuzziness (weighting) exponent 7 >1, the termination
tolerance e > 0 and the norm-inducing matrix A. Initialize the
partition matrix randomly, such that %,

Repeat for /=1, 2,...
Step 1: Compute the cluster prototypes (means):

N -1 yn
vl = M 1<i<e.
> ™)
Step 2: Compute the distance:
D;, :(xk -v¥ )TA(xk —vﬁ”),lSiSc, 1<k<N.

Step 3: Update the partition matrix:
if Dpa-0for1<isc, 1<ks<N,

0 !

/uzk - c 2
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Zj:l (DikA /DjkA )
1500
1400 -
g 13001
©
£
k7]
w1200 -
1100 -
/7
Pt r=076
1000 #=————

1000 1100 1200 1300 1400 1500
Actual

Figure 11—Performance evaluation at 0.2 level
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Figure 12—Performance evaluation at 0.4 level

VOLUME 108 REFEREED PAPER FEBRUARY 2008 87 |

T
r
a
n
s
a
C
t
i

o
n




An algorithm for quantifying regionalized ore grades

otherwise

(1)
Hix

untilHU(” - U"‘”” <e.
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