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INTRODUCTION
Water reuse has attracted growing atten-
tion across the globe as a vital part of water 
resources management and forming an 
essential component of water conservation. 
Water scarcity challenges, linked with 
increasing water demand from an increasing 
population, climate change and depletion 
of groundwater resources among other fac-
tors, drive the need for exploring alternative 
water resources (Chen et al 2012). With 
increasing knowledge and understanding 
of the benefits of water reuse, some direct 
and indirect potable water reuse schemes 
have been successfully implemented in 
both developed and developing countries 
(Leverenz et al 2011; Ilemobade et al 2013).

Many studies on drought in South Africa 
have alluded to the occurrence of widespread 
and persistent drying conditions in several 
parts of the country (Botai et al 2016; Du 
Plessis & Schloms 2017; Botai et al 2018; 
Archer et al 2019). According to Swemmer 
et al (2018), northeastern Mpumalanga, the 
eastern half of the Free State and northern 
KwaZulu-Natal experienced more severe 
droughts than in the previous years, as indi-
cated by recorded Standardised Precipitation 
Index values for South Africa over a two-
year period, as of May 2016. These condi-
tions were also noticed in the drought-prone 
areas of the North West Province, Northern 
Cape Province (South African Weather 

Service 2014) and Western Cape. The dams 
in the North West and Free State provinces 
recorded low storage and this was an indica-
tion of deficient rainfall that had led to dry 
conditions (Department of Water Affairs SA 
2014). In 2015–2016, South Africa’s agricul-
tural activities were threatened by a severe 
drought which was caused by an El Nino 
weather system that swept across southern 
Africa (Baudoin et al 2017). In 2020, Botai 
et al (2020) reported that five of the most 
economically active provinces of South 
Africa were recovering from the severe 
drought, which had caused negative socio-
economic impacts. The adverse climatic 
conditions resulted in the critical shortage 
of potable water and damages to crops, to 
the point that the North West Province was 
declared a state of disaster (Botai et al 2016). 
The Western Cape was the most adversely 
affected (Archer et al 2019). These drought-
related impacts re-emphasise the need to 
increase efforts towards the development of 
alternative water supply sources. According 
to Ilemobade et al (2013), the implementa-
tion of water reuse schemes to mitigate 
water deficits has increased in many South 
African communities.

The quantity of usable return flow that 
can be harnessed for reuse is subject to 
several factors, ranging from environmental 
to technical, socio-economical and institu-
tional (Yang et al 2007). Therefore, several 
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researchers have used different decision sup-
port tools for estimating water reuse poten-
tial for specific contexts. These decision sup-
port tools include linear programming (Chu 
et al 2004; Yang & Abbaspour 2007; Goyal 
& Kumar 2020), mass balance (Hochstrat et 
al 2005), ratio analysis (Alfarra et al 2011), 
surveys (Adewumi et al 2010), fuzzy infer-
ence (Almeida et al 2013), aggregated index 
(Shafiquzzaman et al 2018) and analytic 
hierarchy process (Fukasawa & Mierzwa 
2020). In this study, a Bayesian Network and 
a Linear Regression model were employed. 
In the field of natural resources manage-
ment and environmental sciences, Bayesian 
Networks have proved to be an appropriate 
approach for ecosystem modelling (Rositano 
& Ferraro 2014; Garcia-Herrero et al 2013), 
climate change impact assessment (Richards 
et al 2013; Mantyka-Pringle et al 2014) 
and watershed management (Barton et al 
2008; Keshtkar et al 2013; Shenton et al 
2014). According to Mamitimin et al (2015), 
Bayesian Networks have the ability to clearly 
explain intricate relations between variables, 
easily compare scenarios, and determine the 
critical influencing system variables when 
applied to natural resources management. 
Another key benefit of this approach is 
its flexibility with regard to data sources. 
In situations where data is limited or not 
available, Bayesian Networks can implicitly 
integrate relevant data from different sources 
such as literature, empirical data, expert and 
stakeholders’ knowledge (Uusitalo 2007; Gret-
Regamey et al 2013). This study contributes 
to water reuse research by using water supply, 
and socio-demographic and environmental 
factors to estimate water reuse potential in 
the South African water management areas.

METHODOLOGY
The estimation of usable return flow can be 
an arduous task where accurate volumetric 
information is not readily available, as is 
the case in most developing countries. This 
problem is further amplified by the follow-
ing two (of several) reasons highlighted by 
Grobicki and Cohen (1999) in their study on 
water reuse projects in South Africa:
1.	 In a situation where information does 

exist, the data is often found to be 
incomplete and tedious to collate. In 
some instances, information only exists 
in handwritten format and this makes it 
difficult to access and analyse.

2.	 There are often contradictions in 
numerical data obtained from different 
sources for the same area.

The study by Carden (2013) also corroborat-
ed the above data challenges in South Africa.

In this study, data gathered from sources 
such as the Department of Water Affairs, 
Statistics South Africa and the South 
African Weather Service was used. Water 
abstracted from a surface or groundwater 
source is said to be consumptively used 
when it is no longer available for beneficial 
use because it has evaporated, transpired, 
been incorporated into products and crops, 
consumed by man or livestock, or otherwise 
removed from freshwater resources. The 
non-consumptive water use yields wastewa-
ter that serves the purpose of contributing 
to ecological water reserve and usable return 
flow. The reuse of this usable yield may, 
however, be further constrained by a variety 
of pollution sources, thereby making it chal-
lenging to estimate the portion of this yield 
that is available for reuse. Figure 1 shows 
that 85% of overall freshwater use in South 
Africa is for the agricultural and urban 
sectors. Twenty years after publication, 
this proportion of freshwater use has not 
changed significantly. Therefore, the models 
proposed in this paper focus on predicting 
water reuse potential in the agricultural and 
urban sectors. Figure 2 outlines the pro-
cesses involved in model development.

Data description
The variables used in this study are 
described below:

QQ Water use (WU): Refers to the water 
abstracted from surface and groundwa-
ter for agricultural, domestic and other 
use that sustains life, industrial and 
other anthropogenic activities (million 
m3 per annum).

QQ Agricultural water use (AWU): Refers 
to water used for irrigation and other 
agricultural activities in the agriculture 
sector (million m3 per annum).

QQ Domestic water use (DWU): Refers to 
water used for domestic activities such 
as cooking, drinking, bathing, laundry 
and light industrial activities in the 
urban sector (million m3 per annum).

QQ Cost of irrigation water (CIW): (cents of 
Rand/m3).

QQ Cost of domestic water (CDW): (cents of 
Rand/m3).

QQ Standard precipitation index (SPI): 
This is a tool used by the South Africa 
Weather Services for measuring the 
severity of drought based on rainfall 
data.

QQ Water stress indicator (WSI): This is a 
function of water availability and water 
use (Smakhtin et al 2005). This indica-
tor is defined by the ratio:

	

WSI = 
FreshwaterWithdrawals

(Meanannualrunoff – 
Ecologicalwaterreserve)

QQ Population density (PD): This is the 
number of inhabitants per unit area 
(population/km2).

QQ Water volume per person per day 
(WVPP): The average volume of water 
used per individual in a day.

QQ Percentage of non-revenue water (NRW): 
This refers to all the water that is lost 
through physical leakage or commercial 
losses (meter under-registration, billing 
errors, theft, etc), as well as any unbilled 
authorised consumption (fire-fighting, 
mains flushing, etc).
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Figure 1 �Water use in South Africa for the year 2000
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QQ Percentage of flush toilets (FT) con-
nected to sewerage system.

QQ Usable return flow from agricultural 
water (URFA): Volume of reusable water 
from agricultural activities (million m3 
per annum).

QQ Usable return flow from domestic 
(urban) water (URFU): Volume of reus-
able water from domestic activities 
(million m3 per annum)

The data that was gathered came from 
82 areas. Some areas had both domestic 
(urban) and agricultural water use, while 
some only had one water use. The Water 
Management Areas with no water use 
recorded in the sector or no usable return 
flow from the sector were discarded from 
the analysis. Furthermore, for the domestic 
sector, the data was further restricted to 
areas with annual domestic water use less 
than 50 million m3. This restriction was 
implemented to arrive at data that was 
more homogeneous, and this helped to 
improve the predictions. As a result, the 
data that was analysed consisted of 62 
observations for the agricultural sector and 
44 observations for the domestic (urban) 
sector. For the prediction of usable return 
flow from the agricultural sector, the 
predictor variables that were considered 

were WU, AWU, CIW, WSI and SPI. For 
the prediction of usable return flow from 
the domestic sector, the predictor variables 
considered were WU, DWU, CDW, WVPP, 
NRW, FT, WSI, PD and SPI.

Description of the models
For each sector considered (agricultural 
and domestic), two models were explored, 
namely a Linear Regression model and 
a Bayesian Network model. Since the 
variables were right-skewed and presented 
some outliers, a log transformation of the 
variables was undertaken, which resulted 
in better prediction accuracy. The smear-
ing estimate of bias was used to correct for 
the bias in the retransformed predictions 
(Newman 1993).

QQ Linear Regression model: The usable 
return flow was expressed as a linear 
function of the other variables. The 
selection of the variables included in 
the model was performed using the 
Akaike Information Criterion (Konishi 
& Kitagawa 2008).

QQ Bayesian Network model: A graphical 
model (Koller & Friedman 2009) for 
a collection of random variables is a 
family of probability distributions such 
that each satisfies a set of conditional 
independence relations encoded in a 
graph. This provides a parsimonious 
parameter and modular representation 
of the joint distribution of the random 
variables in the model, thereby allowing 
estimation of model parameters with a 
reasonable amount of data and a more 
effective computation of marginal 
posterior distributions. A Bayesian 
Network (Koller & Friedman 2009) is a 
graphical model wherein the conditional 
independence relations are encoded in 
a directed acyclic graph (a graph with 
orientated edges and such that there are 
no paths from a node and back).

For each sector, the graph that represents the 
dependence structure of the variables is learnt 
from the data. It corresponds to the structure 
that maximises the Bayesian Information 
Criterion (Konishi & Kitagawa 2008). For a 
more robust estimation of the structure, the 
average of graphs learnt from 1 000 bootstrap 
samples was used. The optimisation was 
carried out using the hill-climbing algorithm 
(Nagarajan et al 2013). Thereafter, maximum 
likelihood estimates of the parameters of the 
Gaussian Bayesian Network were calculated.

SOFTWARE
In this study, the R statistical software 
(RDevelopment Core Team 2017) was used 
for the data analysis. The bnlearn package 
(Scutari 2009) was used for the Bayesian 
Network modelling.

RESULTS

Usable return from the 
agricultural sector
Table 1 summarises the distribution of the 
percentage of agricultural water use that is 
potentially reusable. In particular it indi-
cates that, on average, 8% of agricultural 
water use is potentially reusable.

As shown in Figure 3, URFA is highly 
correlated with AWU (0.95) and WU (0.76). 
The latter variables are also highly correlated 
(0.79). Albeit very weak, the correlations of 

Figure 2 �Schematic representation of the processes involved in model development
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Table 1 Summary of reusable flow percentage from agricultural water use in South Africa

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

2 5 10 8 10 17



Journal of the South African Institution of Civil Engineering  Volume 63  Number 2  June 2021 5

CIW and SPI with WU and AWU, and hence 
with URFA, are negative, as expected. The 
obtained strong linear correlation between 
URFA and AWU already signifies that more 
than 90% of the variability of URFA can be 
explained by the variability of AWU.

Linear Regression model for usable 
return flow from agricultural water use
In the sequel, N(µ, σ) denotes the normal dis-
tribution with mean µ and standard deviation 
σ and by abuse of notation, a random obser-
vation from the said probability distribution.

For the usable return flow from 
agricultural water use, the fitted Linear 
Regression model is:

ln(1+URFA) = �0.101 ln(1+AWU) +  
N(0, 0.075)� (1)

Equation 1 implies that when AWU 
doubles, URFA increases on average by 
around 7%.

Performance of the Linear Regression 
model on cross-validation data:
Table 2 summarises the absolute percent-
age prediction errors using the Linear 
Regression model (Equation 1). It shows in 
particular that about half of the predictions 
were less than 24% higher or lower than the 
actual observation.

Figure 4 shows the actual and pre-
dicted usable return flow from agricultural 
water use.

Bayesian Network model for usable 
return flow from agricultural water use
Figure 5 shows the structure of the 
Bayesian Network learnt from the data. 
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Table 2 �Summary of absolute percentage prediction errors (agricultural water, Linear Regression model)

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

1 15 24 39 46 322

Figure 5 �Bayesian Network representation of 
factors impacting usable return flow 
from agricultural water use
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Only the variables WU, CIW and AWU 
were found to be factors significantly 
impacting URFA.

For URFA, the fitted Gaussian Bayesian 
Network model is the following:

ln(1+URFA) = �0.101 ln(1+AWU) +  
N(0, 0.075)� (2)

ln(1+AWU) = �0.981 ln(1+WU) − 0.508 
ln(1+CIW) + N(0, 0.6)� (3)

ln(1+WU) = N(4.855, 0.866)� (4)

ln(1+CIW) = N(1.030, 0.204)� (5)

Performance of the Bayesian Network 
model on cross-validation data:
Table 3 summarises the absolute percent-
age prediction errors achieved by the 
Bayesian Network model. In particular 
it indicates that about half of the pre-
dictions are within 25% of the actual 
observations.

Figure 6 shows the actual versus pre-
dicted usable return flow from agricultural 
water use using the Bayesian Network 
model.

Usable return flow from 
domestic activities
Table 4 summarises the distribution of 
the percentage of domestic water used 
that is potentially reusable. It shows that, 
on average, 34% of domestic water used is 
potentially reusable.

As shown in Figure 7, URFU is 
highly correlated with DWU (0.89) and 
moderately correlated with WU (0.54) 
and PD (0.56). CDW is poorly, but expect-
edly negatively, correlated with WU and 
WVPP. The obtained strong linear cor-
relation between URFU and DWU already 
indicates that about 79% of the variability 
of URFU can be explained by the vari-
ability of DWU.

Linear Regression model for usable 
return flow from domestic water use
For the usable return flow from domestic 
water use, the fitted Linear Regression 
model is:

ln(1+URFU) = �0.612 ln(1+DWU) +  
N(0, 0.390)� (6)

Equation 6 implies that when DWU 
doubles, URFU increases on average by 
around 50%.
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Figure 7 �Pearson correlation matrix of factors impacting usable return flow from domestic water use
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Figure 6 �Actual versus predicted usable return flow from agricultural water use using the 
Bayesian Network model

Table 3 �Summary of absolute percentage prediction errors (agricultural water, Bayesian Network model)

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

2 18 25 39 47 313
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Performance of the Linear Regression 
model on cross-validation data:
Table 5 summarises the absolute percentage 
prediction errors achieved by the Linear 
Regression model (Equation 6). In particular 
it shows that about half of the predictions 
are within 23% of the actual observation.

Figure 8 shows the predicted and actual 
usable return flow from urban water use. 
It can be observed that the model tends to 
underestimate higher usable return flow 
from urban water use.

Bayesian network model for usable 
return flow from domestic water use
Figure 9 shows the structure of the 
Bayesian Network learnt from the data. 
The variables WU, DWU and PD are found 
to be significant factors impacting the 
usable return flow from urban water.

The fitted Bayesian Network model for 
the prediction of the usable return flow 
from domestic water use is:

ln(1+URFU) = �0.612 ln(1+DWU) +  
N(0, 0.390)� (7)

ln(1+DWU) = �0.259 ln(1+WU) + 0.351 
ln(1+PD) + N(0, 0.667)� (8)

ln(1+WU) = N(4.62, 0.91)� (9)

ln(1+PD) = N(3.576, 1.185)� (10)

Performance of the Bayesian 
Network on cross-validation data:
Table 6 summarises the percentage pre-
diction errors achieved by the Bayesian 
Network model. In particular it indicates 
that about half of the predictions are more 
than 23% higher or lower than the actual 
observation.

Figure 10 shows the actual and predict-
ed usable return flow from domestic water 
use using the Bayesian Network model.

DISCUSSION AND CONCLUSION
The development of decision support 
models that utilise demographic, water and 
environment-related factors to predict usa-
ble return flow can be of help to decision-
makers and can make discussions about 
water reuse more efficient in communities 
faced with water scarcity. Information on 
usable return flow is imperative to the 
development and implementation of water 
reuse initiatives, as well as provide warn-
ing signals that can predict water supply 
shortages. In the agricultural sector, the 
variables that were found to be most useful 
for the prediction of usable return flow 
were the total water use, the agricultural 
water use and the cost of irrigation water. 
In the urban (domestic) sector, the vari-
ables that were found to be the most useful 
for the prediction of usable return flow 
were the total water use, the domestic 
water use and the population density. For 
the agricultural sector, the Linear and the 
Bayesian Network models yielded a median 
percentage absolute error of 24% and 25% 

Table 4 Summary of reusable flow percentages from domestic water use in South Africa

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

3 29 36 34 43 59

Pr
ed

ic
te

d 
U

RF
U

 (m
ill

io
ns

 m
3  p

er
 a

nn
um

)

16

14

12

10

8

6

4

2

0

Observed URFU (millions m3 per annum)
1614121086420
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Figure 9 �Bayesian Network representation of 
factors impacting the usable return 
flow from domestic water use

DWU

PD

WU

URFU

Table 5 �Summary of absolute percentage prediction errors (domestic water, Linear Regression model)

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

1 11 23 56 46 789

Table 6 �Summary of absolute percentage prediction errors (urban water, Bayesian Network model)

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

1 10 23 58 45 892
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respectively. For the domestic sector, the 
median percentage absolute error deter-
mined for both sectors was 23%. The pre-
dictions were generally more accurate for 

the domestic sector. The performance of 
the prediction models was certainly nega-
tively affected by the presence of multivari-
ate outliers, as indicated by a comparison 

of squared Mahalanobis distances with 
corresponding expected chi-square values 
(Figures 11 and 12). In summary, the study 
shows that 8% of the agricultural water 
use is potentially reusable, while 34% of 
total domestic water use is potentially 
reusable. The study also shows that, given 
the sectorial water use in a region, the 
usable return flow from the sector can 
be predicted with a reasonable degree of 
accuracy. Since the recorded usable return 
flows are constrained by the availability 
of infrastructure, regions with very low 
observed return flows, compared to the 
predicted ones, will tend to be regions less 
endowed with the necessary infrastructure. 
The result of this study also encourages 
the discussion of challenges facing reliable 
water supply, taking into consideration the 
effect of climate change.
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