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INTRODUCTION
Describing sea severity statistically 
provides vital information for the design, 
installation and operation of marine 
structures. To successfully design a marine 
structure, one needs information on the 
roughest, most extreme sea state that the 
structure will meet during its design life 
(e.g. 50 years). In general, the available 
sea severity information is a data set of 
significant wave height (HS) measured at a 
sea site over a relatively short span of time 
(e.g. 25 years or less). For predicting the 
extreme HS value that the marine struc-
ture is expected to encounter at a specific 
sea site in 50 years or more, depending on 
the design or operational requirements, it 
is necessary to first find a suitable prob-
ability distribution that represents the 
measured data accurately. In the existing 
literature, the three-parameter Weibull 
model is the most widely used probability 
distribution for the significant wave height 
(HS). Based on the information of the 
fitted marginal distributions of HS and a 
specific wave period and their correlation 
structures, an environmental contour 
(an environmental contour describes the 
tail properties of some relevant environ-
mental variables, and is used as input to 
the design process) line corresponding 
to a design life cycle time period (e.g. 50 
years) can be generated by using a suitable 

transformation between the normal space 
and the physical space.

Clarindo et al (2021) explored the use 
of the Monte Carlo Importance Sampling 
technique to reduce the variance on the 
probability of failure estimates based on 
prior information on the environmental 
contour provided by the classic IFORM 
(Inverse First-Order Reliability Method) 
approach. The IFORM is a widely used 
approach for calculating environmental 
contours based on the joint probability 
distribution of the environmental vari-
ables, and the Rosenblatt transformation 
is a common approach to establish the 
transformation between the variable 
space and the standard normal space 
within which the environmental contour is 
calculated based on common exceedance 
probability. In the Clarindo et al (2021) 
study, the joint environmental model of the 
sea waves was described by the marginal 
three-parameter Weibull distribution of 
significant wave height (HS) and by the 
conditional log-normal distribution of the 
wave period fitted to a large collection of 
simulated wave data. It was shown that the 
IFORM approach gives quite smooth envi-
ronmental contour lines. Haselsteiner et 
al (2021) presented an approach to reduce 
the conservatism associated with highest 
density environmental contours. In their 
calculation example of an environmental 
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contour for sea states, they assumed that 
the significant wave height follows a three-
parameter Weibull distribution. It was 
found in their study that when the 50-year 
response is estimated, the IFORM method 
can lead to non-conservative response esti-
mates of a marine structure. Mackay and 
Haselsteiner (2021) studied the relationship 
between the marginal exceedance probabil-
ity of the maximum value of each sea state 
variable along an environmental contour 
and the total probability outside the con-
tour. To illustrate the relationship between 
marginal and total exceedance probabilities 
and quantiles (quantiles are values that 
split sorted data or a probability distribu-
tion into equal parts; in general terms, a 
q-quantile divides sorted data into q parts) 
in a realistic case, they used a sea state 
model in which the significant wave height 
is assumed to follow a three-parameter 
Weibull distribution. In their research, they 
obtained environmental contours by using 
a suitable transformation between the nor-
mal space and the physical space based on 
the Inverse First-Order Reliability Method 
(IFORM). In Wrang et al (2021), 50-year 
environmental contours were generated for 
four study sites located in the North Sea, 
Skagerrak and the Baltic Sea by considering 
both observations and hindcast (model) 
data. For the construction of the contours, 
the well-established IFORM approach and 
a modified version using principal compo-
nent analysis (PCA) were both examined. 
In the implementation of the IFORM 
method in Wrang et al (2021), the marginal 
probability distribution of the significant 
wave height was taken as a three-parameter 
Weibull distribution. It was found that a 
version of the regular IFORM was able 
to produce satisfactory contours. When 
using PCA, the dependency in the data was 
not properly captured by the probability 
functions under consideration. The system 
reliability of a semi-submersible platform 
was estimated in the study of Zhao and 
Dong (2022a). In this study environmental 
contours were calculated using the IFORM 
method in which the marginal distribu-
tion for the significant wave height was 
fitted using a three-parameter Weibull 
distribution. Zhao and Dong (2022a) 
pointed out that, “Those probabilistic 
expressions obtained from environmental 
contour-based values can be used for 
preliminary design evaluation of floating 
structures, which can be used to address 
the design loads and failure probability of 
the entire system.” Zhao and Dong (2022b) 

presented an extension of the alternative 
environmental contour approach based on 
inverse first-order reliability theory in a 
three-dimensional model that accounts for 
short-term extreme response uncertainties. 
In their study, for constructing an environ-
mental contour, a marginal distribution for 
the significant wave height was fitted to a 
three-parameter Weibull distribution. In 
their research work they concluded that, 
“The environmental contour method that 
uncouples the structural response and envi-
ronmental variables is efficient, whereas 
the design loads results can be inaccurate 
and unconservative compared with those 
derived from the long-term loads models.” 
Chai and Leira (2018) extended the IFORM 
approach to estimate inverse second-
order (ISORM) environmental contours. 
However, their ISORM contour method is 
still based on the Rosenblatt transforma-
tion of the parametric marginal model 
(three-parameter Weibull distribution) of 
the significant wave height (HS).

In all the above-mentioned open 
literature the three-parameter Weibull 
model is the chosen distribution for the 
significant wave height when developing 
environmental contours. However, the 
problems or limitations in the above-
mentioned literature are that these authors 
have not investigated the performances of 
the three-parameter Weibull distribution 
for fitting the probability distribution tails. 
Haselsteiner and Thoben (2020) noticed 
that, “In the design process of marine 
structures like offshore wind turbines, the 
long-term distribution of significant wave 
height needs to be modelled to estimate 
loads. This is typically done by fitting a 
translated Weibull distribution to wave 
data.” However, being doubtful about 
the suitability of the translated Weibull 
distribution (three-parameter Weibull 
distribution), these authors analysed wave 
datasets from six locations suitable for off-
shore wind turbines. Three datasets were 
derived from moored buoys off the US East 
Coast and three datasets were gathered 
from a hindcast that covers the North Sea. 
In their research, they found that, in all 
six datasets, the three-parameter Weibull 
distribution predicts too low probability 
densities in the tail and consequently also 
too low quantiles in the tail.

It should be noted that all the 
afore-mentioned studies applied the 
parametric method for fitting the prob-
ability distribution of the significant wave 
height. Haselsteiner et al (2017) used a 

nonparametric kernel density estimation 
(KDE) method to calculate the probability 
distributions, and to predict environmental 
contours of extreme sea states. Kernel den-
sity estimation is the process of estimating 
an unknown probability density function 
using a kernel function. While a histogram 
counts the number of data points in some-
what arbitrary regions, a kernel density 
estimate is a function defined as the sum 
of a kernel function on every data point. 
However, Ross et al (2020) pointed out 
that the ordinary kernel density estimation 
method is not a good choice to describe the 
probability distribution tails. Eckert-Gallup 
and Martin (2016) applied the bivariate 
kernel density estimation with Abramson’s 
adaptive bandwidth selection method in 
their estimation of environmental contours 
of extreme sea states. Although the method 
in Eckert-Gallup and Martin (2016) can 
well capture the probability distribution 
tails and accurately predict environmental 
contour lines, the Abramson’s adaptive 
bandwidth selection in Eckert-Gallup and 
Martin (2016) is both difficult to imple-
ment and computationally expensive. 
Thus, seeking a more efficient adaptive 
bandwidth selection process for the KDE 
method is needed in order to capture the 
probability distribution tails and predict 
environmental contours more accurately 
and more efficiently.

Aiming to overcome the deficiencies 
of all the aforementioned parametric and 
nonparametric approaches, this paper 
proposes to utilise a new adaptive kernel 
density estimation method based on a 
linear diffusion process which can help to 
capture the probability distribution tails 
more accurately and efficiently. The pro-
posed new adaptive kernel density estima-
tion method will be utilised in calculating 
the distribution tails of a measured HS data 
set at NDBC (National Data Buoy Center) 
Station 46012 and another measured HS 
data set at NDBC 44007 operated by the 
US National Oceanic and Atmospheric 
Administration. Through comparing with 
the prediction results obtained using a 
parametric method, an ordinary KDE 
method and the Abramson’s adaptive KDE 
method, the accuracy and efficiency of the 
proposed new adaptive KDE method will 
be substantiated. Next, the proposed new 
adaptive KDE method and the Rosenblatt-
ISORM method will respectively be applied 
for calculating 50-year environmental con-
tour lines based on the above-mentioned 
measured NDBC 46012 data set. These 
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obtained contour lines will subsequently 
be used in calculating the 50-year design 
force values for a typical marine structure 
(in this case, a point absorber wave energy 
converter). Through analysing and compar-
ing the calculation results, the advantages 
of using the proposed new adaptive KDE 
method for long-term safety analysis of 
marine structures will be substantiated.

THEORETICAL BACKGROUND

Theories behind the traditional IFORM 
and ISORM contour approaches
For the dynamic analysis of a specific 
marine structure, the long-term response 
extremes of the structure can be obtained 
by resorting to a short-term analysis based 
on the environmental contour line method 
(Haver & Winterstein 2009). The environ-
mental contour line method can be applied 
for an ocean site if the marginal probability 
distribution of the HS and the conditional 
probability distribution function of the 
wave period are both available.

The first step for deriving an envi-
ronmental contour line is to apply the 
following two Rosenblatt transformation 
equations to transform the marginal and 
conditional probability distributions to a 
standard Gaussian space (the u1, u2 space):

FHS
(h) = Φ(u1)� (1)

FTp|HS
(t|h) = Φ(u2)� (2)

Where:
	 FHS

(h)	� is the marginal probability dis-
tribution of HS

	FTp|HS
(t|h)	� is the conditional probability 

distribution of the peak spectral 
period (Tp)

	 Φ( )	� is the cumulative distribution 
function of the standard uni-
variate Gaussian distribution.

In the standard Gaussian space, the q 
annual exceedance probability environ-
mental contour line will be circles having 
radius r = Φ–1(1 – q/2 920) where 2 920 is 
the number of the three-hour sea states in 
each year. The radius r from the origin to 
the design point, referred to as the reliabil-
ity index, is also denoted by βF in the exist-
ing literature. If q/2 920 is denoted as α, the 
relation Φ(βF) = 1 – α will be derived. The 
q-probability environmental contour lines 
can then be obtained by transforming these 
circles in the standard Gaussian space back 

to the original physical space using the fol-
lowing inverse Rosenblatt transformation 
equations (see e.g. Manuel et al 2018) :

HS = FHS
–1(Φ(u1)) = FHS

–1(Φ(r cos θ))� (3)

Te �= FTe|HS
–1(Φ(u2)|HS)  

= FTe|HS
–1(Φ(r sin θ)|HS)� (4)

The whole environmental contour line can be 
derived by varying the angle θ in Equations 3 
and 4 from 0 to 2π. The derivation process 
in Equations 1 to 4 for obtaining an envi-
ronmental contour line is called the Inverse 
First Order Reliability Method (IFORM). 
Mackay and Haselsteiner (2021) pointed out 
that, for an IFORM environmental contour 
at exceedance probability α, the maximum 
values of the standard Gaussian variables 
have marginal exceedance probability α in 
standard Gaussian space. However, the same 
is not true for the maximum values of original 
random variables along the IFORM contour 
in the original physical space.

The IFORM approximation is conserva-
tive when the failure region is convex, but 
is not conservative if the failure region is 
concave. Chai and Leira (2018) proposed a 
second-order approximation to the failure 
surface which is always conservative, and 
their proposal is called the Inverse Second 
Order Reliability Method (ISORM). In 
the ISORM method the failure surface is 
assumed to enclose a circle in the standard 
Gaussian space, centered at the origin. 
The radius βS2 is defined so that the prob-
ability that an observation falls outside 
the circular region is α. Chai and Leira 
(2018) noted that, since the sum of two 
independent standard Gaussian variables 
follows a Chi-squared distribution on two 
degrees of freedom x2

2, the radius βS2 can 
be written as:

x2
2(β2

S2) = 1 – α� (5)

In the ISORM definition, the radius βS2 
is a function of the exceedance prob-
ability. As with the IFORM environmental 
contour, the ISORM environmental 
contour in the original physical space is 
obtained by applying the inverse Rosenblatt 
transformation to the contour in standard 
Gaussian space.

The ordinary and Abramson’s 
adaptive kernel density 
estimation (KDE) methods
The IFORM and ISORM approaches 
for environmental contours are both 

parametric methods that require some 
specific predefined probability distribu-
tion models for the sea state parameters. 
However, a drawback to parametric model-
ling is that the requirements on the prede-
fined probability model may be too restric-
tive and rigid for adequately estimating 
the true underlying function. To overcome 
the rigidity of the parametric sea state 
parameter probability distribution models, 
the non-parametric KDE method can be 
utilised. The KDE is a fundamental data-
smoothing problem solver in which infer-
ences about the population are made based 
on a data sample of finite size. Suppose 
(X1, … Xn) are finite data samples drawn 
from an unknown univariate probability 
density distribution f at any given point 
x. It is of interest to estimate the shape of 
this function f. Its ordinary kernel density 
estimator is (Eckert-Gallup & Martin 2016; 
Silverman 1986):

f̂ (x; h) = 
1

nh
 

n
Σ
i=1

K ⎫
⎪
⎭

x – Xi

h
⎫
⎪
⎭
� (6)

where K is the kernel, a non-negative func-
tion satisfying ∫K(x)dx = 1, and h > 0 is 
a smoothing parameter called the band-
width. A range of kernel functions are 
commonly used: uniform, triangular, 
biweight, triweight, Epanechnikov, normal, 
and others. The Epanechnikov kernel is 
optimal in a mean square error sense, and 
therefore it is utilised in this study.

The afore-mentioned univariate kernel 
density estimator can be extended to the 
bivariate setting by using two bandwidths 
(h1 and h2), one in each coordinate’s direc-
tion. Let X11, … Xn1 be a data sample in 
one coordinate’s direction and X12, … Xn2 
be a data sample in another coordinate’s 
direction. Then the bivariate kernel density 
estimation can be implemented using 
Equation 7:

f̂ (x1, x2; h1, h2) = �
1

n h1 h2
 

n
Σ
i=1

K 

⎫
⎪
⎭

x1 – Xi1

h1
, 

x2 – Xi2

h2

⎫
⎪
⎭
� (7)

Up to this point the theoretical background 
for the ordinary kernel density estimation 
(KDE) with an optimal kernel function has 
been presented. The ordinary kernel densi-
ty estimation method can generally provide 
satisfactory estimates in the central parts 
of a probability distribution. However, 
the ordinary KDE usually cannot provide 
satisfactory estimates of the probability 
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distribution tails, and consequently also 
does not extrapolate well.

In order to calculate the sea state 
parameter distribution tails more accurate-
ly, and to derive accurate environmental 
contour lines, Eckert-Gallup and Martin 
(2016) proposed to use Abramson’s adap-
tive kernel density estimation (KDE) meth-
od in which the bandwidth of the kernels is 
allowed to vary from one point to another. 
To implement Abramson’s adaptive KDE 
method, a pilot estimate f̂ (x1, x2) satisfying 
f̂ (X1i, X2i) > 0 for all i is first found. One 
can then calculate the local bandwidth 
parameters λi as follows (Silverman 1986; 
Wand & Jones 1995):

λi = ⎫
⎪
⎭

f̂ (X1i, X2i)
g

⎫
⎪
⎭

α
� (8)

where α is the sensitivity parameter that 
satisfies 0 ≤ α ≤ 1. In Equation 8, g is 
obtained using Equation 9:

log(g) = n–1Σlog( f̂ (X1i, X2i))� (9)

One can then calculate the adaptive kernel 
estimate f̂ (x1, x2) as follows (Silverman 
1986):

f̂ (x1, x2) = �
1
n 

n
Σ
i=1 

1
h1h2λi

K 

⎫
⎪
⎭

x1 – Xi1

λih1
, 

x2 – Xi2

λih2

⎫
⎪
⎭
� (10)

However, Abramson’s adaptive KDE 
method is both difficult to implement and 
computationally very expensive. In the next 
subsection this paper will propose a new 
adaptive KDE method that can be utilised 
to capture the sea state parameter prob-
ability distribution tails more accurately 
and efficiently.

Adaptive KDE method based 
on linear diffusion processes
Suppose again that X1, … Xn are finite data 
samples drawn from an unknown univari-
ate probability density distribution f at any 
given point x. One can derive the Gaussian 
kernel density estimator as follows (Botev 
et al 2010):

f̂ (x; t) = �
1
n 

n
Σ
i=1 

φ(x, Xi; t)� (11)

in which

φ(x, Xi; t) = �
1

√2πt
e–(x–Xi)

2/2t� (12)

It can be seen that in this case the band-
width parameter is √t. One can see that the 
Gaussian kernel density estimator (12) can 
be uniquely obtained by evolving the solu-
tion of the following diffusion equation up 
to time t (Botev et al 2010):

∂
∂t

f̂ (x; t) = �
1
2 

∂2

∂x2 
f̂ (x; t), t > 0� (13)

Equation 13 possesses the following initial 
condition:

f̂ (x; 0) = �
1
n 

n
Σ
i=1 

δ(x – Xi)� (14)

in which δ(x – Xi) is the Dirac Delta func-
tion at Xi. One can extend the diffusion 
model (13) based on the smoothing proper-
ties of the linear diffusion equation (Botev 
et al 2010):

∂
∂t

g(x; t) = Lg(x; t)
� (15)

in which L is the linear differential 
operator that possesses the form 
1
2 

d
dx

⎫
⎪
⎭
α(x)

d
dx

⎫
⎪
⎭



p(x)
⎫
⎪
⎭

⎫
⎪
⎭
 and α(x) and p(x) can 

be chosen to be any arbitrary positive 
functions that have bounded second 
derivatives. Equation 15 possesses the 
following initial condition:

g(x; 0) = �
1
n 

n
Σ
i=1 

δ(x – Xi)� (16)

in which δ(x – Xi) is the Dirac Delta func-
tion at Xi. Solving Equation 15 one can 
obtain (Botev et al 2010):

g(x; t) = �
1
n 

n
Σ
i=1 

κ(x, Xi; t)� (17)

in which the asymptotic approximation 
κ(x, Xi; t) is expressed as follows:

κ(x, Xi; t) ~ � p(x)
√2πt [p(x)a(x)a(Xi)p(Xi)]1/4 

exp –1
2t

⎫
⎪
⎭

x
∫
Xi

p(s)
a(s) ds⎫

⎪
⎭

2
, t   0� (18)

The bandwidth parameter √t is asymptoti-
cally optimal and its square is expressed as 
follows (Botev et al 2010):

t = ⎫
⎪
⎭

Ef[(√a(x)/p(x))–1]
2n√π ||Lf ||2

⎫
⎪
⎭

2/5
� (19)

in which E denotes mathematical expecta-
tion. || || is the Euclidean norm. It can be 
seen that the t value changes with the value 
of x. This is why this proposed method is 
called a new adaptive kernel density esti-
mation method based on linear diffusion 
processes.

In this subsection a new kernel den-
sity estimator based on a linear diffusion 
process has been presented. It can be seen 
that the key idea is to construct an adaptive 
kernel by considering the most general 
linear diffusion with its stationary density 
equal to a pilot density estimate. That is 
to say, the key idea is to view the kernel 
from which the estimator is constructed 
as the transition density of a diffusion 
process. When implementing this method, 
one utilises the most general linear dif-
fusion process that has a given limiting 
and stationary probability density. This 
stationary density is selected to be a pilot 
density estimate. The approach leads to a 
simple and intuitive kernel estimator with 
substantially reduced asymptotic bias and 
mean square error. The proposed estima-
tor deals well with boundary bias and, 
unlike other proposals, is always a bona 
fide probability density function. It can be 
shown that the proposed approach brings 
some well-known bias-reduction methods 
together under a single framework, such 
as the Abramson estimator. The resulting 
diffusion estimator unifies many of the 
existing ideas about adaptive smoothing. 
In addition, the estimator is consistent at 
boundaries.

A CALCULATION EXAMPLE 
AND DISCUSSIONS FOR THE HS 
PROBABILITY DISTRIBUTIONS
This section provides a calculation exam-
ple and discussions of the calculation 
results based on the measured wave data 
at the National Data Buoy Centre (NDBC) 
Station 46012 (see the picture in Figure 1). 
This data buoy is located at Half Moon 
Bay – 24 nautical miles south-southwest 
of San Francisco on the United States west 
coast. This data set contains 180 554 hour-
ly measurements of HS and energy 
periods (Te) taken from 1 January 1996 to 
31 December 2021 at the NDBC 46012. 
The water depth at this measured site is 
208.8 m, which can obviously be consid-
ered as a deep-water depth. According to 
the classic naval architecture theory, ocean 
waves at this site will be less affected by the 
sea bottom and are therefore linear waves.
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The calculation results based on the 
180 554 hourly measurements of HS at 
NDBC Station 46012 are summarised in 
Figure 2. The red curve in Figure 2 is the 
fitted three-parameter Weibull distribution 
using Equation 20:

fHS
(x1) = 

β
a

⎫
⎪
⎭

x1 – γ
a

⎫
⎪
⎭

β–1
e

– ⎫
⎭
x1–γ

α
⎫
⎭
β

� (20)

In this case the scale parameter α = 2.0228, 
the shape parameter β = 2.0167 and the 
location parameter γ = 0.4422. It can be 

seen that this red curve fits poorly with the 
measured data at the mode of the probabil-
ity distribution. Furthermore, a zoom-in 
plot in Figure  3 also clearly shows that 
the red curve fits poorly with and signifi-
cantly underestimates the measured data 
at NDBC Station 46012, indicating that the 
parametric model (the three-parameter 
Weibull model) is not a good choice to rep-
resent the HS probability distribution.

The green distribution curve in Figure 2 
has been constructed by using the ordinary 
KDE method based on the same set of 
measured HS data. It can be seen that this 
green distribution curve fits quite well with 
the measured data at the mode of the prob-
ability distribution. However, the zoom-in 
plot in Figure 3 shows that this green 
distribution curve has become zigzagged 
and fits poorly with the measured HS data, 
indicating that the ordinary KDE method 
is also not a good choice to calculate the HS 
probability distribution.

Taking note of the fact that the ordi-
nary kernel density estimation method 
cannot provide satisfactory prediction 
results, Abramson’s adaptive KDE method 
was resorted to in order to get better 
prediction results of the distribution tails. 
The calculation results using Abramson’s 
adaptive KDE method are represented by 
the green curves in Figures 4 and 5. It can 
be seen that the green distribution curve in 
Figure 4 fits very well with the measured 
HS data at the mode of the distribution. 
In addition, the green distribution curve 
in Figure 5 also fits very well and fits 
smoothly with the measured HS data at the 
right tail region of the distribution.

Unfortunately, obtaining the green curve 
in Figure 4 costs more than 1 827 seconds to 
run the MATLAB code on a Dell Precision 
5820 workstation. This is computationally 
too expensive, especially for some time-
constrained practical engineering projects. 
Aiming to overcome this deficiency of 
Abramson’s adaptive KDE method, the 
proposed new adaptive KDE method based 
on linear diffusion processes was utilised to 
predict the HS probability density distribu-
tion based on the same set of measured data, 
and the prediction results are represented by 
the red curve in Figure 4. It can be seen that 
this red distribution curve in Figure 4 fits 
very well with the measured HS data at the 
mode of the distribution. In addition, the 
red distribution curve in Figure 5, obtained 
using the proposed new adaptive KDE 
method, also fits very well and fits smoothly 
with the measured HS data at the right tail 

Figure 1 �Picture of the data buoy NDBC 46012  
(https://www.ndbc.noaa.gov/station_page.php?station=46012)
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region of the distribution. Furthermore, this 
red distribution curve in Figure 5 also fits 
the measured HS data slightly better than 
the green distribution curve from using 
Abramson’s adaptive kernel density estima-
tion method. Most impressively, obtaining 
the red curve in Figure 4 cost only about 
34 seconds for running the MATLAB code 
on a Dell Precision 5820 workstation. This 
is about 54 times faster than Abramson’s 
adaptive KDE method, indicating that our 
proposed new method can be utilised to 
capture the sea state parameter probabil-
ity distribution tails more efficiently and 
accurately.

This paper has so far graphically proved 
the accuracy and effectiveness of our pro-
posed new adaptive KDE method based on 
linear diffusion processes. Despite the clar-
ity about the accuracy and efficiency of this 
new method, graphically, this paper now 
continues to prove the accuracy of this new 
method by using goodness-of-fit tests such 
as the Crámer-von-Mises statistic. The 
Crámer-von-Mises statistic could be used 
to assess and compare the fits. In statistics 
the Crámer-von-Mises is a criterion used 
for judging the goodness-of-fit of a cumula-
tive distribution function F* compared to a 
given empirical distribution function Fn. It 
is defined as:

ω2 = ∫∞

–∞[Fn(x) – F*(x)]2dF*(x) � (21)

Let x1, x2 … xn be the observed values, in 
increasing order. Then, the Crámer-von-
Mises test statistic is:

T = nω2 = 
1

12n
 +�

n
Σ
i=1

⎫
⎪
⎭
2i – 1

2n
 – F*(xi)

⎫
⎪
⎭

2
� (22)

If the Crámer-von-Mises test statistic value 
is larger, then the fit of the cumulative dis-
tribution function F* to the given empirical 
distribution function, Fn is poorer. A 
MATLAB code has been written to cal-
culate the Crámer-von-Mises test statistic 
value. Based on the measured data (the HS 
data in Figures 4 and 5), the Crámer-von-
Mises test statistic value for the proposed 
adaptive KDE estimated distribution (the 
red curve in Figure 4) was calculated to be 
0.0957. Similarly, the Crámer-von-Mises 
test statistic value for the fitted three-
parameter Weibull distribution in Figure 4 
was calculated to be 254.4443. Therefore, 
it has been quantitatively verified that in 
Figures 4 and 5 the proposed adaptive KDE 
estimation fits the data better than the 
three-parameter Weibull distribution.
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Figure 3 �Model fit at the tail region between the measured data at NDBC 46012 and the two 
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ANOTHER CALCULATION 
EXAMPLE AND DISCUSSIONS 
FOR THE HS PROBABILITY 
DISTRIBUTIONS
Up until now the new approach proposed 
in this paper has been applied to one 
dataset only. In the following section, 
more information will be provided on the 
sensitivity analysis conducted on the pro-
posed new method, and how the proposed 
method performs under different condi-
tions, such as variations in the number of 
data points. This section will specifically 
provide another calculation example and 
discussions of the calculation results based 
on the measured wave data at NDBC 
Station 44007 (see photo in Figure 6). 
This data buoy is located at Portland – 
12 nautical miles southeast of Portland on 
the United States east coast. This dataset 
contains 82 805 hourly measurements of 
HS and energy periods (Te) taken from 
1 January 1996 to 31 December 2005 at 
NDBC 44007. The water depth at this 
measured site is 49 m, which is considered 
to be a shallow water depth. According to 
classic naval architecture theory, the ocean 
waves at this site will be more affected by 
the sea bottom and are therefore nonlinear 
waves. It is obvious that this measuring site 

has significantly less data points (82 805) 
than the measuring site in the first calcula-
tion example (180 554). The purpose of 
this calculation example is to provide more 
information on the sensitivity analysis 
conducted on the proposed method. 
Specifically, the purpose of this calculation 
example is to discuss how the proposed 
new method performs under different 
conditions (i.e. variations in the number of 
data points).

The calculation results of the prob-
ability densities using Abramson’s adap-
tive KDE method are represented by the 
green curves in Figures 7 and 8. It can be 
seen that the green distribution curve in 
Figure 7 fits better with the measured HS 
data at the mode of the distribution than 
the three-parameter Weibull distribution 
does. In addition, the green distribution 
curve in Figure 8 also fits better with the 
measured HS data at the right tail region of 
the distribution than the three-parameter 
Weibull distribution does. Unfortunately, 
getting the green curve in Figure 7 costs 
more than 1 832 seconds for running the 
MATLAB code on a Dell Precision 5820 
workstation. Computationally this is 
too expensive, especially for some time-
constrained practical engineering projects. 

Aiming to overcome this deficiency of 
Abramson’s adaptive KDE method, the 
proposed new adaptive KDE method, based 
on linear diffusion processes, was utilised 
to predict the HS probability density distri-
bution based on the same set of measured 
data, and the prediction results are repre-
sented by the red curve in Figure 7. It can 
be seen that this red distribution curve in 
Figure 7 fits very well with the measured 
HS data at the mode of the distribution. 
In addition, the red distribution curve in 
Figure 8, obtained using our proposed new 
adaptive KDE method, also fits very well 
and fits smoothly with the measured HS 
data at the right tail region of the distribu-
tion. Furthermore, the red distribution 
curve in Figure 8 also fits the measured 
HS data slightly better than the green 
distribution curve from using Abramson’s 
adaptive kernel density estimation method. 
Most impressively, getting the red curve 
in Figure 7 cost us only about 33 seconds 
for running the MATLAB code on a Dell 
Precision 5820 workstation. This is about 
56 times faster than Abramson’s adaptive 
KDE method, indicating that our proposed 
new method can be utilised to capture the 
sea state parameter probability distribution 
tails more efficiently and accurately.

In the aforementioned two case stud-
ies, two measured datasets with distinct 
physical properties were used. One dataset 
was measured at a deep-water site on 
the United States west coast where the 
measured waves are linear. Another dataset 
was measured at a shallow-water site on 
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the United States east coast where the 
measured waves are nonlinear. In both case 
studies the advantages of the proposed new 
method over the existing methods (the 
three-parameter Weibull distribution, the 
ordinary KDE method and the Abramson’s 
adaptive KDE method) have been clearly 
substantiated. Consequently, the proposed 
new method is better suited to handle 
complex data distribution, which is a com-
mon challenge in the field.

CALCULATION EXAMPLES 
FOR THE ENVIRONMENTAL 
CONTOUR LINES
This section first presents the computa-
tional results for the 50-year environmental 
contour lines based on the measured ocean 
wave data at NDBC 46012.

The red “dots” in Figure 9 are the 
180 554 hourly measurements of HS and 
energy periods (Te) taken from 1 January 
1996 to 31 December 2021 at NDBC 46012. 
The black curve in Figure 9 is the 50-year 
environment contour line derived using 
the IFORM approach. To implement the 
IFORM approach, the measured HS data 
was fitted with a three-parameter Weibull 
distribution, and the measured Te data 
was fitted with a conditional lognormal 
distribution. After the marginal distribu-
tion of HS and the conditional distribution 
of Te were obtained, Equations 1 to 4 were 
utilised to obtain the 50-year black envi-
ronmental contour line in Figure 9. One 
would expect that, for a recording period 
of 26 years, an environmental contour line 
with a 50-year return period should include 
most of the measured data. However, 
contrary to people’s expectations, the 
black environmental contour in Figure 9 
is clearly exceeded by many measured 
data points that have large HS values. 
Consequently, the information provided by 
the black IFORM contour in Figure 9 will 
certainly lead to the design of an unsafe 
marine structure.

The red “dots” in Figure 10 once again 
represent the 180 554 hourly measure-
ments  of HS and energy periods (Te) taken 
from 1 January 1996 to 31 December 2021 
at NDBC 46012. In Figure 10 the black 
curve represents the 50-year environment 
contour line forecasted by applying the 
more conservative ISORM approach. It 
can be seen that the fitting between the 
ISORM contour and the measured data 
set has been slightly improved. Compared 
to the IFORM contour, the ISORM 
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environmental contour line has missed less 
of the measured data. However, the ISORM 
contour still missed a considerable amount 
of data points that have large HS values. 
Consequently, the information provided 
by the black ISORM in Figure 10 will also 
lead to the design of an unsafe marine 
structure.

As the calculation results from using 
the IFORM and ISORM methods, based 
on fitted parametric sea state parameter 
distributions, were not satisfactory, the 
proposed new adaptive kernel density 
estimation (KDE) method was used to 
derive the environmental contour line. 
The computational results are presented in 
Figure 11.

In Figure 11 the blue curve is the 
50-year environmental contour line 
obtained by utilising the proposed adaptive 
KDE method. Because it has already been 
shown in Figures 4 and 5 that the proposed 
adaptive KDE method can well capture the 
HS (or Te) probability distribution tail, and 
because the blue curve in Figure 11 was 
directly obtained from the HS and Te prob-
ability distributions, the blue environmen-
tal contour line is certainly more accurate 
than the black ISORM environmental 
contour line directly obtained based on the 
parametric marginal HS and conditional 
Te models that have inaccurate distribu-
tion tails. Clearly, this blue environmental 
contour line should be superior to the black 
environmental contour line in Figure 11 
when being used to predict the extreme 
values of the dynamic responses of marine 
structures.

Thus far the proposed new approach 
in this paper has been applied to derive 
only the 50-year extreme sea state contour 
based on the measured dataset at NDBC 
46012. In the next section, sensitivity 
analysis conducted on the proposed new 
method will also be provided by applying 
the method to calculate the 50-year, 100-
year and 500-year environmental contour 
lines based on another measured dataset at 
NDBC 44007.

The red “dots” in Figure 12 are the 
82 805 hourly measurements of HS and 
energy periods (Te) taken from 1 January 
1996 to 31 December 2005 at NDBC 44007. 
The black curve in Figure 12 is the 50-year 
environmental contour line derived using 
the IFORM approach. The green and blue 
curves in Figure 12 are respectively the 100-
year and 500-year environmental contour 
lines derived using the IFORM approach. 
One would expect that, for a period of 10 
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Figure 9 �The 50-year environmental contour line created by the traditional IFORM method for 
NDBC 46012
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Figure 10 �The 50-year environmental contour line created by the traditional ISORM method for 
NDBC 46012
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years, an environmental contour line with 
a 500-year (or 100-year, or 50-year) return 
period should include most of the measured 
data. However, contrary to such expecta-
tions, the blue (or green, or black) environ-
mental contour line in Figure 12 is clearly 
exceeded by many measured data points 
that have large HS values. Consequently, the 
information provided by the blue (or green, 
or black) IFORM contour line in Figure 12 
will certainly lead to the design of an unsafe 
marine structure.

The red “dots” in Figure 13 are the 
82 805 hourly measurements of HS 
and energy periods (Te) taken from 
1 January 1996 to 31 December 2005 at 
NDBC 44007. The black curve in Figure 13 
is the 50-year environmental contour 
line derived using the ISORM approach. 
The red and green curves in Figure 13 are 
respectively the 100-year and 500-year envi-
ronmental contour lines derived using the 
ISORM approach. One would expect that 
for a period of 10 years, an environmental 
contour line with a 500-year (or 100-year, or 
50-year) return period should include most 
of the measured data. However, contrary 
to such expectations, the green (or red, 
or black) environmentalal contour line in 
Figure 13 is clearly exceeded by many meas-
ured data points that have large HS values. 
Consequently, the information provided by 
the green (or red, or black) ISORM contour 
line in Figure 13 will certainly lead to the 
design of an unsafe marine structure.

In Figure 14 the green curve is the 
50-year environmental contour line 
obtained by utilising the proposed adap-
tive KDE method. Because it has already 
been shown (in Figures 7 and 8) that the 
proposed adaptive KDE method can well 
capture the HS (or Te) probability distribu-
tion tail, and because the green curve in 
Figure 14 was obtained directly from the 
HS and Te probability distributions, the 
50-year green environmental contour line 
is certainly more accurate than the 50-year 
red ISORM environmental contour line (or 
the 50-year blue IFORM environmental 
contour line) directly obtained based on 
the parametric marginal HS and condi-
tional Te models that have inaccurate dis-
tribution tails. Clearly, this 50-year green 
environmental contour line should be 
superior to the 50-year red environmental 
contour line (or the 50-year blue environ-
mental contour line) in Figure 14 when 
being applied for predicting the extreme 
values of the dynamic responses of marine 
structures.
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Figure 12 �50-Year, 100-year and 500-year extreme sea state contours created by the traditional 
IFORM method for NDBC 44007

8

0

50-Year environmental contour line via IFORM

Measured data at NDBC 44007
500-Year environmental contour line via IFORM
100-Year environmental contour line via IFORM

1

3

166 12 14
Si

gn
if

ic
an

t w
av

e 
he

ig
ht

 (m
) 7

6

5

4

2

0

Energy period (s)
42 108 22

Figure 13 �50-Year, 100-year and 500-year extreme sea state contours created by the traditional 
ISORM method for NDBC 44007
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Figure 14 �50-Year extreme sea state contours created by the traditional methods and the 
proposed new method presented in this paper for NDBC 44007
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In Figure 15 the green curve is the 500-
year environmental contour line obtained 
by utilising the proposed adaptive KDE 
method. Because it has already been shown 
that the proposed adaptive KDE method can 

well capture the HS (or Te) probability dis-
tribution tail, and because the green curve 
in Figure 15 was obtained directly from 
the HS and Te probability distributions, the 
500-year green environmental contour line 

is certainly more accurate than the 500-year 
red ISORM environmental contour line (or 
the 500-year blue IFORM environmental 
contour line) directly obtained based on the 
parametric marginal HS and conditional Te 
models that have inaccurate distribution 
tails. Clearly, this 500-year green environ-
mental contour line should be superior to 
the 500-year red environmental contour line 
(or the 500-year blue environmental con-
tour line) in Figure 15 when being used to 
predict the extreme values of the dynamic 
responses of marine structures.

A CALCULATION EXAMPLE 
FOR THE EXTREME RESPONSE 
VALUES OF A SPECIFIC 
MARINE STRUCTURE

The chosen marine structure
A specific marine structure – a two-body 
point absorber wave energy converter (WEC) 
– was selected for this study. The WEC sim-
ulation model, built using the open-source 
code WEC-Sim (http://wec-sim.github.io/
WEC-Sim/), is presented in Figure 16.

This specific marine structure contains 
two parts – a spar and a float. The diam-
eters of the spar and the float are 6 metres 
and 20 metres, respectively. The spar is 
38 metres high, and the spar/plate has a 
mass of 878.3 ton. The float is 5 metres thick 
and has a mass of 727.01 ton. The draft of 
this specific marine structure is 82  metres. 
The marine structure is moored to the 
seabed using a mooring system consisting of 
three nylon mooring lines and three anchors. 
The angle between each pair of mooring 
lines is 120 degrees in the plan view.

WEC-Sim simulations were con-
ducted to obtain the 50-year extreme PTO 
(power-take-off) heaving force values of 
this two-body point absorber WEC in 
some selected sea states characterised by a 
Pierson-Moskowitz spectrum (the Pierson-
Moskowitz spectral formulation was devel-
oped in 1964 from analysis of measured data 
obtained by Tucker wave recorders installed 
on weather ships in fully developed seas). Six 
energy period (Te) values were selected to 
define the afore-mentioned sea states along 
each of the two environmental contour lines 
in Figure 17, namely 11.06 s, 12.13 s, 14.02 s, 
16.43 s, 18.94 s and 23.87 s. These Te values 
were selected in order to span the peak HS 
values as shown in Figure 17. The black 
solid “squares” in Figure 17 represent these 
selected sea states, and their corresponding 
values are presented in Table 1.
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Figure 15 �500-Year extreme sea state contours created by the traditional methods and the 
proposed new method presented in this paper for NDBC 44007
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 Figure 16 The WEC-Sim simulation model of the selected WEC 
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proposed new method presented in this paper for NDBC 46012
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 Table 1 shows that the significant 
wave height estimates using the proposed 
adaptive KDE method are significantly 
higher than those derived from the ISORM 
method. It is therefore obvious that the 
forces and dynamic responses predicted by 
the former wave conditions would be larger 
than those of the latter. In the following, 
the procedures for deriving the quantitative 
results of the WEC dynamic responses will 
be presented. The aforementioned selected 
sea states, characterised with different 
PM spectra, were utilised as inputs in the 
WEC-Sim simulations to obtain the WEC 
dynamic responses. Specifically, one type 
of dynamic response, the three-hour time 
series of the PTO heaving forces that are 
critical for the WEC design, have been 
obtained. A most probable maximum 
PTO force value was subsequently cal-
culated from each three-hour time series 
of the PTO heaving forces, according to 
the theory in Edwards and Coe (2019). 
This procedure was repeated for all the 
aforementioned six Te values along each 
of the two environmental contour lines in 
Figure 17 to obtain all the most probable 
maximum PTO force values based on the 
two environmental contour methods. The 
calculation results are presented in Table 2. 
From the prediction results in Table 2 it 
can be seen that the predicted 50-year 

extreme PTO force value based on the pro-
posed new adaptive kernel density estima-
tion (KDE) method is 3 212.7 KN, which is 
much larger than the 50-year extreme PTO 
force value 2 742.6 KN predicted using the 
ISORM environmental contour line meth-
od. Clearly, the larger 50-year extreme PTO 
force value predicted utilising the proposed 
new method will lead to the design of a 
safer WEC including its PTO device.

In the following section a more detailed 
discussion of the practical implications of 
the proposed new method will be provided. 
What will be discussed specifically is how 
the more accurate 50-year environmental 
contour line derived using the proposed 
new method can be used to improve the 
design and safety of a general type of 
marine structure, and what benefits this 
may bring in terms of cost savings and 
risk reduction. Accurate force calculation 
(by utilising the proposed new method) 
is of utmost importance in ensuring the 
structural integrity and safety of a marine 
structure. The forces acting on a marine 
structure, such as wave loads, can be 
incredibly powerful and have the potential 
to cause significant damage if not properly 
accounted for. By accurately calculating 
the forces (by utilising the proposed new 
method) acting on a marine structure, 
engineers and designers can ensure that 

the marine structure is capable of with-
standing these forces and maintaining its 
stability and functionality, thus reducing 
maintenance costs. This is especially cru-
cial in marine environments where struc-
tures are exposed to harsh environmental 
conditions. Additionally, accurate force 
calculation (by utilising the proposed new 
method) plays a vital role in ensuring the 
safety of occupants, as it helps to identify 
potential weaknesses or vulnerabilities in 
the marine structure that could lead to 
failures or collapses.

Furthermore, accurate force calculation 
(by utilising the proposed new method) 
allows engineers to optimise the use of 
materials and reduce construction costs. 
By understanding the exact forces at play, 
engineers can determine the most efficient 
design and select appropriate materials to 
withstand those forces. This not only saves 
money but also contributes to the sustain-
ability of the marine structure by minimis-
ing waste and reducing the environmental 
impact of construction. Ultimately, 
accurate force calculation (by utilising the 
proposed new method) is indispensable 
in ocean engineering, as it guarantees the 
durability, safety and cost-effectiveness of 
the designed marine structure. In conclu-
sion, the proposed new adaptive kernel 
density estimation (KDE) method can be 
utilised to predict the design force values 
for marine structures more efficiently and 
accurately, and to analyse the design safety 
of such marine structures.

CONCLUSIONS AND 
FUTURE RESEARCH
In this study, a proposed approach of 
utilising a new adaptive kernel density esti-
mation (KDE) method based on linear dif-
fusion processes was applied to accurately 
predict the HS probability distribution 
tails of two measured ocean wave datasets. 
The proposed approach was then applied 
to derive accurate 50-year and 500-year 
environmental contour lines that can be 
utilised in the prediction of long-term 
design force values for a specific marine 
structure. In conclusion, the proposed new 
adaptive KDE method, based on linear 
diffusion processes, is recommended to 
predict the long-term extreme dynamic 
response values for the safe and successful 
design of marine structures.

In this paper the assumption made in 
the proposed new adaptive KDE method 
is that it is based on linear diffusion 

Table 1 Values of significant wave heights from each contour line method as shown in Figure 17

Energy period
 Te (s)

Spectral peak 
period
Tp (s)

Proposed adaptive 
KDE HS (m)

ISORM method
HS (m)

11.06 12.94 8.88 6.98

12.13 14.19 9.14 7.18

14.02 16.41 9.40 7.41

16.43 19.23 9.05 7.62

18.94 22.16 5.73 7.68

23.87 27.92 4.59 7.22

Table 2 Most probable maximum PTO force values based on the two contour methods

Spectral 
peak period 

Tp (s)

Most probable maximum PTO force 
values based on the proposed 

adaptive KDE contour method (KN)

Most probable maximum PTO force 
values based on the Rosenblatt 

IFORM contour method (KN)

12.94 3 212.7 2 742.6

14.19 3 072.4 2 376.3

16.41 2 676.5 2 235.5

19.23 2 532.3 1 952.5

22.16 1 308.2 1 442.0

27.92 613.62 1 123.9
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processes. Numerical experiments have 
suggested good practical performance by 
applying this method.

For future research the proposed 
estimator can be extended in a number of 
ways. Firstly, one could construct kernel 
density estimators based on Lévy process-
es, which will have the diffusion estimator 
as a special case. Kernels constructed via a 
Lévy process could be tailored for data for 
which smoothing with the Gaussian kernel 
density estimator or diffusion estimator is 
not optimal. Such cases arise when the data 
is a sample from a heavy-tailed distribu-
tion. Secondly, more subtle and interesting 
smoothing models could be constructed by 
considering nonlinear parabolic partial dif-
ferential equations. One such candidate is 
the quasilinear parabolic partial differential 
equation with diffusivity that depends on 
the density exponentially. Another viable 
model is the semi-linear parabolic partial 
differential equation, and thus the model 
could be useful for smoothing heavy-tailed 
data. All such nonlinear models will pro-
vide adaptive smoothing without the need 
for a pilot run, but at the cost of increased 
model complexity.
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